imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ASMT-Lx60 Flexible Light Strip Module

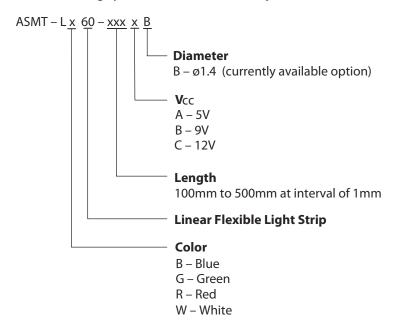
Data Sheet

Description

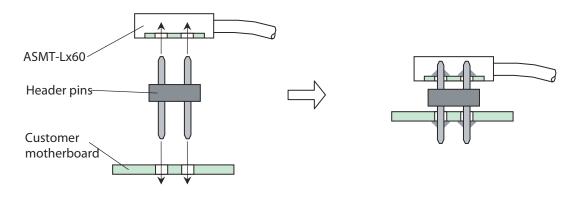
Flexible Light Strip Module is high performance light tube produced by Avago Technologies, integrating LEDs solution with excellent thermoplastic polyurethane. This Light Strip is an environmentally friendly "Green Material", it offers a unique combination of mechanical, physical, and chemical properties, including high tensile strength, excellent abrasion resistance, outstanding flexibility, weather resistance, non toxic, recyclable, and decomposable. Flexible Light Strip Module provides conveniences for the designers to integrate light strip onto their devices with minimum consideration on optical and mechanical optimization. The specially designed housing helps to concentrate the light for maximum efficiency and the specially designed PCB provides plug-and-play type of solution for assembly. The total solution provides the ease of design and assembly for designers.


Features

- Outstanding abrasion resistance
- Excellent mechanical properties
- Excellent chemical resistance
- Excellent light transitivity
- High shaping flexibility
- Available length 100mm to 500mm at interval of 1mm
- Available voltage source : 5V, 9V and 12V
- Available color: Blue, Green, Red and White
- Light strip module in straight configuration


Applications

- Handheld devices
- Cellular Phones
- Decorative lighting
- Electronics and electrical appliances


Package Dimensions

Part Numbering System for Other Available Options

Recommended Connector

CAUTION: ASMT-Lx60 devices are Class 1 ESD sensitive. Please observe appropriate precautions during handling and processing. Refer to Avago Technologies Application Note AN-1142 for additional details.

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

Parameter	ASMT-Lx60	Unit
DC Forward Current ^{[1] [2]}	30	mA
Power Dissipation [2] [3]	363	mW
Reverse Voltage ($I_R = 100 \text{ A}$) ^[2]	5	V
LED Junction Temperature	110	°C
Operating Temperature Range	-30 to 60	°C
Storage Temperature Range	-30 to 60	°C
Manual Soldering Temperature	350°C for 3 sec max	

Note:

1. Derate linearly as shown in Figure 4.

2. For each individual LED + resistor string.

3. Vcc max = 12.1V.

Electrical Characteristics at $T_A = 25^{\circ}C$

	Voltage Vcc	(Volts) ^[1]	LED Forward Current ^[1] I _F (mA) @ Vcc = 12.0V		
Part Number	Minimum	Typical	Maximum	Typical	
ASMT-Lx60	11.9	12.0	12.1	20	

Note:

1. For each individual LED + resistor string.

2. Resistor value is determined by forward voltage of LED.

Optical Characteristics at $T_A = 25^{\circ}C$

	Luminous Intensity, I _v ^{[1] [2}] (mcd) @ 20mA Min. Max.		Peak Wavelength, _{peak} ^[1] (nm)	Color, Dominant Wavelength d ^{[1] [3]} (nm)		Luminous Incidence ^[5] E _v (Im/m ²) Typ.	
Part Number			Тур.	Min. Max.			
ASMT-LB60	71.5	180.0	468	465	475	30.0	
ASMT-LG60	180.0	450.0	520.0	515.0	535.0	130.0	
ASMT-LR60	112.5	285.0	637.0	615.0	630.0	30.0	

	Luminous Intensity, Iv ^{[1] [2}] (mcd) @20mA		Typical Cl Coordina	hromaticity tes ^{[1] [4]}	Luminous Incidence ^[5] E _v (lm/m²)	
Part Number	Min.	Max.	X	Y	Тур.	
ASMT-LW60	1000	1600	0.31	0.31	230.0	

Notes:

1. For individual LED light source only.

2. The luminous intensity IV is measured at the peak of the spatial radiation pattern which may not be aligned with the mechanical axis of the LED package. Refer to IV bin table for binning structure and tolerance.

3. The dominant wavelength, λd, is derived from the CIE 1931 Chromaticity Diagram and represents the perceived color of the device. Refer to color bin limit tables for binning structure and tolerance.

