

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

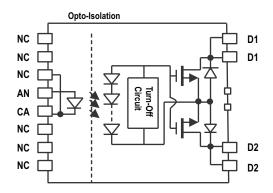
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ASSR-601J

1500V High Voltage, 1 Form A, Solid State Relay (MOSFET)


Data Sheet

Description

The ASSR-601J is a high-voltage solid state relay that is designed for high voltage industrial applications. ASSR-601J consists of an AlGaAs infrared light-emitting diode (LED) input stage optically coupled to a high-voltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high-voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 10 mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.4V or less.

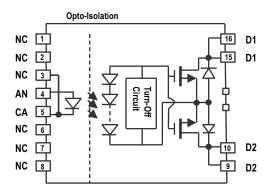
The ASSR-601J is equivalent to 1FormA Electromechanical Relays (EMR) and is available in 16-pin SOIC package. This solid-state relay provides reinforced insulation and reliability that delivers safe signal isolation critical in automotive and high temperature industrial applications.

Functional Diagram

Truth Table

LED	Output
Off	Open
On	Close

Features


- Compact solid-state bidirectional signal switch
- Operating temperature range: –40°C to +110°C
- Breakdown voltage, V_{OFF}: 1500V at I_{DSS} = 250 μA
- Avalanche rated MOSFETs
- Output Leakage Current, I_O = 10 nA at 1000V
- On-resistance, $R_{ON} < 250\Omega$ at $I_O = 50$ mA
- Turn on time: T_{ON} < 4 ms
- Turn off time: T_{OFF} < 0.5 ms
- Package: 300 mil SO-16
- Creepage and clearance ≥ 8 mm (input-output)
- Creepage > 5 mm (between drain pins of MOSFETs)
- Safety and regulatory approvals:
 - IEC/EN/DIN EN 60747-5-5
 - Maximum working insulation voltage 1414V_{PFAK}
 - 5000V_{RMS} for 1 minute per UL1577
 - CSA component acceptance

Applications

- Battery/motor/solar panel insulation resistance measurement/leakage detection
- BMS flying capacitor topology for sensing batteries
- Electro mechanical relay replacement
- Inrush current limiter protection

CAUTION

It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this datasheet are not to be used in military or aerospace applications or environments.

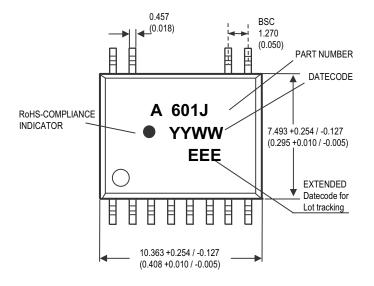
Pin Description

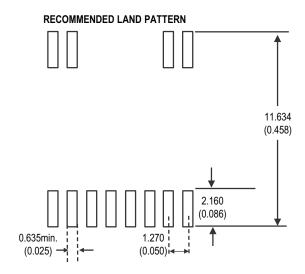
Pin Number	Pin Name	Description
1, 2, 6, 7, 8	NC	No connection.
3	NC	Do not connect (internally connected to Pin 5).
4	AN	Anode.
5	CA	Cathode.
9, 10	D2	Drain 2 (internally connected).
15, 16	D1	Drain 1 (internally connected).

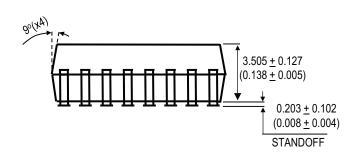
Ordering Information

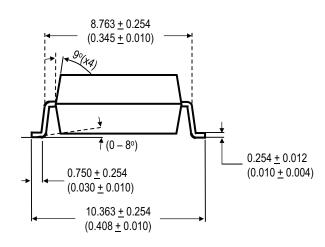
Specify part number followed by option number.

