mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ASL4501SHN

Four-phase boost converter

Rev. 2 — 10 January 2018

1. Introduction

The ASL4501SHN is a highly integrated and flexible four-phase DC-to-DC boost converter IC. It has a serial peripheral interface (SPI) allowing control and diagnostic communication with an external microcontroller.

It is designed primarily for use in automotive LED lighting applications and provides an optimized supply voltage for ASLx41xSHN multichannel LED buck driver.

2. General description

The ASL4501SHN has a fixed frequency peak current mode control with parabolic/non-linear slope compensation. It can operate with input voltages from 5.5 V to 40 V. It can be configured via SPI for output voltages of up to 80 V, to power the LED buck driver IC.

The ASL4501SHN is a four-phase converter which can have two independent outputs. The driver has the flexibility to be configured, via the SPI, as a single output converter, or with multiple combinations of number of outputs and phases.

The ASL4501SHN boost converter can drive up to four external low-side N channel metal-oxide-semiconductor field-effect transistors (MOSFETs) from an internally regulated adjustable supply. It can be used to drive either logic or standard level MOSFETs.

The integrated SPI also allows for programming the supply under/overvoltage range, output voltage range and DC-to-DC switching frequency. It enables the optimization of external components and flexibility for electromagnetic compatibility (EMC) design. This interface can also be used to provide diagnostic information such as the driver temperature.

Additional features include protection against load dump transient voltages of up to 60 V and thermal shutdown when the junction temperature of the ASL4501SHN exceeds +175 °C.

The device is housed in a very small HVQFN32 pin package and is designed to meet the stringent requirements of automotive applications. It is fully AEC-Q100 grade 1 qualified. It operates over the -40 °C to +125 °C ambient automotive temperature range.

3. Features and benefits

- The ASL4501SHN is an automotive grade product that is AEC-Q100 grade 1 qualified
- Operating ambient temperature range of -40 °C to +125 °C
- Wide operating input voltage range from 5.5 V to 40 V
- Output voltage programmable via SPI
- Multi-phase operation for higher power
- Up to four phases per output
- Up to two flexible output voltages with 3 % accuracy programmable via SPI
- Both output voltages can be controlled independently
- Fixed frequency operation via built-in oscillator
- Slope compensation tracks the frequency and output voltage
- Programmable control loop compensation
- Fast high efficiency field-effect transistor (FET) switching
- Programmable internal gate driver voltage regulator
- Gate switching is halted when overvoltage on output is detected
- Supports both logic level and standard level FETs
- Low electromagnetic emission (EME) and high electromagnetic immunity (EMI)
- Output voltage monitoring
- Supply voltage measurement
- Control signal to enable the device
- Read back programmed voltage and frequency range via SPI
- Junction temperature monitoring via SPI
- Small package outline HVQFN32
- Low quiescent current < 5 μA at 25 °C when EN = 0</p>
- Accurate power dissipation in phases assigned to one output

4. Applications

- Automotive LED lighting
 - Low beam
 - High beam
 - Daytime running lights
 - Turn indicator
 - Position or park light
 - Front fog light
 - Cornering light
 - Advanced front lighting

5. Ordering information

Table 1. Ordering information	
-------------------------------	--

Type number	Package		
	Name	Description	Version
ASL4501SHN	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5 \times 5 \times 0.85 mm	SOT617-12

6. Block diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 2. Pin description^[1]

Symbol	Pin	Description		
SNL1	1	phase 1 sense low		
SNH1	2	phase 1 sense high		
GND	3	ground		
G1	4	phase 1 gate driver		
VGG1	5	gate driver supply 1 ^[2]		
G2	6	phase 2 gate driver		
GND	7	ground		
SNH2	8	phase 2 sense high		
SNL2	9	phase 2 sense low		
n.c.	10	not connected		
FB1	11	feedback; to be connected to Vout13		
n.c.	12	not connected		
VBAT	13	battery supply		
n.c.	14	not connected		

Symbol	Pin	Description		
FB2	15	feedback; to be connected to Vout2 ^[3]		
n.c.	16	not connected		
SNL3	17	phase 3 sense low		
SNH3	18	phase 3 sense high		
GND	19	ground		
G3	20	phase 3 gate driver		
VGG2	21	gate driver supply 2 ^[2]		
G4	22	phase 4 gate driver		
GND	23	ground		
SNH4	24	phase 4 sense high		
SNL4	25	ph3ase 4 sense low		
SDI	26	SPI data input		
SCLK	27	SPI clock		
CSB	28	SPI chip select		
EN	29	enable signal		
VCC	30	external 5 V supply		
SDO	31	SPI data output		
GND	32	chip ground		

[1] For enhanced thermal and electrical performance, the exposed center pad of the package should be soldered to board ground (and not to any other voltage level).

[2] VGG1 and VGG2 are connected internally.

[3] Refer to Figure 4 and Figure 14 for the recommended connections for pin FB1 and pin FB2.