4. The chromaticity coordinates are derived from the CIE 1931 Chromaticity Diagram and represent the perceived color of the device. Refer to color bin limit tables for binning structure and tolerance.

5. Measurement done at the center of the light stripe at straight position without bending.

Light Intensity (IV) Bin Limits^{[1][2]}

	Intensity (mcd)			Intensity (mcd)		
Bin ID	Minimum	Maximum	Bin ID	Minimum	Maximum	
Q	71.50	112.50	R	112.5	180.0	
R	112.50	180.00	S	180.0	285.0	
Tolerance: ±15%			Tolerance: ±159	%		

Red

Green

White

	Intensity (m	cd)		Intensity (mcd)			
Bin ID	Minimum	Maximum	Bin ID	Minimum	Maximum		
W1	1000	1200	S	180.0	285.0		
W2	1200	1400	T	285.0	450.0		
W3	1400	1600	Tolerance: ±159	%			
Tolerance: +159	6						

Tolerance: ±15%

Notes:

1. Bin categories are established for classification of products. Products may not be available in all categories. Please contact your Agilent representative for information on current available bins.

2. For individual LED light source only.

Color Bin Limits^{[1][2]}

Blue			White					
	Dom. Wavele	ength (nm)	Rank	Chro	omaticity	Coordina	tes	
Bin ID	Minimum	Maximum	C11	Х	0.290	0.297	0.297	0.290
В	465.0	470.0		Y	0.306	0.316	0.283	0.274
С	470.0	475.0	C12	Х	0.297	0.303	0.303	0.297
Tolerance: ±1.0nm			_	Y	0.316	0.326	0.293	0.283
Green			C13	Х	0.303	0.310	0.310	0.303
			_	Y	0.326	0.336	0.303	0.293
	Dom. Wavele	ength (nm)	C21	Х	0.290	0.297	0.297	0.290
Bin ID	Minimum	Maximum	_	Y	0.274	0.283	0.251	0.241
Α	515.0	520.0	C22	Х	0.297	0.303	0.303	0.297
В	520.0	525.0	_	Y	0.283	0.293	0.261	0.251
С	525.0	530.0	C23	Х	0.303	0.310	0.310	0.297
D	530.0	535.0		Y	0.293	0.303	0.271	0.251
Tolerance: ±1.0nm			D11	Х	0.310	0.320	0.320	0.310
Red				Y	0.336	0.350	0.318	0.303
	Dom. Wavele	enath (mcd)	D12	Х	0.320	0.330	0.330	0.320
Bin ID	Minimum	Maximum	_	Y	0.350	0.365	0.333	0.318
	615	630	– D21	Х	0.310	0.320	0.320	0.310
	610	030	_	Y	0.303	0.318	0.285	0.271
Tolerance: ±1.0nm			D22	Х	0.320	0.330	0.330	0.320
				Y	0.318	0.333	0.300	0.285

Tolerance of each bin limit = ± 0.02

Notes:

1. Bin categories are established for classification of products. Products may not be available in all categories. Please contact your Agilent representative for information on current available bins. 2. For individual LED light source only.

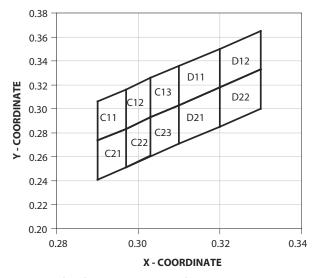


Figure 1. White binning in CIE 1931 Chromaticity Diagram.

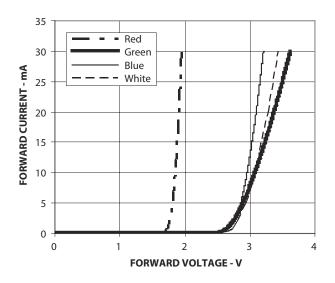


Figure 3. Forward voltage vs. forward current for LED light sources only.

Handling Caution

1. Bending radius of the lightpipe shall always be larger than 10 times of the lightpipe diameter to avoid impact to its appearance and performance.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0431EN AV01-0650EN - December 21, 2006

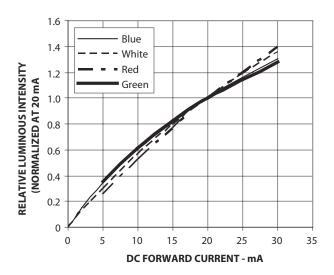


Figure 2. Relative luminous intensity vs. forward current for LED light sources only.

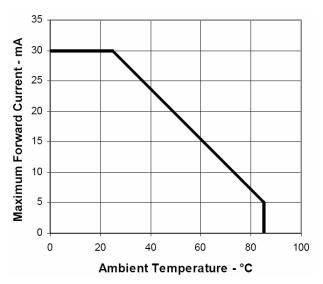


Figure 4. Maximum forward current vs. ambient temperature