Part Number	Option (RoHS Compliant)	Package	Surface Mount	Tape and Reel	UL 5000V _{rms} / 1 Minute Rating	IEC 60747-5-5 EN/DIN EN 60747-5-5	Quantity
ASSR-601J	-000E	SO-16	X		Х	Х	45 per tube
	-500E		Х	Х	Х	Х	850 per reel


To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.


Example 1:


ASSR-601J-500E to order product of SO-16 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.


Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Package Outline Drawings (SO-16)

Note: Dimensions in millimeters (inches).

Notes:

Lead coplanarity = 0.10 mm (0.004 inches) Max. Floating lead protrusion = 0.254 mm (0.010 inches) Max. Mold Flash on each side = 0.127 mm (0.005 inches) Max.

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard J-STD-020 (latest revision).

NOTE Non-halide flux should be used.

Regulatory Information

The ASSR-601J is approved by the following organizations:

UL/cUL	IEC/EN/DIN EN 60747-5-5
Approved under CSA Component Acceptance Notice #5	IEC 60747-5-5 EN 60747-5-5 DIN EN 60747-5-5

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-601J	Unit	Conditions
Minimum External Air Gap (Clearance)	L(101)	8.3	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	8.3	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.5	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	>600	V	IEC 60695.

IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristic

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1			
For rated mains voltage < 600 V _{RMS}		I - III	
For rated mains voltage < 1000 V _{RMS}		1-11	
Climatic Classification		40/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	V _{IORM}	1414	V _{PEAK}
Input to Output Test Voltage, Method b	V _{PR}	2651	V _{PEAK}
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ sec			
Partial Discharge < 5 pC			
Input to Output Test Voltage, Method a	V _{PR}	2262	V_{PEAK}
V_{IORM} x 1.6 = V_{PR} , Type and sample test, $t_m = 10$ sec,			
Partial Discharge < 5 pC			
Highest Allowable Overvoltage	V _{IOTM}	6000	V_{PEAK}
(Transient Overvoltage, t _{ini} = 60 sec)			
Safety Limiting Values			
(Maximum values allowed in the event of a failure)			
Ambient Safety Temperature	T _S	175	°C
Input Current	I _{S,INPUT}	400	mA
Output Power	P _{S,OUTPUT}	1200	mW
Insulation Resistance at T_S , $V_{IO} = 500V$	R _S	>109	Ω

Absolute Maximum Ratings

All specifications at T_A = 25°C unless otherwise specified.

Pai	rameter	Symbol	Min.	Max.	Unit	Note
Storage Temperatur	e	T_S	-55	150	°C	
Operating Ambient	Temperature	T _A	-40	125	°C	
Junction Temperatu	ire	ТЈ	-40	150	°C	
Input Current	Average	I _{F(avg)}	_	30	mA	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
	Surge (50% duty cycle)	I _{F(surge)}	_	60	mA	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
Peak Transient Inpu	t Current	I _{FP}	_	1	А	f = 100 Hz, duty cycle = 0.1%
Reversed Input Voltage		BV_R	_	6	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
Input Power Dissipa	ition	P _{IN}	_	100	mW	
Output Load Curren	nt	I _O	_	50	mA	
Output Avalanche Current		I _{AV}	_	0.6	mA	t _m = 1 min, duty cycle = 0.1%, cumulative of 5 mins over lifetime
Output Power Dissipation		Ро	_	1000	mW	
Lead Soldering Cycl	e Temperature		_	260	°C	
	Time		_	10	S	
Solder Reflow Temp	erature Profile	Recomme	nded reflow condit	ion as per JEDEC St	andard J-STD-02	20 (latest revision).

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Note
Input Current (ON)	I _{F(ON)}	7	30	mA	
Input Voltage (OFF)	V _{F(OFF)}	-5	0.4	V	
Operating Temperature	T _A	-40	110	°C	
Continuous Load Voltage	Vo	_	1000	V _{DC}	a
Load Current	I _O	-10	10	mA	

a. V_0 is the voltage across output terminals, pins 9, 10 and pins 15, 16.