8. Functional description

ASL4501SHN

8.1 Operating modes

Mode	Control registers	Configuration registers	Diagnostic registers	VGG	Vout1 Vout2	Remarks
Off	n.a.	n.a.	n.a.	off	off	device is off, no communication possible
Configuration	read/write	read/write	read	off	off	VGG is off if no outputs were previously enabled
			read	according to register	off	VGG is on as soon as one of the outputs has been enabled
Operation	read/write	read	read	locked	according to register	configuration registers are locked
Fail silent	read/write	read	read ^[1]	off	off	communication possible, but all outputs off; restart via EN possible
Calibration	read/write	read/write	read	must be turned on	must be turned off	for successful calibration, the device has to be correctly configured, VGG has to be on and the outputs off; it is achieved by putting cfg_dn HIGH and LOW after the configuration of the device

[1] Setting the bit cfg_dn to logic 0 also grants write access to the configuration registers.

8.1.1 Off mode

The ASL4501SHN switches to off mode, if the input voltage drops below the power-on detection threshold voltage ($V_{th(det)pon}$) or the EN pin is LOW.

In off mode, the SPI and all outputs are turned off.

8.1.2 Configuration mode

The ASL4501SHN switches immediately from off mode to configuration mode, when the input voltage rises above the power-on detection threshold voltage ($V_{th(det)pon}$) and pin EN is HIGH.

The configuration registers can be set when the ASL4501SHN is in the configuration mode.

8.1.3 Operation mode

The ASL4501SHN switches from configuration mode to operation mode, as soon as the configuration done bit is set. Once the bit is set, the configuration registers are locked and cannot be changed.

In operation mode, the output is available as configured via the SPI. Setting bits Vout1en or Vout2en, initiates the gate driver. Once the gate driver is in regulation, signaled by bit VGG_ok, the respective programmed target voltages are turned on. When the converters are on, the battery monitoring functionality is available.

8.1.4 Fail silent mode

The ASL4501SHN switches from operation mode to fail silent mode, when the junction temperature exceeds the over temperature shutdown threshold or a gate driver error is detected. It also switches modes when the input voltage is below the undervoltage detection threshold or above the overvoltage detection threshold.

In fail silent mode, all outputs are turned off and only the SPI remains operational.

8.2 Boost converter configuration

The ASL4501SHN is an automatic boost converter IC delivering constant DC-to-DC voltage to a load. It has a fixed frequency current mode control for an enhanced stable operation.

The ASL4501SHN offers four phases. Each phase consists of a coil, a resistor, a MOSFET and a diode as shown in Figure 4.

To allow flexible use of the ASL4501SHN, the configuration is based on virtual phases. The virtual phases are then mapped to a real physical phase according to the physical connections and conditions of the circuitry around the ASL4501SHN as shown in Figure 5.

8.2.1 Virtual phase configuration

The ASL4501SHN can generate up to four internal phases at up to two virtual outputs. With the internal phase control enable registers, it can be selected, how many virtual phases are generated for the individual virtual outputs.

Bit	Symbol	Description	Value	Function
7 to 4	-	reserved	0000	reserved for future use: keep clear
3	EN_P4_1	phase 4 enabled	0 phase 4 is off	
			1	phase 4 is enabled
2	EN_P3_1	phase 3 enabled	0	phase 3 is off
			1	phase 3 is enabled
1	EN_P2_1	phase 2 enabled	0	phase 2 is off
			1	phase 2 is enabled
0	EN_P1_1	phase 1 enabled	0 phase 1 is off	
			1	phase 1 is enabled

Table 4. Internal phase control enable for phase logic 1 (address 0Bh)

Table 5.	Internal	phase	control	enable fo	r phase	logic 2	(address 0Ch)	1

Bit	Symbol	Description	Value	Function
7 to 4	-	reserved	0000	reserved for future use: keep clear
3	EN_P4_2	phase 4 enabled	0 phase 4 is off	
			1	phase 4 is enabled
2	EN_P3_2	phase 3 enabled	0 phase 3 is off	
			1	phase 3 is enabled
1	EN_P2_2	phase 2 enabled	0 phase 2 is off	
			1	phase 2 is enabled
0	EN_P1_2	phase 1 enabled	0 phase 1 is off	
			1	phase 1 is enabled

8.2.2 Association of physical phases to the output voltages

The phase that the ASL4501SHN offers, must be associated to the output.

Bit	Symbol	Description	Value	Function
7 to 4	-	reserved	0000	reserved for future use: keep clear
3	O_G4	association phase 4	0	phase 4 is connected to Vout1
			1	phase 4 is connected to Vout2
2	O_G3	association phase 3	0	phase 3 is connected to Vout1
			1	phase 3 is connected to Vout2
1	O_G2	association phase 2	0	phase 2 is connected to Vout1
			1	phase 2 is connected to Vout2
0	O_G1	association phase 1	0	phase 1 is connected to Vout1
			1	phase 1 is connected to Vout2

Table 6. Gate driver output (address 02h)

8.2.3 Association of connected phases to the internal phase generation

Each physical phase that the ASL4501SHN offers, must be associated to one of the virtual phases of the output. It is established with the gate driver phase and phase select configuration registers.

