# mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



### **ASML-5829** Schottky Assisted Low Power PIN Diode Limiter

### **Data Sheet**



#### Description

The ASML-5829 is specifically designed for low power limiter applications, where it can be used to protect the receiver system from being damaged by large input signals, and allow the receiver system to function normally with the absence of large signal. The Schottky enhanced limiter will have a lower limiting threshold compared to the more conventional self-biased PIN limiter. The PIN diode is placed at the input, to protect the Schottky from high RF power levels.

## Pin Connections, Package Marking & Orientation, SOT-323



#### Notes: GB = Device Code ? = Month code indicates the month of manufacture

#### **Features**

- Low Power Limiter with unique combination of PIN and Schottky Diode
- Low limiting threshold power (OP1dB: 6.05 dBm @900MHz)
- Semi integrated solution in Surface Mount SOT-323 Package
  - increase flexibility
  - save board space
  - reduce cost
- PIN Diode features:
  - Low Capacitance
  - Low Resistance at Low Current
  - Low Failure in Time (FIT) Rate<sup>[1]</sup>
- Schottky Diode features:
  - Low Turn-On Voltage (As Low as 0.34 V at 1 mA)
  - Low FIT (Failure in Time) Rate<sup>[1]</sup>

Note:

1. For more information see the Surface Mount PIN Reliability Data Sheet.

#### Table 1. Absolute Maximum Rating <sup>[1]</sup> Tc = +25°C, PIN diode

| Parameter                         | Units                                                                                                                 | Absolute Ma<br>for PIN Diode                                                                                                                       | x.<br>2                                                                                                                                                               | Absolute Max.<br>for Schottky Diode                                                                                                                                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Forward Current (1µs Pulse)       | Amp                                                                                                                   | 1                                                                                                                                                  |                                                                                                                                                                       | 1                                                                                                                                                                                                    |
| Peak Inverse Voltage              | V                                                                                                                     | 100                                                                                                                                                |                                                                                                                                                                       | 15                                                                                                                                                                                                   |
| Junction Temperature              | °C                                                                                                                    |                                                                                                                                                    | 150                                                                                                                                                                   |                                                                                                                                                                                                      |
| Storage Temperature               | °C                                                                                                                    | -65 to 150                                                                                                                                         |                                                                                                                                                                       |                                                                                                                                                                                                      |
| Thermal Resistance <sup>[2]</sup> | °C/W                                                                                                                  |                                                                                                                                                    | 150                                                                                                                                                                   |                                                                                                                                                                                                      |
|                                   | ParameterForward Current (1µs Pulse)Peak Inverse VoltageJunction TemperatureStorage TemperatureThermal Resistance [2] | ParameterUnitsForward Current (1μs Pulse)AmpPeak Inverse VoltageVJunction Temperature°CStorage Temperature°CThermal Resistance <sup>[2]</sup> °C/W | ParameterMbsolute Mar<br>for PIN DiodeForward Current (1μs Pulse)Amp1Peak Inverse VoltageV100Junction Temperature°C1Storage Temperature°C1Thermal Resistance [2]°C/W1 | ParameterUnitsAbsolute Max.<br>for PIN DiodeForward Current (1µs Pulse)Amp1Peak Inverse VoltageV100Junction Temperature°C150Storage Temperature°C-65 to 150Thermal Resistance <sup>[2]</sup> °C/W150 |

Notes:

1. Operation in excess of anyone of these conditions may result in permanent damage to the device.

2.  $T_C = 25^{\circ}C$ ,  $T_C$  where is defined to be the temperature at the package pins where contacts is made to the circuit board.

