imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

128K X 36, 256K X 18 3.3V Svnchronous SRAMs 3.3V I/O, Flow-Through Outputs **Burst Counter, Single Cycle Deselect**

AS8C403625 AS8C401825

Features

- 128K x 36, 256K x 18 memory configurations ٠
- Supports fast access times: Commercial:
 - 7.5ns up to 117MHz clock frequency
- LBO input selects interleaved or linear burst mode
- Self-timed write cycle with global write control (GW), byte write enable (\overline{BWE}), and byte writes (\overline{BWx})
- 3.3V core power supply
- Power down controlled by ZZ input
- 3.3V I/O
- **Optional Boundary Scan JTAG Interface (IEEE 1149.1** compliant)
- Packaged in a JEDEC Standard 100-pin plastic thin quad flatpack(TQFP),

Description

TheAS8C403625/1825 are high-speed SRAMs organized as 128K x 36/256K x 18. The AS8C403625/1825 SRAMs contain write, data, address and control registers. There are no registers in the data output path (flow-through architecture). Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle.

The burst mode feature offers the highest level of performance to the system designer, as the AS8C403625/1825 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the first cycle address from the processor, initiating the access sequence. The first cycle of output data will flow-through from the array after a clock-to-data access time delay from the rising clock edge of the same cycle. If burst mode operation is selected (ADV=LOW), the subsequent three cycles of output data will be available to the user on the next three rising clock edges. The order of these three addresses are defined by the internal burst counter and the LBO input pin.

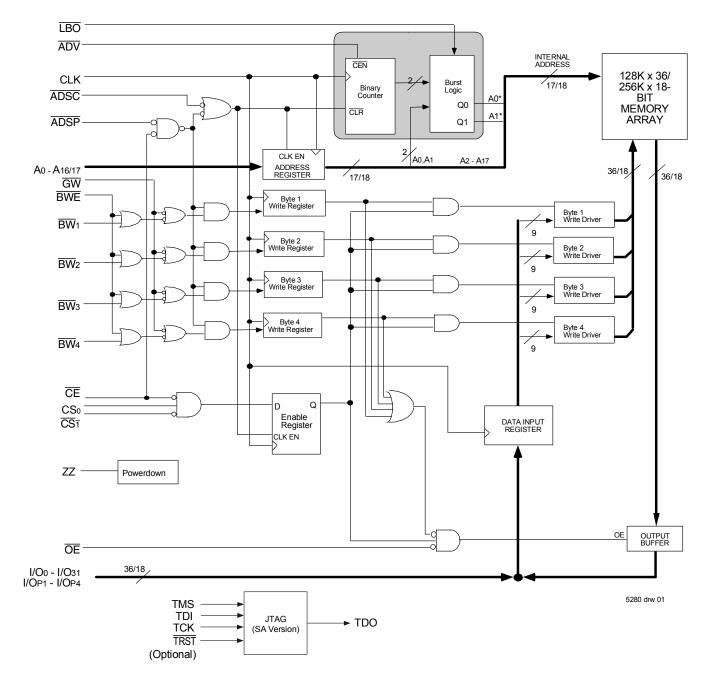
The AS8C403625/1825 SRAMs utilize IDT's latest high-performance CMOS process and are packaged in a JEDEC standard 14mm x 20mm 100-pin thin plastic guad flatpack (TQFP)

	ion Summary		
A0-A17	Address Inputs	Input	Synchronous
CE	Chip Enable	Input	Synchronous
CS0, CS1	Chip Selects	Input	Synchronous
ŌĒ	Output Enable	Input	Asynchronous
GW	Global Write Enable	Input	Synchronous
BWE	Byte Write Enable	Input	Synchronous
\overline{BW}_{1} , \overline{BW}_{2} , \overline{BW}_{3} , $\overline{BW}_{4}^{(1)}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV	Burst Address Advance	Input	Synchronous
ADSC	Address Status (Cache Controller)	Input	Synchronous
ADSP	Address Status (Processor)	Input	Synchronous
LBO	Linear / Interleaved Burst Order	Input	DC
TMS	Test Mode Select	Input	Synchronous
TDI	Test Data Input	Input	Synchronous
ТСК	Test Clock	Input	N/A
TDO	Test Data Output	Output	Synchronous
TRST	JTAG Reset (Optional)	Input	Asynchronous
Z	Sleep Mode	Input	Asynchronous
/O0 -I /O31, I /OP1 -I /OP4	Data Input / Output	I/O	Synchronous
Vdd, Vddq	Core Power, I/O Power	Supply	N/A
Vss	Ground	Supply	N/A

1. \overline{BW}_3 and \overline{BW}_4 are not applicable for the AS8C401825.