Bit	Symbol	Description	Value	Function			
7 to 4	-	reserved	0000	reserved for future use: keep clear			
3	O_GP4	association phase 4	0	phase 4 is connected to phase logic 1			
			1	phase 4 is connected to phase logic 2			
2	O_GP3	association phase 3	0	phase 3 is connected to phase logic 1			
		1	phase 3 is connected to phase logic 2				
1	O_GP2	association phase 2	0	phase 2 is connected to phase logic 1			
			1	phase 2 is connected to phase logic 2			
0	O_GP1	association phase 1	0	phase 1 is connected to phase logic 1			
			1	phase 1 is connected to phase logic 2			

Table 7. Gate driver phase (address 0Fh)

Table 8. Phase selection configuration (address 10h)

Bit	Symbol	Description	Value	Function
7 and 6	Phsel4[1:0]	phase select gate driver 4	0h	routing from phase 1
			1h	routing from phase 2
			2h	routing from phase 3
			3h	routing from phase 4
5 and 4	Phsel3[1:0]	phase select gate driver 3	0h	routing from phase 1
			1h	routing from phase 2
			2h	routing from phase 3
			3h	routing from phase 4

Four-phase boost converter

Table 6. Flase selection computation (address for)continued						
Bit	Symbol	Description	Value	Function		
3 and 2	Phsel2[1:0]	phase select gate driver 2	0h	routing from phase 1		
			1h	routing from phase 2		
			2h	routing from phase 3		
			3h	routing from phase 4		
1 and 0	Phsel1[1:0]	phase select gate driver 1	0h	routing from phase 1		
			1h	routing from phase 2		
			2h	routing from phase 3		
			3h	routing from phase 4		

Table 8. Phase selection configuration (address 10h) ... continued

8.2.4 Enabling of connected phases

The gate driver enable register is used to configure which of the phases is active.

Bit	Symbol	Description	Value	Function
7 to 4	-	reserved	0000	reserved for future use: keep clear
3	EN_G4 phase 4 enabled		0	phase 4 is off
			1	phase 4 is enabled
2	EN_G3 phase 3 enabled		0	phase 3 is off
			1	phase 3 is enabled
1	EN_G2	phase 2 enabled	0	phase 2 is off
			1	phase 2 is enabled
0	EN_G1 phase 1 enabled		0	phase 1 is off
			1	phase 1 is enabled

Table 9. Gate driver enable (address 01h)

8.2.5 Boost converter frequencies configuration

The operation frequency of the boost converters can be set with via several SPI registers. To ensure a stable phase delay between the different phases, all timings are derived from the same oscillator. An integer number downscales the internal oscillator frequency for each regulation loop. This slower clock is then used to control the off time of a phase. It also controls the delay from one phase of the regulation loop to the next internal phase. The number of phases determinates finally when the phase is turned on again and defines so the operation frequency of the boost converter.

Table 10. Clock divider for Vout1 (address 09h)

Bit	Symbol	Description	Value	Function
7 to 0	Clkdiv1[7:0]	clock divider for phase	00h	clock is not divided
		logic 1		clock is divided by Clkdiv1[7:0] + 1
			FFh	clock is divided by 256

Table 11. Clock divider for Vout2 (address 0Ah)

Bit	Symbol	Description	Value	Function
7 to 0	Clkdiv2[7:0]	clock divider for phase	00h	clock is not divided
		logic 2		clock is divided by Clkdiv2[7:0] + 1
			FFh	clock is divided by 256

Table 12.Phase-off time and phase delay of output 1 (address 0Dh)

Bit	Symbol	Description	Value	Function
7 to 3			0h	phase delay is 1 clock period of the divided clock
		phase of phase logic 1		phase delay is Phdel1[4:0] + 1 clock period of the divided clock
			1Fh	phase delay is 32 clock periods of the divided clock
2 to 0	Phoff1[2:0]	phase-off time	0h	phase-off time is 1 clock period of the divided clock
	of phase logic 1		phase-off time is Phoff1[2:0] clock period of the divided clock	
			7h	phase-off time is 7 clock periods of the divided clock

Table 13. Phase-off time and phase delay of output 2 (address 0Eh)

Bit	Symbol	Description	Value	Function
7 to 3	Phdel2[4:0]	delay to next	0h	phase delay is 1 clock period of the divided clock
		phase of phase logic 2		phase delay is Phdel2[4:0] + 1 clock period of the divided clock
			1Fh	phase delay is 32 clock periods of the divided clock
2 to 0	Phoff2[2:0]	phase-off time	0h	phase-off time is 1 clock period of the divided clock
	of phase logic 2		phase-off time is Phoff2[2:0] clock period of the divided clock	
			7h	phase-off time is 7 clock periods of the divided clock

Note: To obtain the best performance of the internal slope compensation, keep the settings of the delay between the phases as close to 32 as possible.