#### Table 2. Electrical Specifications, $Tc = +25^{\circ}C$ , PIN diode

| Symbol          | Parameter and Test Condition                                        | Units | Min. | Тур  | Max.  |
|-----------------|---------------------------------------------------------------------|-------|------|------|-------|
| V <sub>BR</sub> | Breakdown Voltage @ I <sub>R</sub> ≤ 10μA                           | V     | 100  | 128  | -     |
| V <sub>F</sub>  | Forward Voltage @ $I_F = 30 \text{mA}$                              | V     | -    | 0.90 | -     |
| R <sub>S</sub>  | Typical Series Resistance @ Freq = $100MHz \& I_F = 1mA$            | Ohm   | -    | 4.00 | -     |
| R <sub>S</sub>  | Typical Series Resistance @ Freq = 100MHz & I <sub>F</sub> = 5mA    | Ohm   | -    | 1.90 | 2.5   |
| CT              | Typical Total Capacitance @ Freq = $1$ MHz & V <sub>R</sub> = $5$ V | pF    | _    | 0.28 | 0.375 |
| τ               | Carrier Lifetime @ I <sub>F</sub> =10mA & I <sub>R</sub> = 6mA      | ns    | -    | 200  | -     |

#### Table 3. Electrical Specifications, $Tc = +25^{\circ}C$ , Schottky diode

| Symbol          | Parameter and Test Condition                                                   | Units | Min. | Тур  | Max. |
|-----------------|--------------------------------------------------------------------------------|-------|------|------|------|
| V <sub>BR</sub> | Breakdown Voltage @ $I_R \le 100 \mu A$                                        | V     | 15   | 22   | -    |
| I <sub>R</sub>  | Reverse Leakage Current @ V <sub>BR</sub> = 1V                                 | nA    | -    | 40   | 100  |
| V <sub>F</sub>  | Forward Voltage @ I <sub>F</sub> = 1mA                                         | V     | -    | 0.32 | 0.34 |
| VF              | Forward Voltage @ I <sub>F</sub> = 10mA                                        | V     | -    | 0.45 | 0.50 |
| CT              | Typical Total Capacitance @ Freq = $1 \text{MHz} \& V_{\text{R}} = 0 \text{V}$ | pF    | -    | 0.7  | 1.0  |
| RD              | Typical Dynamic Resistance, I <sub>F</sub> = 5mA                               | Ohm   | -    | 12   | -    |





Figure 1. S11 & S21 vs Frequency at Input Power = 0dBm



Figure 3. Pout fundamental & Pout second harmonic vs Pin at freq = 450MHz



Figure 5. Pout fundamental & Pout second harmonic vs Pin at freq = 1.8GHz



Figure 2. S11 & S21 vs Frequency at Input Power = -30dBm



Figure 4. Pout fundamental & Pout second harmonic vs Pin at freq = 900MHz



Figure 6. Pout fundamental & Pout second harmonic vs Pin at freq = 2.0GHz



Figure 7. Pout fundamental & Pout second harmonic vs Pin at freq = 2.5GHz



Figure 8. Pout fundamental & Pout second harmonic vs Pin at freq = 2.7GHz









Notes: XXX-package marking Drawings are not to scale

|        | DIMENSIONS (mm) |           |  |
|--------|-----------------|-----------|--|
| SYMBOL | MIN.            | MAX.      |  |
| A      | 0.80            | 1.00      |  |
| A1     | 0.00            | 0.10      |  |
| В      | 0.15            | 0.40      |  |
| C      | 0.10            | 0.20      |  |
| D      | 1.80            | 2.25      |  |
| E1     | 1.10            | 1.40      |  |
| е      | 0.65 typical    |           |  |
| e1     | 1.30 typical    |           |  |
| E      | 1.80            | 1.80 2.40 |  |
| L      | 0.425 typical   |           |  |

#### Part Number Ordering Information

| Part Number   | No. of Devices | Container                 |
|---------------|----------------|---------------------------|
| ASML-5829-BLK | 100            | Bulk, per Antistatic bag  |
| ASML-5829-TR1 | 3000           | Tape & Reel, per 7" Reel  |
| ASML-5829-TR2 | 10000          | Tape & Reel, per 13" Reel |

Tape and Reeling conforms to Electronic Industries RS-481, "Taping of Surface Mounted Components for Automated Placement". For lead-free option, the part number will have the character "G" at the end, eg. –TR2G for a 10K pc lead-free reel.

#### Recommended PCB Pad Layout for AVAGO's SOT-323 Products



**Dimensions in inches** 

#### **Device Orientation**





Note: "AB" represents package marking code. "C" represents date code.

#### **Tape Dimensions and Product Orientation**



For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. AV02-1692EN - January 13, 2009

