: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

Description

The ASSR-15XX Series is specifically designed for high current applications, commonly found in the industrial applications.
The ASSR-15XX Series consists of an AIGaAs infrared light-emitting diode (LED) input stage optically coupled to a high-voltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 3 mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.8 V or less.

The single channel configurations, ASSR-1510 and ASSR-1511, are equivalent to 1 Form A Electromechanical Relays (EMR), and the dual channel configuration, ASSR-1520 and ASSR-1530, is equivalent to 2 Form A EMR. They are available in 4-pin SO, 6-pin DIP, 8-pin DIP and Gull Wing Surface Mount for DIP packages and true surface mount SO-8pin. Their electrical and switching characteristics are specified over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ASSR-1511 enables AC/DC and DC-only output connections. For DC-only connection, the output current, lo, increases to $2 A$ and the on-resistance, $R(O N)$ reduces to 0.2Ω.

Functional Diagram

Features

- Compact Solid-State Bi-directional Signal Switch
- Single and Dual Channel Normally-off Single-Pole-Single-Throw (SPST) Relay
- 60V Output Withstand Voltage
- 1.0A or 2.0A Current Rating
(See Schematic for ASSR-1511 Connections A \& B)
- Low Input Current: CMOS Compatibility
- Low On-Resistance:
0.12Ω Typical for DC-only, 0.35Ω Typical for AC/DC
- Very High Output Off-state Impedance: 10 Teraohms Typical
- High Speed Switching: 0.25ms (Ton), 0.02ms (Toff) Typical
- High Transient Immunity: $>1 \mathrm{kV} / \mu \mathrm{s}$
- High Input-to-Output Insulation Voltage
(Safety and Regulatory Approvals)
- 3750 Vrms for 1 min per UL1577
- CSA Component Acceptance

Applications

- Industrial Controls
- Factory Automation
- Data Acquisition System
- Measuring Instrument
- Medical System
- Security System
- EMR / Reed Relay Replacement

[^0]CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

ASSR-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5.

Part number	Option	Package	Surface Mount	Gull Wing	Tape \& Reel	Quantity
	RoHS Compliant					
ASSR-1510	-003E	SO-4	X			100 units per tube
	-503E		X		X	1500 units per reel
ASSR-1511	-001E	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-6 } \end{gathered}$				50 units per tube
	-301E		X	X		50 units per tube
	-501E		X	X	X	1000 units per reel
ASSR-1520	-002E	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$				50 units per tube
	-302E		X	X		50 units per tube
	-502E		X	X	X	1000 units per reel
ASSR-1530	-005E	SO-8	X			50 units per tube
	-505E		X		X	1000 units per reel

To order see attached table, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.
Example 1:
ASSR-1511-501E to order product of 300mil DIP-6 Gull Wing Surface Mount package in Tape and Reel packaging and RoHS Compliant.

Example 2:
ASSR-1520-002E to order product of 300 mil DIP-8 package in tube packaging and RoHS Compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Schematic

ASSR-1510

Schematics (Cont.)

ASSR-1511 Connection A

ASSR-1511 Connection B

ASSR-1520 and ASSR-1530

Package Outline Drawings

ASSR-1510 4-Pin Small Outline Package

DIMENSIONS IN MILLIMETERS AND (INCHES) OPTION NUMBER 500 AND UL RECOGNITION NOT MARKED

ASSR-1511 6-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm ($\mathbf{1 0}$ mils) MAX.

ASSR-1520 8-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES).
OPTION NUMBERS 300 AND 500 NOT MARKED.

ASSR-1520 8-Pin DIP Package with Gull Wing Surface Mount Option 300

ASSR-1530 8-Pin Surface Mount Package

Lead Free IR Profile

Regulatory Information

The ASSR-1510, ASSR-1511, ASSR-1520 and ASSR-1530 are approved by the following organizations:

UL

Approved under UL 1577, component recognition program up to $\mathrm{V}_{\mathrm{ISO}}=3750 \mathrm{~V}_{\mathrm{RMS}}$
CSA
Approved under CSA Component Acceptance Notice \#5.