Electrical Specifications (DC)

Unless otherwise stated, all minimum/maximum specifications are over recommended operating conditions. All typical values are at $T_A = 25$ °C, $I_F = 10$ mA.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Fig.	Note
Input Reverse Breakdown Voltage	V_R	5	_	_	V	I _R =10 μA		
Input Forward Voltage	V _F	1.25	1.55	1.85	V	I _F = 10 mA	1	
Output Withstand Voltage	V _{O(OFF)}	1500	1700	_	V	$I_O = 250 \mu\text{A}, T_A = 25^{\circ}\text{C}$	3	a
Output Leakage Current	I _{O(OFF)}	_	0.3	10	nA	$V_{O} = 1000V, T_{A} = 25^{\circ}C$	4	a
Output Capacitance	C _{OUT}	_	190	_	pF	$V_O = 0V, f = 1 MHz$	7	a
Output Resistance	R _{ON}	_	100	300	Ω	$I_O = 2 \text{ mA}$	8	
		_	100	250	Ω	I _O = 10 mA	8	
		_	77	250	Ω	$I_O = 50 \text{ mA}, T_A = 25^{\circ}\text{C}$	8	

a. Device is in OFF state with $V_F \le 0.4V$.

Switching Specifications (AC)

Unless otherwise stated, all minimum/maximum specifications are over recommended operating conditions. All typical values are at $T_A = 25$ °C, $I_F = 10$ mA.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Fig.	Note
Turn-On Time	T _{ON}	_	0.8	4.0	ms	$I_F = 10 \text{ mA}, V_{DD} = 40V, R_{LOAD} = 20 \text{ k}\Omega$	9, 11, 13	
		_	0.3	1.0	ms	$I_F = 30 \text{ mA}, V_{DD} = 40V, R_{LOAD} = 20 \text{ k}\Omega$		
Turn-Off Time	T _{OFF}	_	0.05	0.5	ms	$V_{DD} = 40V$, $R_{LOAD} = 20 \text{ k}\Omega$	10, 12, 13	

Package Characteristics

Unless otherwise stated, all minimum/maximum specifications are over recommended operating conditions. All typical values are at $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage	V _{ISO}	5000	_	_	V _{RMS}	RH \leq 50%, t _m = 1 minute; T _A = 25°C		a, b, c
Input-Output Resistance	R _{I-O}	10 ⁹	10 ¹⁴	_	Ω	$V_{I-O} = 1000 V_{DC}$		b
Input-Output Capacitance	C _{I-O}		0.6	_	pF	$f = 1 \text{ MHz}; V_{I-O} = 0 V_{DC}$		b

a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.

b. Device considered a two-terminal device: pins 1 to 8 shorted together, and pins 9, 10, 15, and 16 shorted together.

c. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V_{RMS} for 1 second.

Typical Characteristic Curves

Figure 1 LED Forward Current vs. LED Forward Voltage

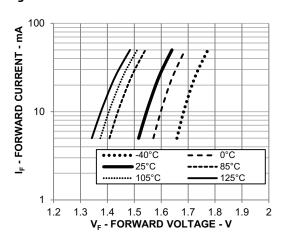


Figure 3 Output Withstand Voltage vs. Ambient Temperature (Test Condition: $I_O = 250~\mu A$)

Figure 5 Output Leakage Current vs. Load Voltage (Test Condition: $T_A = 25$ °C)

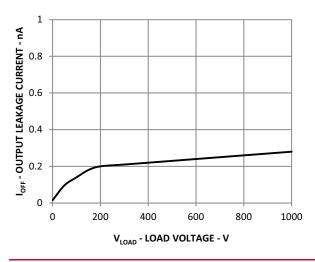


Figure 2 LED Forward Current Threshold vs. Ambient Temperature (Test Condition: $I_0 = 2 \text{ mA}$)