SEPTEMBER 2010

5280 tbl 02


Pin Definitions⁽¹⁾

Symbol	Pin Function	I/O	Active	Description
A0-A17	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combi-nation of the rising edge of CLK
				and ADSC Low or ADSP Low and CE Low.
ADSC	Address Status (Cache Controller)	I	LOW	Synchronous Address Status from Cache Controller. ADSC is an active LOW input that is used to load the address registers with new addresses.
ADSP	Address Status (Processor)	I	LOW	Synchronous Address Status from Processor. ADSP is an active LOW input that is used to load the address registers with new addresses. ADSP is gated by CE.
ĀDV	Burst Address Advance	I	LOW	Synchronous Address Advance. ADV is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance.
BWE	Byte Write Enable	I	LOW	Synchronous byte write enable gates the byte write inputs $\overline{BW_1}$ - $\overline{BW_4}$. If \overline{BWE} is LOW at the rising edge of CLK then \overline{BWx} inputs are passed to the next stage in the circuit. If \overline{BWE} is HIGH then the byte write inputs are blocked and only \overline{GW} can initiate a write cycle.
B₩1-B₩4	Individual Byte Write Enables	Ι	LOW	Synchronous byte write enables. $\overline{BW_1}$ controls I/O0-7, I/OP1, $\overline{BW_2}$ controls I/O8-15, I/OP2, etc. Any active byte write causes all outputs to be disabled.
CE	Chip Enable	I	LOW	Synchronous chip enable. \overline{CE} is used with CSo and \overline{CS}_1 to enable AS8C403625/1825. \overline{CE} also gates \overline{ADSP} .
CLK	Clock	I	N/A	This is the clock input. All timing references for the device are made with respect to this input.
CS0	Chip Select 0	I	HIGH	Synchronous active HIGH chip select. CSo is used with \overline{CE} and \overline{CS} I to enable the chip.
\overline{CS}_1	Chip Select 1	I	LOW	Synchronous active LOW chip select. \overline{CS}_1 is used with \overline{CE} and CSo to enable the chip.
GW	Global Write Enable	I	LOW	Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. GW supersedes individual byte write enables.
I/O0-I/O31 I/Op1-I/Op4	Data Input/Output	I/O	N/A	Synchronous data input/output (I/O) pins. The data input path is registered, triggered by the rising edge of CLK. The data output path is flow-through (no output register).
LBO	Linear Burst Order	I	LOW	Asynchronous burst order selection input. When $\overline{\text{LBO}}$ is HIGH, the inter-leaved burst sequence is selected. When $\overline{\text{LBO}}$ is LOW the Linear burst sequence is selected. $\overline{\text{LBO}}$ is a static input and must not change state while the device is operating.
ŌĒ	Output Enable	I	LOW	Asynchronous output enable. When \overline{OE} is LOW the data output drivers are enabled on the I/O pins if the chip is also selected. When \overline{OE} is HIGH the I/O pins are in a high-impedance state.
TMS	Test ModeSelect	I	N/A	Gives input command for TAP controller. Sampled on rising edge of TDK. This pin has an internal pullup.
TDI	Test Data Input	I	N/A	Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK. This pin has an internal pullup.
TCK	Test Clock	I	N/A	Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK. This pin has an internal pullup.
TDO	Test DataOutput	0	N/A	Serial output of registers placed between TDI and TDO. This output is active depending on the state of the TAP controller.
TRST	JTAG Reset (Optional)	I	LOW	Optional Asynchronous JTAG reset. Can be used to reset the TAP controller, but not required. JTAG reset occurs automatically at power up and also resets using TMS and TCK per IEEE 1149.1. If not used TRST can be left floating. This pin has an internal pullup. Only available in BGA package.
ZZ	Sleep Mode	I	HIGH	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the AS8C403625/1825 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode. This pin has an internal pull down.
Vdd	Power Supply	N/A	N/A	3.3V core power supply.
VDDQ	Power Supply	N/A	N/A	3.3V I/O Supply.
Vss	Ground	N/A	N/A	Ground.
NC	No Connect	N/A	N/A	NC pins are not electrically connected to the device.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial Values	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
$VTERM^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
$VTERM^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
$VTERM^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA ⁽⁷⁾	Commercial Operating Temperature	-0 to +70	°C
	Industrial Operating Temperature	-40 to +85	٥c
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	2.0	W
lout	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 2. VDD terminals only.
- 3. VDDQ terminals only.
- 4. Input terminals only.
- 5. I/O terminals only.
- 6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
- 7. TA is the "instant on" case temperature.

100 Pin TQFP Capacitance

 $(T_A = +25^{\circ} C_1 f = 1.0 mhz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit	
CIN	Input Capacitance	Vıℕ = 3dV	5	pF	
Cvo	I/O Capacitance	Vout = 3dV	7	pF	

5280 tbl 07

165 fBGA Capacitance (TA = +25° C, f = 1.0mhz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	Vıℕ = 3dV	7	pF
Cıvo	I/O Capacitance	Vout = 3dV	7	pF
NOTE			5	5280 tbl 07b

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Grade	Temperature ⁽¹⁾	Vss	Vdd	VDDQ
Commercial	0°C to +70°C	0V	3.3V±5%	3.3V±5%
Industrial	-40°C to +85°C	0V	3.3V±5%	3.3V±5%

NOTES:

1. TA is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Core Supply Voltage	3.135	3.3	3.465	۷
Vddq	I/O Supply Voltage	3.135	3.3	3.465	۷
Vss	Supply Voltage	0	0	0	۷
Viн	Input High Voltage - Inputs	2.0	_	VDD +0.3	۷
Vін	Input High Voltage - I/O	2.0		VDDQ +0.3 ⁽¹⁾	۷
VIL	Input Low Voltage	-0.3 ⁽²⁾		0.8	۷
NOTEO				54	000 Hol 00

