: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

Description

The ASSR-1611 is specifically designed for high current applications, commonly found in the industrial equipments. The relay is a solid-state replacement for singlepole, normally-open, (1 Form A) electromechanical relays.

The ASSR-1611 consists of an AIGaAs infrared light-emitting diode (LED) input stage optically coupled to a highvoltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 5 mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.8 V or less.
The ASSR-1611 connection A, as shown in the schematic, allows the relay to switch either ac or dc loads. The connection B, with its advantages of reduced on-resistance and higher output current, allows the relays to switch dc loads only.

The electrical and switching characteristics are specified over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Functional Diagram

Features

- Compact Solid-State Bi-directional Signal Switch
- Single Channel Normally-off Single-Pole-Single-Throw (SPST) Relay
- 60V Output Withstand Voltage
- 2.5 A or 5A Current Rating
- Low Input Current: CMOS Compatibility
- Low On-Resistance: $20 \mathrm{~m} \Omega$ Typical for DC-only, $65 \mathrm{~m} \Omega$ Typical for AC/DC
- High Speed Switching: 3.2ms (Ton), 0.1 ms (Toff) Typical
- High Transient Immunity: $>1 \mathrm{kV} / \mu \mathrm{s}$
- High Input-to-Output Insulation Voltage
- (Safety and Regulatory Approvals)

UL recognized - 3750 V $_{\text {RMS }}$ and 5000 V $_{\text {RMS }} *$ for 1 min per UL1577

- CSA Component Acceptance
*5000 V ${ }_{\text {RMS }} / 1$ Minute rating is for Option X21 only. (Please consult your regional Avago representatives)

Applications

- Industrial Controls
- Factory Automation
- Data Acquisition
- Measuring Instrument
- Medical System
- Security System
- EMR / Reed Relay Replacement

Ordering Information

ASSR-1611 is UL Recognized with $3750 \mathrm{~V}_{\mathrm{RMS}}$ and $5000 \mathrm{~V}_{\mathrm{RMS}}$ (option $\mathrm{X} 21^{*}$) for 1 minute per UL1577 and is approved under CSA Components Acceptance Notice \#5.

Part Number	Option	Package	Surface Mount	Gullwing	Tape \& Reel	Quantity
	RoHS Compliant					
ASSR-1611	-001E	300 mil DIP-6				50 units per tube
	-301E		X	X		
	-501E		X	X	X	1000 units per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
ASSR-1611-501E to order product of 300mil DIP-6 Gull Wing Surface Mount package in Tape and Reel packaging and RoHS Compliant.
x021* - 'Please consult your regional Avago representatives'

Schematic

ASSR-1611

Package Outline Drawings

ASSR-1611 6-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES).

ASSR-1611 6-Pin DIP Package with Gull Wing Surface Mount Option 300

LAND PATTERN RECOMMENDATION

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm ($\mathbf{1 0}$ mils) MAX.

Solder Reflow Temperature Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The ASSR-1611 is approved by the following organizations:
UL
Approved under UL 1577, component recognition program up to $\mathrm{V}_{\mathrm{ISO}}=3750 \mathrm{~V}_{\mathrm{RMS}}$ and $5000 \mathrm{~V}_{\mathrm{RMS}}$ (option $\times 21$).
CSA
Approved under CSA Component Acceptance Notice \#5.

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-1611	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		Illa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		TS	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	-40	85	${ }^{\circ} \mathrm{C}$	
Junction Temperature		TJ		125	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperature			260	${ }^{\circ} \mathrm{C}$	
	Time			10	sec	
Input Current	Average	I_{F}		25	mA	
	Surge			50	mA	
	Transient			1000	mA	
Reversed Input Voltage		V_{R}		5	V	
Input Power Dissipation		PIN		40	mW	
Output Power Dissipation	Connection A	P_{0}		625	mW	
	Connection B			880	mW	
Average Output Current $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}} \leq 100^{\circ} \mathrm{C}\right)$	Connection A	l_{0}		2.5	A	1
	Connection B			5	A	1
Output Voltage$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Connection A	V_{O}	-60	60	V	2
	Connection B		0	60	V	
Solder Reflow Temperature Profile			See Lead Free IR Profile			

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	5	20	mA	
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	0	0.8	V	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