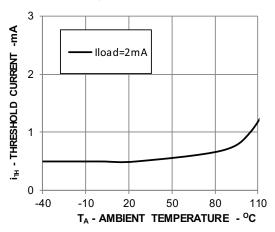


Figure 4 Output Leakage Current vs. Ambient Temperature (Test Condition: $V_0 = 1000V$)

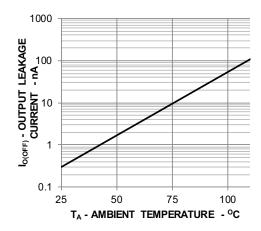


Figure 6 Output Current vs. Output Voltage

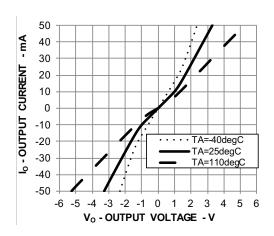


Figure 7 Output Capacitance vs. Load Voltage (Test Condition: $V_{LOAD} = 0V$, f = 1 MHz, $T_A = 25$ °C)

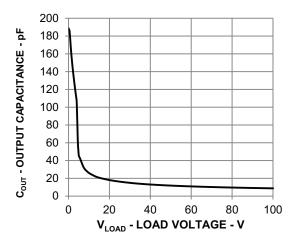


Figure 9 Turn-On Time vs. Ambient Temperature (Test Condition: V_{DD} = 40V, R_{LOAD} = 20 k Ω)

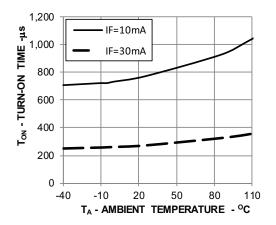


Figure 11 Turn-On Time vs. Input Forward Current (Test Condition: V_{DD} = 40V, R_{LOAD} = 20 $k\Omega$)

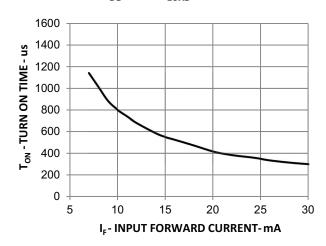


Figure 8 Typical On-Resistance vs. Ambient Temperature

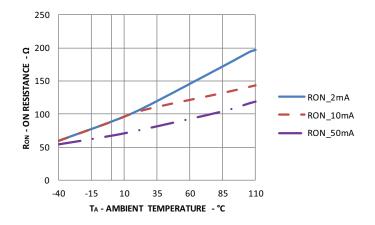


Figure 10 Turn-Off Time vs. Ambient Temperature (Test Condition: V_{DD} = 40V, R_{LOAD} = 20 k Ω)

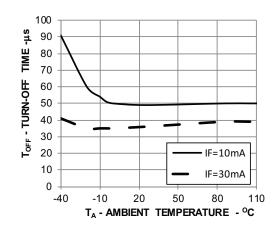
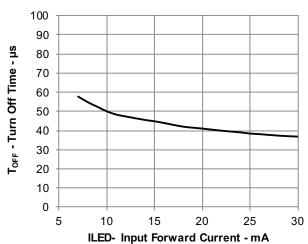
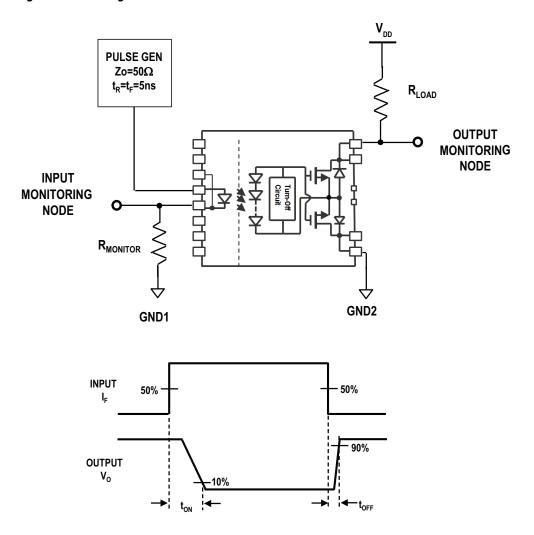
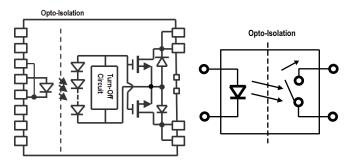