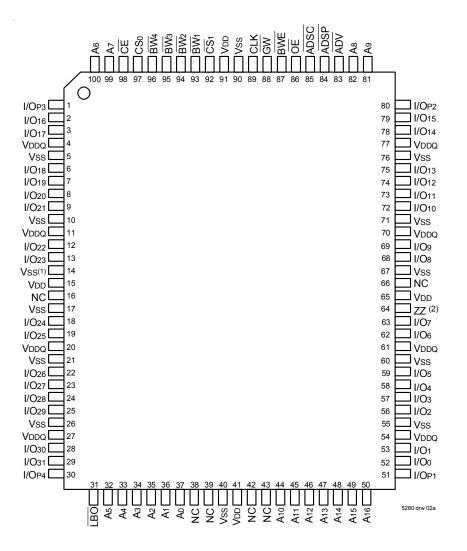
NOTES:

5280 tbl 03

5280 tbl 06

5280 tbl 04

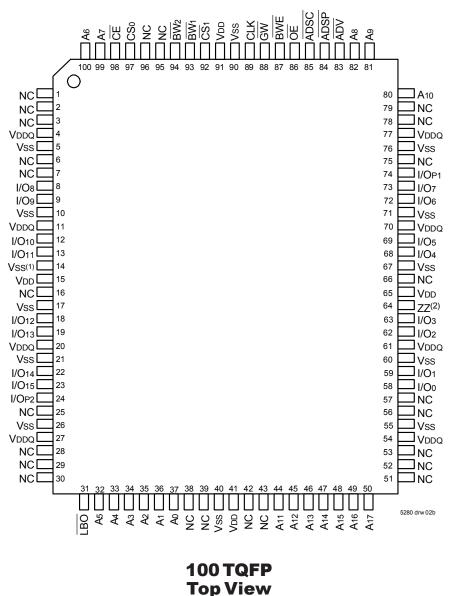
1. VIH (max) = VDDQ + 1.0V for pulse width less than tcyc/2, once per cycle.


2. VIL (min) = -1.0V for pulse width less than $t_{CYC/2}$, once per cycle.

119 BGA Capacitance $(T_A = +25^{\circ} C, f = 1.0 mhz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	Vıℕ = 3dV	7	pF
Cvo	I/O Capacitance	Vout = 3dV	7	pF

5280 tbl 07a


Pin Configuration – 128K x 36

100 TQFP Top View

- 1. Pin 14 does not have to be directly connected to Vss as long as the input voltage is \leq VIL.
- 2. Pin 64 can be left unconnected and the device will always remain in active mode.

Pin Configuration – 256K x 18

- 1. Pin 14 does not have to be directly connected to Vss as long as the input voltage is < VIL.
- 2. Pin 64 can be left unconnected and the device will always remain in active mode.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 5%)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
llul	Input Leakage Current	$V_{DD} = Max., V_{IN} = 0V$ to V_{DD}	_	5	μA
lLi	$Z\!Z$, \overline{LBO} and JTAG Input Leakage $Current^{(1)}$	VDD = Max., Vℕ = 0V to VDD	_	30	μA
lliol	Output Leakage Current	Vout = 0V to VDDa, Device Deselected	_	5	μA
Vol	Output Low Voltage	IOL = +8mA, VDD = Min.	_	0.4	V
Vон	Output High Voltage	IOH = -8mA, $VDD = Min$.	2.4		V
					5280 tbl 08

NOTE:

1. The LBO, TMS, TDI, TCK and TRST pins will be internally pulled to Vod and the ZZ in will be internally pulled to Vss if they are not actively driven in the application.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (1)

			7.5ns	8ns		8.5ns		
Symbol	Parameter	Test Conditions	Com'l Only	Com'l	Ind	Com'l	Ind	Unit
ldd	Operating Power Supply Current	$\begin{array}{llllllllllllllllllllllllllllllllllll$	255	200	210	180	190	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VDD = Max., VDD = Max., VDD = Max., VIN \geq VHD or \leq VLD, f = 0 ^(2,3)	30	30	35	30	35	mA
ISB2	Clock Running Power Supply Current	$\begin{array}{l} \mbox{Device Deselected, Outputs Open, Vdd} = Max., \\ \mbox{Vdd} = Max., \ \mbox{Vin} \geq \mbox{VHd} \ \mbox{or} \leq \mbox{VLD}, \ \mbox{f} = \mbox{fmax}^{(2,3)} \end{array}$	90	85	95	80	90	mA
lzz	Full Sleep Mode Supply Current	$ZZ \ge VHD$, $VDD = Max$.	30	30	35	30	35	mA
NOTES:							528	30 tbl 09

NOTES:

1. All values are maximum guaranteed values.

2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tcyc while ADSC = LOW; f=0 means no input lines are changing.