8.2.6 Control loop parameter settings

The ASL4501SHN is able to operate with a wide range of external components and offers a wide range of operating frequencies. To achieve maximum performance for each set of operation conditions, set the control loop parameters in accordance with the external components and operating frequency.

Table 14.	Loop filter proportio	nal configuration (address 11h)
	Ecop inter propertie	

Bit	Symbol	Description	Value	Function	
7 to 4	Prop2[3:0]	proportional factor	0h	proportional factor output 2 is 0.05	
		output 2		proportional factor output 2 is Prop2[3:0] \times 0.05 + 0.05	
			Fh	proportional factor output 2 is 0.8	
3 to 0	Prop1[3:0]	proportional factor	0h	proportional factor output 1 is 0.05	
		output 1		proportional factor output 1 is Prop1[3:0] \times 0.05 + 0.05	
			Fh	proportional factor output 1 is 0.8	

Table 15. Loop filter integral configuration (address 12h)

Bit	Symbol	Description	Value	Function
7 to 4	Integ2[3:0]	integral factor	0h	integral factor output 2 is 0.005
		output 2		integral factor output 2 is Integ2[3:0] \times 0.005 + 0.005
			Fh	integral factor output 2 is 0.08
3 to 0	Integ1[3:0]	integral factor	0h	integral factor output 1 is 0.005
		output 1		integral factor output 1 is Integ1[3:0] × 0.005 + 0.005
			Fh	integral factor output 1 is 0.08

Table 16. Slope compensation configuration (address 13h)

Bit	Symbol	Description	Value	Function
7 to 4	Slpcmp2[3:0]	slope	0h	slope compensation factor output 2 = 112 k Ω
		compensation factor output 2	1h	slope compensation factor output 2 = 84 k Ω
			2h	slope compensation factor output 2 = 70 k Ω
			4h	slope compensation factor output 2 = 56 k Ω
			8h	slope compensation factor output 2 = 28 k Ω
3 to 0	Slpcmp1[3:0]	slope	0h	slope compensation factor output 1 = 112 k Ω
		compensation factor output 1	1h	slope compensation factor output 1 = 84 k Ω
			2h	slope compensation factor output 1 = 70 k Ω
			4h	slope compensation factor output 1 = 56 k Ω
			8h	slope compensation factor output 1 = 28 k Ω

Bit	Symbol	Description	Value	Function
7 and 6	Slpr4[1:0]	slope resistor configuration	0h	250 Ω
		for gate driver 4	1h	500 Ω
			2h	1000 Ω
			3h	1500 Ω
5 and 4			0h	250 Ω
	for gate driver	for gate driver 3	1h	500 Ω
			2h	1000 Ω
			3h	1500 Ω
3 and 2		slope resistor configuration	00h	250 Ω
		for gate driver 2	1h	500 Ω
			2h	1000 Ω
			3h	1500 Ω
1 and 0	Slpr1[1:0]	slope resistor configuration for gate driver 1	0h	250 Ω
			1h	500 Ω
			2h	1000 Ω
			3h	1500 Ω

Table 17. Current sense slope resistor configuration (address 14h)

8.3 Output voltage programmability

The ASL4501SHN provides the possibility to program the output voltage and output overvoltage protection of the output via the SPI.

8.3.1 Output voltage target programmability

The target output voltage can be programmed via the output voltage registers. As the ASL4501SHN is a boost converter, the output voltage cannot be lower than the supply voltage minus the drop of the converter diode (Dx in Figure 4).

Table 18. Output voltage 1 register (address 03h)

Bit	Symbol	Description	Value	Function
7 to 0	V_Vout_1[7:0]	target voltage output 1	00h	output 1 is turned off
				target voltage output 1 = 0.3555 × V_Vout_1[7:0] × (1 + (333 × 10 ⁻⁶) × (T_junction[7:0] - 38))
			FFh	maximum target output voltage = 90 V

Table 19. Output voltage 2 register (address 04h)

Bit	Symbol	Description	Value	Function
7 to 0	V_Vout_2[7:0]	target voltage output 2	00h	output 2 is turned off
				target voltage output 2 = $0.3555 \times V_Vout_2[7:0] \times (1 + (333 \times 10^{-6}) \times (T_junction[7:0] - 38))$
			FFh	maximum target output voltage = 90 V

8.3.2 Output overvoltage protection programming

Due to fast changes in the supply or the output, it is possible that the output voltage is disturbed. To avoid high voltages that may result into damage of attached components, the ASL4501SHN offers a programmable overvoltage protection threshold. Once the output voltage is above this threshold, the gate pin of the output stops toggling. It results in a halt of the energy delivery to the output.