Figure 12 Turn-Off Time vs. Input Forward Current (Test Condition: V_{DD} = 40V, R_{LOAD} = 20 k Ω)

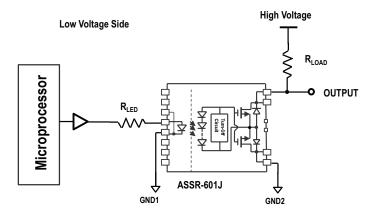




Figure 13 Switching Time Test Circuit and Waveform

Application Information

ASSR-601J is a single-channel solid state relay that is equivalent to 1FormA electromechanical relay (EMR) as shown in Figure 14. It functions like a bidirectional switch with no output power requirement. The input side is LED driven and requires a current limiting resistor (Figure 15). Recommended input forward current is 7 mA to 30 mA.

Figure 14 ASSR-601J Equivalent Circuit

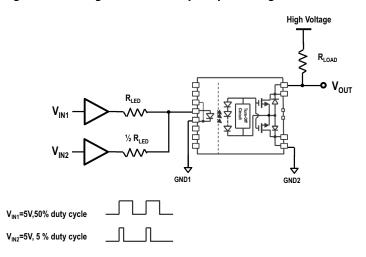


The input LED is optically coupled through a photodiode stack and a driver circuitry to switch two high-voltage MOSFETs. When current is driven into the LED, the light generates photo current on the photodiode to charge the gate of the MOSFETs, to switch and keep the power device on.

A typical application circuit (Figure 15) shows the ASSR-601J's input being controlled by the microprocessor to switch the output (high voltage side). The ASSR-601J's galvanic isolation protects the low voltage side of the circuit (input) from the high-voltage side (output).

Pins 8 to 9 and 15 to 16 are internally connected. In routing the PCB layout, either of the pins can be used. Shorting the pins (8 to 9) and (15 to 16) is also acceptable.

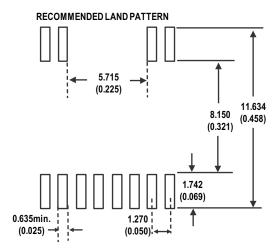
Figure 15 Typical Application Circuit



Turn On Time

 T_{ON} is influenced by the level of input current. As input current is increased, the T_{ON} becomes shorter. In a situation where T_{ON} needs to be shorter than what the maximum level of input current can achieve, peaking can be implemented as shown in Figure 16.

In this peaking circuit, the LED can be driven by two inputs to achieve shorter T_{ON} . The second input V_{IN2} 's duty cycle must set to a lower duty cycle to achieve the peaking effect.


Figure 16 Peaking Circuit and Sample Input Timing

Land Pattern for 8-mm Creepage and Floating Pins

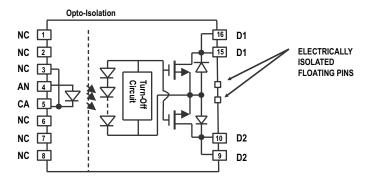

For applications that require PCB creepage of 8 mm between the control and switch sides, the land pattern below can be used.

Figure 17 Land Pattern for 8-mm Creepage

At the output side, in between pins 10 and 15, there are two floating pins. These floating pins are electrically isolated and have no circuit connection to any of the internal circuitry.

Figure 18 Floating Pins

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom in the United States, certain other countries and/or the EU.

Copyright © 2017 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

ASSR-601J-DS101 - December 5, 2017