3. For I/Os VHD = VDDQ - 0.2V, VLD = 0.2V. For other inputs VHD = VDD - 0.2V, VLD = 0.2V.

AC Test Conditions (VDDQ = 3.3V)

<u>(</u>	
Input Pulse Levels	0 to 3V
Input Rise/Fall Times	2ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
AC Test Load	See Figure 1
	5280 tbl 10

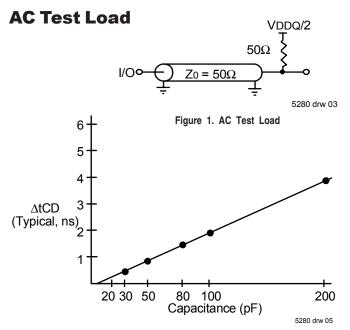


Figure 2. Lumped Capacitive Load, Typical Derating

Synchronous Truth Table ^(1,3)

Synchronous Trut Operation	Address	Ē	CS0	<u>CS</u> 1	ADSP	ADSC	ĀDV	GW	BWE	₩x	OE ⁽²⁾	CLK	I/O
	Used												
Deselected Cycle, Power Down	None	Н	Х	Х	Х	L	Х	Х	Х	Х	Х	↑	HI-Z
Deselected Cycle, Power Down	None	L	Х	Н	L	Х	Х	Х	Х	Х	Х	1	HI-Z
Deselected Cycle, Power Down	None	L	L	Х	L	Х	Х	Х	Х	Х	Х	Ŷ	HI-Z
Deselected Cycle, Power Down	None	L	Х	Н	Х	L	Х	Х	Х	Х	Х	Ŷ	HI-Z
Deselected Cycle, Power Down	None	L	L	Х	Х	L	Х	Х	Х	Х	Х	Ŷ	HI-Z
Read Cycle, Begin Burst	External	L	Н	L	L	Х	Х	Х	Х	Х	L	Ŷ	Dout
Read Cycle, Begin Burst	External	L	Н	L	L	Х	Х	Х	Х	Х	Н	Ŷ	HI-Z
Read Cycle, Begin Burst	External	L	Н	L	н	L	Х	Н	Н	Х	L	Ŷ	Dout
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	L	Н	L	\uparrow	Dout
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	L	Н	Н	Ŷ	HI-Z
Write Cycle, Begin Burst	External	L	Н	L	н	L	Х	Н	L	L	Х	Ŷ	DiN
Write Cycle, Begin Burst	External	L	Н	L	н	L	Х	L	Х	Х	Х	Ŷ	Din
Read Cycle, Continue Burst	Next	Х	Х	Х	н	н	L	Н	н	Х	L	Ŷ	Dout
Read Cycle, Continue Burst	Next	Х	Х	х	н	н	L	Н	Н	Х	Н	Ŷ	HI-Z
Read Cycle, Continue Burst	Next	Х	Х	х	н	Н	L	Н	Х	Н	L	Ŷ	Dout
Read Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	Х	Н	Н	Ŷ	HI-Z
Read Cycle, Continue Burst	Next	Н	Х	Х	х	Н	L	Н	Н	Х	L	Ŷ	Dout
Read Cycle, Continue Burst	Next	н	Х	Х	Х	н	L	н	Н	Х	Н	Ŷ	HI-Z
Read Cycle, Continue Burst	Next	н	Х	Х	Х	н	L	н	Х	Н	L	Ŷ	Dout
Read Cycle, Continue Burst	Next	н	Х	Х	х	н	L	н	Х	Н	Н	Ŷ	HI-Z
Write Cycle, Continue Burst	Next	Х	Х	Х	н	н	L	Н	L	L	Х	\uparrow	Din
Write Cycle, Continue Burst	Next	Х	Х	Х	н	Н	L	L	Х	Х	Х	\uparrow	Din
Write Cycle, Continue Burst	Next	Н	Х	Х	Х	н	L	Н	L	L	Х	\uparrow	DiN
Write Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	L	Х	Х	Х	Ŷ	Din
Read Cycle, Suspend Burst	Current	Х	Х	Х	н	Н	Н	Н	Н	Х	L	Ŷ	Dout
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Н	Х	Н	Ŷ	HI-Z
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Х	Н	L	Ŷ	Dout
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Х	Н	Н	Ŷ	HI-Z
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Н	Х	L	Ŷ	Dout
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Н	Х	Н	Ŷ	HI-Z
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Х	Н	L	Ŷ	Dout
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	х	Н	Н	Ŷ	HI-Z
Write Cycle, Suspend Burst	Current	Х	Х	х	н	Н	Н	н	L	L	Х	Ŷ	Din
Write Cycle, Suspend Burst	Current	х	х	х	Н	н	Н	L	х	х	х	Ŷ	Din
Write Cycle, Suspend Burst	Current	Н	Х	х	Х	Н	Н	Н	L	L	Х	Ŷ	Din
Write Cycle, Suspend Burst	Current	н	х	х	х	Н	Н	L	х	х	х	Ŷ	Din

NOTES:

1. $L = V_{IL}$, $H = V_{IH}$, X = Don't Care. 2. \overline{OE} is an asynchronous input.