Once the output voltage recovers and is below the threshold again, the gate pin starts toggling again. The regulation loop regulates the output back to the target value.

For stable operation of the device, the limit voltage output register should be programmed around 5 V higher than the output voltage registers.

 Bit
 Symbol
 Description
 Value
 Function

 7 to 0
 Vmax_Vout_1[7:0]
 limit output 1
 00h
 output 1 is turned off

 ...
 output overvoltage protection output 1 =
 0.3555 × V_Vout_1[7:0] × (1 + (333 × 10⁻⁶) × (T_junction[7:0] - 38))

 FFh
 maximum output overvoltage protection output 1 = 90 V

Table 20. Limit voltage output 1 register (address 05h)

Table 21. Limit voltage output 2 register (address 06h)

Bit	Symbol	Description	Value	Function
7 to 0	Vmax_Vout_2[7:0]	limit output 2	00h	output 2 is turned off
				output overvoltage protection output 2 = $0.3555 \times V_Vout_2[7:0] \times (1 + (333 \times 10^{-6}) \times (T_junction[7:0] - 38))$
			FFh	maximum output over voltage protection output 2 = 90 V

8.4 Coil peak current limitation

The ASL4501SHN offers a function to limit peak current inside the coil and therefore to limit the input current for the system. Furthermore, this functionality can be used to avoid magnetic saturation of the coils and allow some soft start feature to be realized.

With the maximum phase current Voutx registers, the maximum peak current for the individual phases assigned to the output can be configured. Once the voltage drop between pins SNLx and SNHx reaches this level, the gate will be turned off until the next switching cycle. To avoid sub harmonic oscillations when the coil peak current limitation is becoming active, the slope compensation is still active. It reduces the coil peak current toward the end of the switching cycle to ensure stable operation of the system.

To avoid that this function interferes with the normal regulation, the limit should be placed well above the maximum expected currents.

	able 22. Maximum phase current vour register (address orn)					
Bit	Symbol	Description	Value	Function		
7 to 0	I_max_per_phase_Vout1[7:0]] coil current limitation for phases assigned to	00h	no current allowed		
				maximum peak current = (I_max_per_phase_Vout1[7:0] × 1.8 V / 256 - 0.24 V) / R _{sense}		
		Vout1	64h	maximum allowed setting = $(128 / 256 \times 1.8 \text{ V} - 0.24 \text{ V}) / \text{R}_{\text{sense}}$		
				not allowed		
			FFh	not allowed		

Table 22. Maximum phase current Vout1 register (address 07h)

Table 23. Maximum phase current Vout2 register (address 08h)

Bit	Symbol	Description	Value	Function	
7 to 0	I_max_per_phase_Vout2[7:0]			no current allowed	
		limitation for phases		maximum peak current = (I_max_per_phase_Vout2[7:0] × 1.8 V / 256 – 0.24 V) / R _{sense}	
		assigned to Vout2	•	64h	maximum allowed setting = (128 / 256 × 1.8 V - 0.24 V) / R _{sense}
				not allowed	
			FFh	not allowed	

8.5 Enabling output voltage

The ASL4501SHN provides two independent output voltages. In operation mode, the output voltages are turned on with the bits Vout1en and Vout2en.

As soon as one of the outputs is turned on, the gate driver voltage regulator is turned on. After the gate driver start-up time, the gate drivers start switching if the bit VGG_ok is set.

Bit	Symbol	Description	Value	Function
7 to 4	-	reserved	0000	reserved: keep clear for future use
3	Cnt_CSB	count chip select time	0	chip select LOW count feature is disabled
			1	chip select LOW count feature is enabled
2	Vout2en	enable output 2	0	output 2 is turned off
			1	output 2 is turned on, when the device is in operation mode
1	Vout1en	enable output 1	0	output 1 is turned off
			1	output 1 is turned on, when the device is in operation mode
0	Cfg_dn	configuration done	0	device is in configuration mode - no configuration lock
			1	device is in configuration mode - configuration lock is active

Table 24. Function control register (address 00h)

8.6 Trimming and calibration

The ASL4501SHN offers an option to trim the oscillator frequency and calibrate the output phases. The trimming allows highly accurate switching frequency. The calibration ensures matching of the power delivered by the individual phases toward an output.

8.6.1 Frequency trimming

It is mandatory to adjust the internal oscillator frequency of the device to ensure the ASL4501SHN is operating within the specified oscillator frequency range.

To measure the actual internal frequency, the device measures the time that the CSB pin is LOW during an SPI transfer. This time information is used to adjust the oscillator frequency of the device. The recommended procedure for the time adjustment is shown in Figure 7.