Package Characteristics

Unless otherwise specified, operating temperature $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Note
Input-Output Momentary Withstand Voltage	VISO	3750			VRMS	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3,4
		5000				$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, option X 21	
Input-Output Resistance	$\mathrm{R}_{\text {I-O }}$		10^{14}		Ω	$\mathrm{V}_{\mathrm{l} \text {-O }}=500 \mathrm{Vdc}$	
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		0.8		pF	$\mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}$	3

Electrical Specifications (DC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note	
Output Withstand Voltage	\|vo(OFF)		60	68		V	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{I}_{0}=250 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	
		55			V	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}$	3		
Output Leakage Current	lo(OFF)		0.01	0.1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5		
				5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=55 \mathrm{~V}$	4		
Output Off-Capacitance	$\mathrm{C}_{\text {(OFF) }}$		1400		pF	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	6		
Output Offset Voltage	$\left\|\mathrm{V}_{(0 \mathrm{~S})}\right\|$		1		$\mu \mathrm{V}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$			
Input Reverse Breakdown Voltage	$V_{\text {R }}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$			
Input Forward Voltage	V_{F}	1.1	1.3	1.7	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	7,8		
Output On- resistance Connection A Connection B,$~$	$\mathrm{R}_{\text {(ON }}$		0.065 0.02	0.1 0.035	ת	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.5 \mathrm{~A}, \\ & \text { Pulse } \leq 30 \mathrm{~ms}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	9,10 11	5	

Switching Specifications (AC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Turn On Time	Ton		3.2	5.0	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	12, 13	
				10.0	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}$		
			1.6	2.5	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	12, 14	
				5.0	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~A}$		
Turn Off Time	TofF		0.1	0.5	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15,16	
				1	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}$		
			0.06	0.2	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15,17	
				0.5	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}$		
Output Transient Rejection	$d V_{0} / \mathrm{dt}$	1	7		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \Delta V_{\mathrm{O}}=60 \mathrm{~V}, \mathrm{R}_{\mathrm{M}} \geq 1 \mathrm{M} \Omega, \\ & \mathrm{C}_{\mathrm{M}}=1000 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		6
Input-Output Transient Rejection	dVI-o/dt	1	≥ 10		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \Delta \mathrm{VI}-\mathrm{o}=1000 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		6

Notes

1. For derating, refer to Figure 1 and 2.
2. The voltage across the output terminals of the relay should not exceed this rated withstand voltage. Over-voltage protection circuits should be added in some applications to protect against over-voltage transients.
3. Device is considered as a two terminal device: pins 1,2 , and 3 shorted together and pins 5,6 , and 7 shorted together.
4. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
5. During the pulsed $R_{(O N)}$ measurement (l_{0} duration $\leq 30 \mathrm{~ms}$), ambient $\left(T_{A}\right)$ and case temperature $\left(T_{C}\right)$ are equal.
6. For the transient rejection measurements, refer to Avago whitepaper, AV01-0610EN, "Solid State Relay Transient Immunity".

Figure 1. Maximum Output Current rating vs Ambient Temperature (AC/DC Connection)

Figure 3. Normalized Typical Output Withstand Voltage vs Ambient Termperature

Figure 5. Typical Output Leakage vs Output Voltage

Figure 2. Maximum Output Current rating vs Ambient Temperature (DC Connection)

Figure 4. Typical Output Leakage vs Ambient Temperature

Figure 6. Typical Output Capacitance vs Output Voltage

Figure 7. Typical Forward Voltage vs Temperature

Figure 9. Typical Output Current vs Typical Output Voltage over Temperature

Figure 11. Typical Ron (DC Connection) vs Temperature

Figure 8. Typical Forward Current vs Forward Voltage over Temperature

Figure 10. Typical Ron (AC/DC Connection) vs Temperature

Figure 12. Typical Turn On Time vs Input Current

Figure 13. Typical Turn On Time vs Ambient Temperature

Figure 15. Typical Turn Off Time vs Ambient Temperature

Figure 16. Switching Circuit

$$
\frac{d V_{0}}{d t}=\frac{(0.8) V_{\text {PEAK }}}{t_{R}} O R \frac{(0.8) V_{\text {PEAK }}}{t_{F}}
$$

OVER SHOOT ON $\mathrm{V}_{\text {PEAK }}$ IS TO BE 10\%
Figure 17. Output Transient Rejection Test Circuit

Figure 18. Input-Output Transient Rejection Test Circuit