3. ZZ - low for the table.

5280 tbl 12

5280 tbl 14

5280 tbl 15

Synchronous Write Function Truth Table ^(1, 2)

Operation	GW	BWE	BW1	BW2	BW 3	BW4
Read	н	Н	Х	Х	Х	Х
Read	Н	L	н	Н	Н	Н
Write all Bytes	L	Х	х	х	Х	Х
Write all Bytes	н	L	L	L	L	L
Write Byte 1 ⁽³⁾	Н	L	L	Н	Н	Н
Write Byte 2 ⁽³⁾	Н	L	н	L	Н	Н
Write Byte 3 ⁽³⁾	Н	L	н	Н	L	Н
Write Byte 4 ⁽³⁾	н	L	н	Н	Н	L

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. \overline{BW}_3 and \overline{BW}_4 are not applicable for the AS8C401825.

3. Multiple bytes may be selected during the same cycle.

Asynchronous Truth Table⁽¹⁾

Operation ⁽²⁾	ŌĒ	Z	I/O Status	Power
Read	L	L	Data Out	Active
Read	н	L	High-Z	Active
Write	Х	L	High-Z – Data In	Active
Deselected	Х	L	High-Z	Standby
Sleep Mode	Х	Н	High-Z	Sleep
10750	•	•	•	5280 tbl

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. Synchronous function pins must be biased appropriately to satisfy operation requirements.

Interleaved Burst Sequence Table (**LBO**=VDD)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	1	0	0	1	0	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

Linear Burst Sequence Table (**LBO**=Vss)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

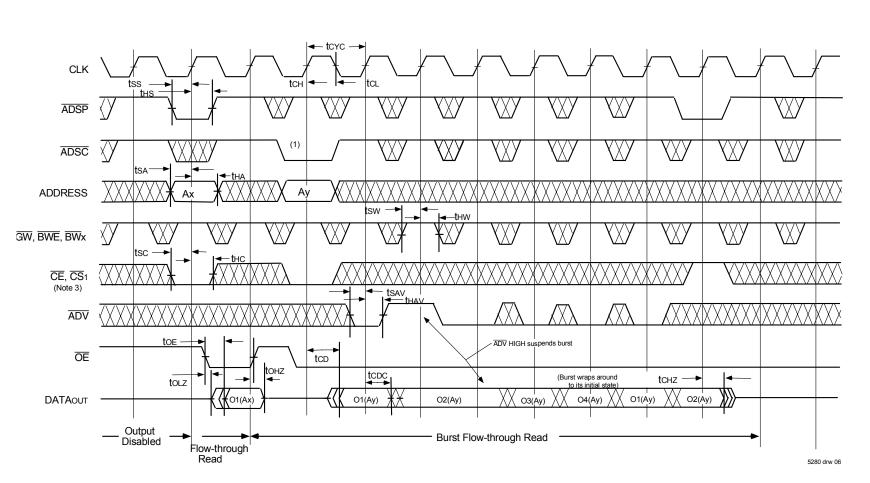
5280 tbl 16

AC Electrical Characteristics

(VDD = 3.3V ±5%, Commercial and Industrial Temperature Ranges)

			ns ⁽⁵⁾	8ns		8.5ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Clock Pa	rameter	-	-	-	-			•
tcyc	Clock Cycle Time	8.5		10		11.5		ns
tCH ⁽¹⁾	Clock High Pulse Width	3		4	_	4.5		ns
tCL ⁽¹⁾	Clock Low Pulse Width	3		4		4.5		ns
Output Pa	arameters		•	1			•	
tCD	Clock High to Valid Data		7.5		8		8.5	ns
tCDC	Clock High to Data Change	2		2		2		ns
talz ⁽²⁾	Clock High to Output Active	0		0		0		ns
tCHZ ⁽²⁾	Clock High to Data High-Z	2	3.5	2	3.5	2	3.5	ns
tOE	Output Enable Access Time		3.5		3.5		3.5	ns
toLz ⁽²⁾	Output Enable Low to Output Active	0		0		0		ns
tohz ⁽²⁾	Output Enable High to Output High-Z		3.5		3.5		3.5	ns
Set Up Ti	mes							
tsa	Address Setup Time	1.5		2		2		ns
tss	Address Status Setup Time	1.5		2		2		ns
tsD	Data In Setup Time	1.5		2		2		ns
tsw	Write Setup Time	1.5		2	—	2		ns
tsav	Address Advance Setup Time	1.5	—	2	—	2		ns
tsc	Chip Enable/Select Setup Time	1.5		2	—	2		ns
Hold Tim	es		-					-
tha	Address Hold Time	0.5		0.5		0.5		ns
tHS	Address Status Hold Time	0.5		0.5	—	0.5		ns
thd	Data In Hold Time	0.5		0.5	—	0.5		ns
tHW	Write Hold Time	0.5		0.5	—	0.5		ns
thav	Address Advance Hold Time	0.5		0.5	—	0.5		ns
tHC	Chip Enable/Select Hold Time	0.5		0.5	—	0.5		ns
Sleep Mo	de and Configuration Parameters							
tzzpw	ZZ Pulse Width	100		100	—	100		ns
tzzr(3)	ZZ Recovery Time	100	—	100	—	100		ns
tOFG ⁽⁴⁾	Configuration Set-up Time	34		40		50		ns