At the start of the sequence, the CSB LOW count feature is activated. It is done by setting the Cnt_CSB bit HIGH in the frequency trimming control register (bit 3; register 00h). The device now measures the time with its internal time domain each time the CSB pin is LOW. It makes this information available in the CSB count registers. To allow an exact stable reading, set the Cnt_CSB bit LOW again with an accurately known CSB LOW time. Setting the bit LOW freezes the count registers. These registers store the last value, which in this case is the command that sets the Cnt_CSB bit LOW.

The CSB count registers contain the count of the CSB LOW time of the last SPI command the CSB LOW count feature was enabled. CSB count register 1 contains the bits 7 to 0 of the counter, while the CSB count register 2 contains the bits 15 to 8.

Table 25. CSB count register 1 (address 41h)

Bit	Symbol	Description	Value	Function
7 to 0	CSB_cnt[7:0]	CSB count LOW		count value (bits 7 to 0)

Table 26.	CSB coun	t register 2	(address	42h)
			1	

Bit	Symbol	Description	Value	Function
15 to 8	CSB_cnt[15:8]	CSB count HIGH		count value (bits 15 to 8)

The count, the CSB count register returns, should correspond to the real time of the CSB LOW time. 1 count should correspond with $1/f_{osc trimmed}$ (see <u>Table 46</u>).

When the CSB count register count, deviates from the applied CSB LOW time, adjust the device internal timing by modifying the frequency trimming register.

To ensure that the adjustment had the desired effect, restart the procedure and check the count with the new settings in the frequency trimming register.

When the device internal time matches the applied CSB LOW time, no further adjustment is needed and the trimming procedure is finished.

8.6.2 Calibration

A calibration of the IC can be initiated at power-up. The calibration ensures the individual activated phases connected to one output of the ASL4501SHN conduct the same amount of power. The calibration of the device takes care that any spread coming from the IC is minimized. Any effect from external components is not taken care of by the calibration.

As a pre-condition for the calibration, device has to be configured with the target configuration with the integral and proportional factors set to max value. The VGG regulator has to signal VGG_ok. When the Calib bit [bit 0 in frequency trimming register (address 1Ch)] is set LOW, the calibration starts. After t_calib, the calibration is completed and the calibration done bit will be set. The result of the calibration can be read in the calibration result register (address 4Ch).

Note:

While the device is in calibration mode, the device operates with the default oscillator frequency.

To ensure that the device is operating with a valid calibration, it is recommended to execute the calibration multiple times. Valid calibrations give similar calibration values. Invalid calibrations, e.g. because of external disturbances, give outliers.

A restart of the calibration is only allowed once the running calibration is completed or the device was in off mode.

8.6.3 Trimming and calibration registers

The frequency trimming register contains the trim bits for the oscillator, but is also used to allow access to the calibration values.

Bit	Symbol	Description	Value	Function
7 and 6	-	reserved	-	n.a.
5 to 1	Calib/Ftrim[4:0]	frequency trim bits 4 to 0		Calib = 1: frequency trim setting
		calibration bits 4 to 0		Calib = 0: pointer to calibration data
0	Calib	calibration/frequency	1	frequency trimming - normal operation
		trimming	0	calibration mode

Table 27. Calibration/frequency trimming register (address 1Ch)

Bit		settings	Value	Function
	Symbol	Description	Value	
4 to 0	Calib/Ftrim[4:0]	frequency trimming bits	01000	default frequency – 33.33 %
			01001	default frequency – 30.56 %
			01010	default frequency – 27.78 %
			01011	default frequency – 25.00 %
			01100	default frequency – 22.22 %
			01101	default frequency – 19.44 %
			01110	default frequency – 16.67 %
			01111	default frequency – 13.89 %
			00000	default frequency – 11.11 %
			00001	default frequency – 8.33 %
			00010	default frequency – 5.56 %
			00011	default frequency – 2.78 %
			00100	default frequency
			00101	default frequency + 2.78 %
			00110	default frequency + 5.56 %
			00111	default frequency + 8.33 %
			11000	default frequency + 11.11 %
			11001	default frequency + 13.89 %
			11010	default frequency + 16.67 %
			11011	default frequency + 19.44 %
			11100	default frequency + 22.22 %
			11101	default frequency + 25.00 %
			11110	default frequency + 27.78 %
			11111	default frequency + 30.56 %
			10000	default frequency + 33.33 %
			10001	default frequency + 36.11 %
			others	not allowed
		content of calibration result register (4Ch);		bration complete bit: ation complete; 0 = calibration ongoing
		Calib/Ftrim[4:0] select the content available	4h	bits 4 to 0 calibration value REF2
		in register 4Ch	6h	bits 4 to 0 calibration value CAL2
			8h	bits 4 to 0 calibration value REF3
			Ah	bits 4 to 0 calibration value CAL3
			Ch	bits 4 to 0 calibration value REF4
			Eh	bits 4 to 0 calibration value CAL4

Table 00 Calib/Etrim

The calibration result register contains the calibration results based on the selection of the Calib/Ftrim[4:0] setting in Table 27.