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-1510	ASSR-1511 ASSR-1520	ASSR-1530	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	4.9	7.1	4.9	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	4.9	7.4	4.8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative	CTI	175	175	175	V	DIN IEC 112/VDE 0303 Part 1
Tracking Index)		IIIa	IIIa	IIIa		Material Group (DIN VDE 0109)
Isolation Group (DIN VDE0109)						

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	-40	85	${ }^{\circ} \mathrm{C}$	
Junction Temperature		TJ		125	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperature			260	${ }^{\circ} \mathrm{C}$	
	Time			10	s	
Input Current	Average	I_{F}		25	mA	
	Surge			50		
	Transient			1000		
Reversed Input Voltage		V_{R}		5	V	
Input Power Dissipation	ASSR-1510	PIN		40	mW	
	ASSR-1511	PIN		40	mW	
	$\begin{aligned} & \text { ASSR-1520 } \\ & \text { ASSR-1530 } \end{aligned}$	PIN		80	mW	
Output Power Dissipation	ASSR-1510	P_{O}		500	mW	
	ASSR-1511	Po		800	mW	
	$\begin{aligned} & \text { ASSR-1520 } \\ & \text { ASSR-1530 } \end{aligned}$	Po		700	mW	
Average Output Current$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{C}} \leq 100^{\circ} \mathrm{C}\right)$		lo		1.0	A	1
	ASSR-1511 Connection B	lo		2.0	A	
Output Voltage ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$		V_{0}	-60	60	V	2
	ASSR-1511 Connection B	V_{O}	0	60	V	2
Solder Reflow Temperature Profile		See Lead Free IR Profile				

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	3	20	mA	3
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	0	0.8	V	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

Package Characteristics

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Note
Input-Output Momentary Withstand Voltage	VISO	3750			Vrms	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \\ & \mathrm{t}=1 \mathrm{~min} \end{aligned}$	4, 5
Input-Output Resistance	$\mathrm{Rl}_{\text {I- }}$		10^{12}		Ω	$\mathrm{V}_{\mathrm{l}} \mathrm{O}=500 \mathrm{Vdc}$	
Input-Output Capacitance							
ASSR-1510	$\mathrm{Cl}_{1-\mathrm{O}}$		0.4		pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\text {l-O }}=0 \mathrm{Vdc}$	4
ASSR-1511	$\mathrm{Cl}_{1-\mathrm{O}}$		0.5		pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$	
ASSR-1520	$\mathrm{Cl}_{1-\mathrm{O}}$		0.8		pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$	
ASSR-1530							

Electrical Specifications (DC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Switching Specifications (AC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Turn On Time	TON		0.5	1.0	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	12,16	
				2.0	ms	$\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$	13	
			0.25	0.5	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
				1.0	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$		
Turn Off Time	Toff		0.03	0.2	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	14,16	
				0.5	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$	15	
			0.02	0.15	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
				0.2	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$		
Output Transient Rejection	dVo/dt	1	7		kV/ $\mu \mathrm{s}$	$\Delta \mathrm{V}_{\mathrm{O}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	17	
Input-Output Transient Rejection	$\mathrm{d} \mathrm{V}_{1-\mathrm{O}} / \mathrm{dt}$	1	≥ 10		kV/ $/$ s	$\Delta \mathrm{V}_{\text {I-O }}=1000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	18	

Notes:

1. For derating, refer to Figure 1,2,3 and 4.
2. The voltage across the output terminals of the relay should not exceed this rated withstand voltage. Over-voltage protection circuits should be added in some applications to protect against over-voltage transients.
3. Threshold to switch device is $I_{F} \geq 0.5 \mathrm{~mA}$, however, for qualified device performance over temperature range, it is recommended to operate at $I_{F}=5 \mathrm{~mA}$.
4. Device is considered as a two terminal device:

ASSR-1510 - pin 1, 2 shorted and pin 3, 4 shorted.
ASSR-1511 - pin 1, 2, 3 shorted and pin 4, 5, 6 shorted.
ASSR-1520 and ASSR-1530 - pin 1, 2, 3, 4 shorted and pin 5, 6, 7, 8 shorted.
5. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Technologies Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
6. During the pulsed $\mathrm{R}_{(\mathrm{ON})}$ measurement (lo duration $\leq 30 \mathrm{~ms}$), ambient $\left(T_{A}\right)$ and case temperature $\left(T_{C}\right)$ are equal.

Applications Information

On-Resistance and Derating Curves

The Output On-Resistance, $\mathrm{R}_{(\mathrm{ON})}$, specified in this data sheet, is the resistance measured across the output contact when a pulsed current signal ($\mathrm{lo}=1 \mathrm{~A}$) is applied to the output pins. The use of a pulsed signal ($\leq 30 \mathrm{~ms}$) implies that each junction temperature is equal to the ambient and case temperatures. The steady-state resistance, Rss, on the other hand, is the value of the resistance measured across the output contact when a DC current signal is applied to the output pins for a duration sufficient to reach thermal equilibrium. Rss includes the effects of the temperature rise in the device.

Figure 1. Maximum Output Current Rating vs Ambient Temperature (ASSR-1510-003E)

Figure 3. Maximum Output Current Rating vs Ambient Temperature (ASSR-1511-001E DC Connection)

Derating curves are shown in Figures 1, 2, 3 and 4, specifying the maximum output current allowable for a given ambient temperature. The maximum allowable output current and power dissipation are related by the expression $\mathrm{Rss}=\mathrm{Po}(\max) /(\mathrm{Io}(\max))^{2}$ from which Rss can be calculated. Staying within the safe area assures that the steady state MOSFET junction temperature remains less than $125^{\circ} \mathrm{C}$.

Turn On Time and Turn Off Time Variation

The ASSR-15xx Series exhibits a very fast turn on and turn off time. Both the turn on and turn off time can be adjusted by choosing proper forward current as depicted in Figures 12 and 14. The changes of the turn on and turn off time with ambient temperature are also shown in Figures 13 and 15.

Figure 2. Maximum Output Current Rating vs Ambient Temperature (ASSR-1511-001E)

Figure 4. Maximum Output Current Rating vs Ambient Temperature (ASSR-1520-002E and ASSR-1530-005E)

Figure 5. Normalized Typical Output Withstand Voltage vs. Temperature

Figure 7. Output Capacitance vs. Output Voltage

Figure 9. Typical Forward Current vs. Forward Voltage

Figure 6. Typical Output Leakage Current vs. Temperature

Figure 8. Typical Forward Voltage vs. Temperature

Figure 10. Typical On Resistance vs.Temperature

Figure 11. Typical Output Current vs. Output Voltage

Figure 13. Typical Turn On Time vs. Temperature

Figure 15. Typical Turn Off Time vs. Temperature

Figure 12. Typical Turn On Time vs. Input Current

Figure 14. Typical Turn Off Time vs. Input Current

Figure 16. Switching Test circuit for t_{ON}, $\mathrm{t}_{\mathrm{OFF}}$

$$
\frac{d V_{0}}{d t}=\frac{(0.8) V_{P E A K}}{t_{R}} O R \frac{(0.8) V_{P E A K}}{t_{F}}
$$

$$
\text { OVERSHOOT ON V VEAK IS TO BE } \leq 10 \%
$$

Figure 17. Output Transient Rejection Test Circuit

SWITCH AT POSITION "B": $I_{F}=5 \mathrm{~mA}$
Figure 18. Input - Output Transient Rejection Test Circuit

[^0]: Single Channel, SPST Relay,
 1 Form A in 4-Pin SO Package