NOTES:


1. Measured as HIGH above VIH and LOW below VIL.

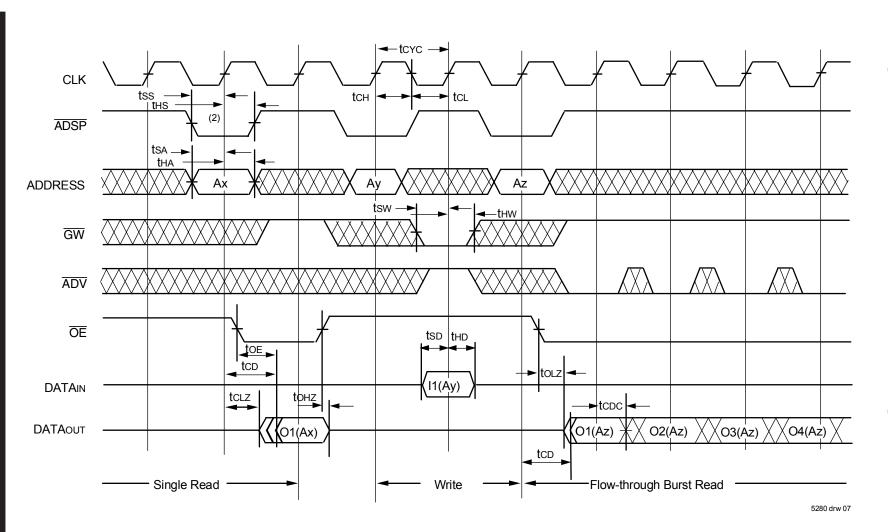
2. Transition is measured ±200mV from steady-state.

3. Device must be deselected when powered-up from sleep mode.

4. tors is the minimum time required to configure the device based on the LBO input. LBO is a static input and must not change during normal operation.

5. Commercial temperature range only.

Timing Waveform of Flow-Through Read Cycle ^(1,2)

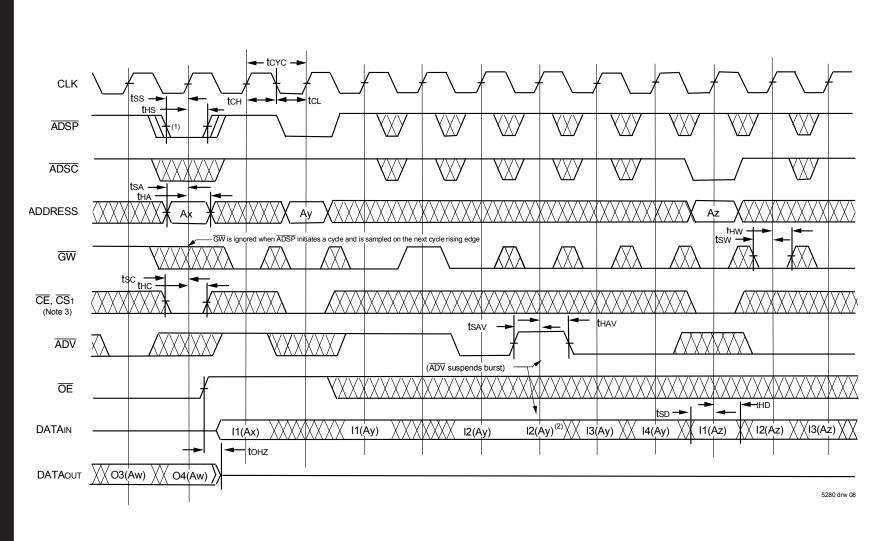

NOTES:

1. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay; O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.

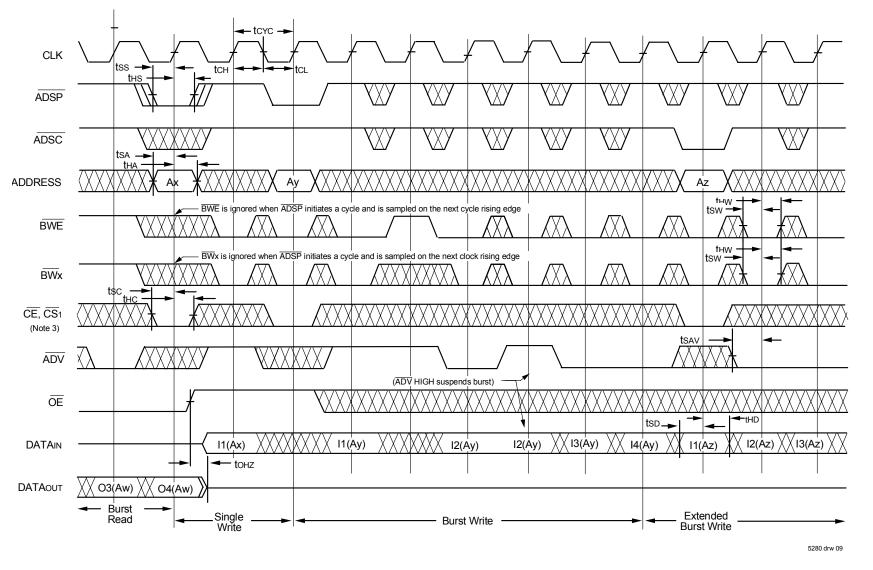
2. ZZ input is LOW and \overline{LBO} is Don't Care for this cycle.