Table 29. Calibration result register (address 4Ch)

Bit	Symbol	Description	Value	Function
7 to 0	Calib_value[7:0]	calibration value as selected per Calib/Ftrim[4:0] setting	read only	calibration info per Calib/Ftrim[4:0] setting

© NXP Semiconductors N.V. 2018. All rights reserved.

8.7 Gate supply voltage

The ASL4501SHN has an integrated linear regulator to generate the supply voltage of the gate drivers. The integrated linear regulator is internally connected to the pins VGG1 and VGG2. The voltage generated by the linear regulator can be set via the VGG control register.

Table 30. VGG control register (address 15h)

Bit	Symbol	Description	Value	Function
7 to 0	VGG[7:0]	supply voltage for gate drivers	00h	not allowed
				not allowed
			5Dh	maximum output voltage = 10.3 V
				16.25 V – 64 mV × VGG[7:0]
			B7h	minimum output voltage = 4.54 V
				not allowed
			FFh	not allowed

If a setting between 00h and 5Dh is used, a gate driver voltage is targeted that exceeds the limiting values of the IC. Do not program these settings. To ensure that only values in the allowed range are set inside the IC, read back the programmed value immediately after setting it.

If a setting between FFh and B7h is used, the device may not start up VGG. If the device operates, parameters of VGG are not guaranteed.

8.7.1 Gate voltage supply diagnostics

The diagnostic options for the gate voltage supply are:

- Gate driver available; details can be found in <u>Section 8.10</u>
- Gate driver protection active; details can be found in <u>Section 8.10</u>

8.8 Supply voltage monitoring

When at least one of the outputs is enabled and bit VGG_ok is set, the ASL4501SHN continuously measures the voltage at pin VBAT. It allows the system to monitor the supply voltage without additional external components. It also offers the option to put an automatic undervoltage or overvoltage protection in place.

Note: The VIN_UV and VIN_OV bits in the status register use the battery voltage measurement. As a result, the VIN_UV and VIN_OV bits are only reliable when at least one output is enabled.

8.8.1 Battery voltage measurement

The ASL4501SHN continuously measures the voltage at pin VBAT. The measurement result is available in the battery voltage register when at least one output is enabled.

Table 31. Battery voltage register (address 45h)

Bit	Symbol	Description	Value	Function
7 to 0	V_VBAT[7:0]	battery voltage	00h	battery voltage = 0 V
				battery voltage = 0.3555 × V_VBAT[7:0] × (1 + (333 × 10 ⁻⁶) × (T_junction[7:0] - 38))
			FFh	maximum measurable battery voltage = 90 V

8.8.2 Undervoltage detection

The ASL4501SHN offers a variable undervoltage detection threshold. When the supply voltage drops below this threshold, the undervoltage detect bit is set, and fail silent mode is entered. All gate pins stop toggling and power is no longer delivered to the output.

Table 32. Undervoltage threshold register (address 1Bh)

Bit	Symbol	Description	Value	Function
7 to 0	V_VIN_UV[7:0]	undervoltage	00h undervoltage detection threshold = 0 V	
		detection threshold		undervoltage detection threshold = $0.3555 \times V_VIN_UV[7:0] \times (1 + (333 \times 10^{-6}) \times (T_junction[7:0] - 38))$
			FFh	maximum undervoltage detection threshold = 90 V

8.8.3 Overvoltage detection

The ASL4501SHN offers a variable overvoltage detection threshold. When the supply voltage rises above this threshold, the overvoltage detect bit is set, and fail silent mode is entered. All gate pins stop toggling and power is no longer delivered to the output.

Table 33. Overvoltage threshold register (address 1Ah)

Bit	Symbol	Description	Value	Function
7 to 0	V_VIN_OV[7:0]	•	00h	overvoltage detection threshold = 0 V
		detection threshold		overvoltage detection threshold = $0.3555 \times V_VIN_OV[7:0] \times (1 + (333 \times 10^{-6}) \times (T_junction[7:0] - 38))$
			FFh	maximum overvoltage detection threshold = 90 V

8.9 Junction temperature information

The ASL4501SHN provides a measurement of the IC junction temperature. The measurement information is available in the junction temperature register.

Table 34. Junction temperature register (address 46h)

Bit	Symbol	Description	Value	Function
7 to 0	T_junction[7:0]	-	0h to 17h	device junction temperature below -40 °C
		temperature 18h		device junction temperature = -40 °C
				device junction temperature = T_junction[7:0] \times (215 / 106) °C - 88 °C
			82h	device junction temperature = 175 °C
			83h to FFh	device junction temperature above 175 °C

8.10 Diagnostic information

The diagnostic register contains useful information for diagnostic purposes. Details for each bit can be found in the following subchapters.