3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.

6.42



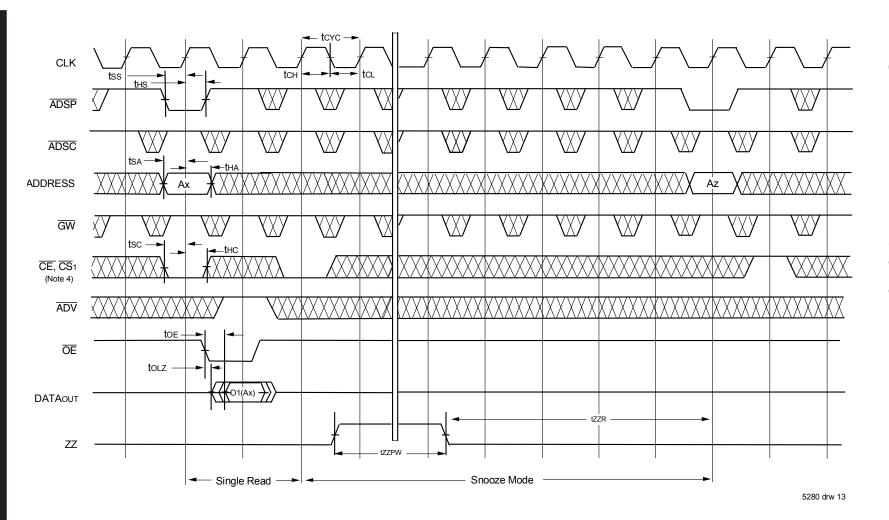
NOTES:


6.42

- 1. Device is selected through entire cycle; \overline{CE} and \overline{CS}_1 are LOW, CS0 is HIGH.
- 2. ZZ input is LOW and \overline{LBO} is Don't Care for this cycle.

3. O1 (Ax) represents the first output from the external address Ax. I1 (Ay) represents the first input from the external address Ay; O1 (Az) represents the first output from the external address Az; O2 (Az) represents the next output data in the burst sequence of the base address Az, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.

- 1. ZZ input is LOW, BWE is HIGH and LBO is Don't Care for this cycle.
- 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst.
- 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.



Timing Waveform of Write Cycle No. N Byte Controlled (1,2,3)

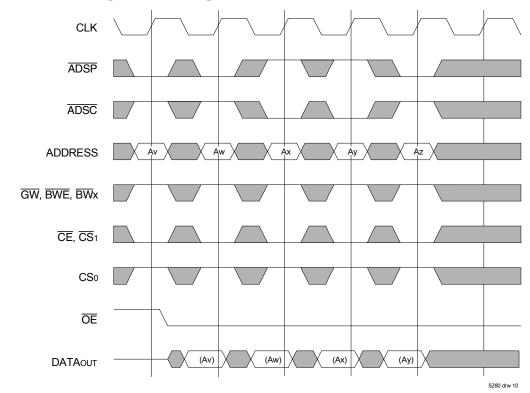
NOTES:

- 1. ZZ input is LOW, \overline{GW} is HIGH and \overline{LBO} is Don't Care for this cycle.
- 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. 11 (Ax) represents the first input from the external address Ax. 11 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst.
- 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.

6.42

Timing Waveform of Sleep (ZZ) and Power-Down Modes ^(1,2,3)

NOTES:

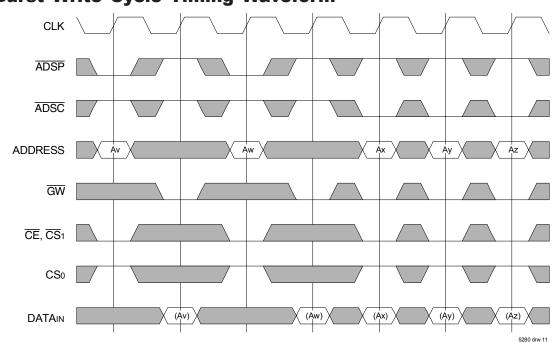

6.4.2

1. Device must power up in deselected Mode.

2. $\overline{\text{LBO}}$ is Don't Care for this cycle.

It is not necessary to retain the state of the input registers throughout the Power-down cycle.
 CS0 timing transitions are identical but inverted to the CE and CS1 signaals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.

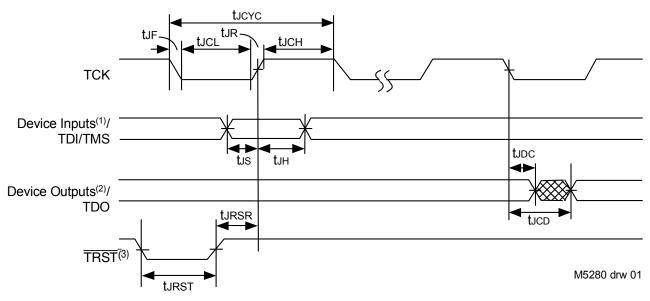
Non-Burst Read Cycle Timing Waveform



NOTES:

1. ZZ input is LOW, ADV is HIGH and LBO is Don't Care for this cycle.

2. (Ax) represents the data for address Ax, etc.


3. For read cycles, ADSP and ADSC function identically and are therefore interchangable.

Non-Burst Write Cycle Timing Waveform

- 1. ZZ input is LOW, $\overline{\text{ADV}}$ and $\overline{\text{OE}}$ are HIGH, and $\overline{\text{LBO}}$ is Don't Care for this cycle.
- 2. (Ax) represents the data for address Ax, etc.
- 3. Although only \overline{GW} writes are shown, the functionality of \overline{BWE} and \overline{BWx} together is the same as \overline{GW} .
- 4. For write cycles, ADSP and ADSC have different limitations.

JTAG Interface Specification (SA Version only)

NOTES:

1. Device inputs = All device inputs except TDI, TMS and $\overline{\text{TRST}}$.

2. Device outputs = All device outputs except TDO.

3. During power up, TRST could be driven low or not be used since the JTAG circuit resets automatically. TRST is an optional JTAG reset.

JTAG AC Electrical Characteristics^(1,2,3,4)

Symbol	Parameter	Min.	Max.	Units
tucyc	JTAG Clock Input Period	100	I	ns
ţлсн	JTAG Clock HIGH	40	1	ns
tJCL	JTAG Clock Low	40		ns
tιR	JTAG Clock Rise Time		5 ⁽¹⁾	ns
IJF	JTAG Clock Fall Time	_	5 ⁽¹⁾	ns
t JRST	JTAG Reset	50		ns
tu rsr	JTAG Reset Recovery	50		ns
tJCD	JTAG Data Output		20	ns
tJDC	JTAG Data Output Hold	0		ns
tus	JTAG Setup	25		ns
ţлн	JTAG Hold	25		ns
				15280 tbl 01

Scan Register Sizes

Register Name	Bit Size
Instruction (IR)	4
Bypass (BYR)	1
JTAG Identification (JIDR)	32
Boundary Scan (BSR)	Note (1)
	I5280 tbl 03

NOTE:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available

NOTES:

1. Guaranteed by design.

2. AC Test Load (Fig. 1) on external output signals.

3. Refer to AC Test Conditions stated earlier in this document.

4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet.

JTAG Identification Register Definitions (SA Version only)

Instruction Field	Value	Description
Revision Number (31:28)	0x2	Reserved for version number.
Device ID (27:12)	0x22C, 0x22E	Defines AS8C403625/1825
JEDEC ID (11:1)	0x33	Allows unique identification of device vendor.
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register.

15280 tbl 02

Available JTAG Instructions

Instruction	Description	OPCODE
EXTEST	Forces contents of the boundary scan cells onto the device outputs ⁽¹⁾ . Places the boundary scan register (BSR) between TDI and TDO.	0000
SAMPLE/PRELOAD	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ⁽²⁾ and outputs ⁽¹⁾ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.	0001
DEVICE_ID	Loads the JTAG ID register (JIDR) with the vendor ID code and places the register between TDI and TDO.	0010
HIGHZ	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.	0011
RESERVED		0100
RESERVED	Several combinations are reserved. Do not use codes other than those	0101
RESERVED	identified for EXTEST, SAMPLE/PRELOAD, DEVICE_ID, HIGHZ, CLAMP, VALIDATE and BYPASS instructions.	0110
RESERVED		0111
CLAMP	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.	1000
RESERVED		1001
RESERVED	Same as above.	1010
RESERVED	Same as above.	1011
RESERVED		1100
VALIDATE	Automatically loaded into the instruction register whenever the TAP controller passes through the CAPTURE-IR state. The lower two bits '01' are mand ated by the IEEE std. 1149.1 specification.	1101
RESERVED	Same as above.	1110
BYPASS	The BYPASS instruction is used to truncate the boundary scan register as a single bit in length.	1111

15280 tbl 04

NOTES:

1. Device outputs = All device outputs except TDO.

2. Device inputs = All device inputs except TDI, TMS, and $\overline{\text{TRST}}$.

ORDERING INFORMATION

Alliance	Organization	VCC Range	Package	Operating Temp	Speed ns
AS8C403625-QC75N	128K x 36	3.1 - 3.4V	100 pin TQFP	Comercial 0 - 70C	7.5
AS8C401825-QC75N	256K x 18	3.1 - 3.4V	100 pin TQFP	Comercial 0 - 70C	7.5

PART NUMBERING SYSTEM

AS8C	Device	Conf.	Mode	Package	Operating Temp	Speed	N
Sync. SRAM prefix	40 = 4M	18= x18 36 = x36	01= ZBT 00 = Pipelined 25 = Flow- Thru	Q = 100 Pin TQFP	0 ~ 70C	7.5 ns	N= Leadfree

Alliance Memory, Inc. 551 Taylor way, suite#1, San Carlos, CA 94070 Tel: 650-610-6800 Fax: 650-620-9211

www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved Part Number: AS8C403625/401825 Document Version: v. 1.0

© Copyright 2003 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.