Bit	Symbol	Description	Value	Function
7 Vout1_ok Vo		Vout1 regulated	0	Vout1 is deviating from the target value
			1	Vout1 is regulated to the target value
6	Vout2_ok	Vout2 regulated	0	Vout2 is deviating from the target value
			1	Vout2 is regulated to the target value
5	VGG_ok	gate driver regulation is ok	0	gate driver is not available
			1	gate driver is available
4 Tj_err	device temperature is too high	0	device temperature below 175 °C	
		1	device temperature above 175 °C	
3 VIN_UV		VIN undervoltage	0	undervoltage not detected at VIN
			1	undervoltage detected at VIN
2 VIN_OV V		VIN overvoltage	0	overvoltage not detected at VIN
			1	overvoltage detected at VIN
1	SPI_err	SPI error	0	last SPI command was executed correctly
			1	last SPI command was erroneous and has been discarded
0	VGG_err	VGG error	0	VGG overload protection not active
			1	VGG overload protection has turned on and VGG is deactivated

Table 35.	Diagnostic	register	address 5	Fh)

8.10.1 Bit VIN_OV

The bit VIN_OV depends on the battery monitoring functionality as described in <u>Section 8.8</u>. It indicates that the device has detected an overvoltage condition and entered the fail silent mode. A write access to the diagnostic register, or once the off mode is entered, clears the bit. The device stays in fail silent mode irrespective of the clearing of the bit.

8.10.2 Bit VIN_UV

The bit VIN_UV depends on the battery monitoring functionality as described in <u>Section 8.8</u>. It indicates that the device has detected an undervoltage condition and entered the fail silent mode. A write access to the diagnostic register, or once the off mode is entered, clears the bit. The device stays in fail silent mode irrespective of the clearing of the bit.

8.10.3 Bit SPI_err

The device evaluates all SPI accesses to the device for the correctness of the commands. When the command is not allowed, the SPI_err bit is set. A write access to the diagnostic register, or once off mode has been entered, clears the bit.

8.10.4 Bit Tj_err

The bit Tj_err indicates that the junction temperature has exceeded the maximum allowable temperature, and the device has entered fail silent mode. A write access to the diagnostic register, or once off mode has been entered, clears the bit. The device stays in fail silent mode irrespective of the clearing of the bit. After leaving the off mode (at IC start-up), it is possible that bit Tj_err is set. To avoid wrong diagnostics, clear the diagnostic register before it is evaluated.

8.10.5 Bit VGG_err

Bit VGG_err is set when the gate driver does not reach the VGG_ok _window (when V_{VGG} is within range) within the regulator voltage start-up error time. Once bit VGG_err is set, it indicates that an error on the gate driver has been detected and the device has entered fail silent mode. A write access to the diagnostic register, or once off mode has been entered, clears the bit. The device stays in fail silent mode irrespective of the clearing of the bit.

8.10.6 Bit VGG_ok

The bit VGG_ok indicates that the gate driver is regulated to the target voltage and allows the gate drivers to drive the gate driver pins. If the gate driver is outside the VGG_ok window after $t_{startup}$, and V_{VGG} is within range, the device clears VGG_ok bit and enters fail silent mode.

8.10.7 Bits Vout1_ok and Vout2_ok

The bits Vout1_ok and Vout2_ok indicate whether the output voltage is regulated to the target value or deviating from the target value. The bits are set as soon as the corresponding output is within the Vout_ok window (when V_O is within the range) for more than $t_{fltr(ov)}$. The bits are cleared when the corresponding output is outside the Vout_ok window for more than $t_{fltr(ov)}$.

8.11 SPI

The ASL4501SHN uses an SPI to communicate with an external microcontroller. The SPI can be used for setting the LEDs current, reading and writing the control register.

8.11.1 SPI introduction

The SPI provides the communication link with the microcontroller, supporting multi-slave operations. The SPI is configured for full duplex data transfer, so status information is returned when new control data is shifted in. The interface also offers a read-only access option, allowing the application to read back the registers without changing the register content.

The SPI uses four interface signals for synchronization and data transfer:

- CSB SPI chip select; active LOW
- SCLK SPI clock default level is LOW due to low-power concept
- SDI SPI data input
- SDO SPI data output floating when pin CSB is HIGH

Bit sampling is performed on the falling clock edge and data is shifted on the rising clock edge as illustrated in Figure 8.

Product data sheet

The data bits of the ASL4501SHN are arranged in registers of one-byte length. Each register is assigned to a 7-bit address. For writing into a register, 2 bytes must be sent to the LED driver. The first byte is an identifier byte that consists of the 7-bit address and one read-only bit. For writing, the read-only bit must be set to logic 0. The second byte is the data that is written into the register, so an SPI access consists of at least 16 bits.

The SPI frame format is shown in Figure 9, Table 36 and Table 37.

Table 36.	SPI frame format for a transition to the device

Bit	Symbol	Description	Value	Function
15	b15	R/W bit	0	write access
			1	read access
14 to 8	b14:8	address bits	XXX XXXX	address that is selected
7 to 0	b7:0	data bits	XXXX XXXX	data that is transmitted