

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ASTMK06

Moisture Sensitivity Level (MSL) – 1

> FEATURES:

- Ultra-miniature size: 2.0 x 1.2 x 0.6mm
- Supply Voltage: 1.5V to 3.63V
- Ultra-Low Current Consumption: 1.0µA typ.(no load)
- Frequency Stabilities include:
 - ± 75 ppm over -10 to ± 70 °C
 - ± 100 ppm over -40 to +85°C
- Internal power supply filtering eliminates external bypass capacitor for Vdd port.
- High Performance MEMS Technology by SiTime

> APPLICATIONS:

- General Timekeeping
- Battery Management
- Portable devices
- RTC reference clock
- Bluetooth/WiFi modules

STANDARD SPECIFICATIONS:

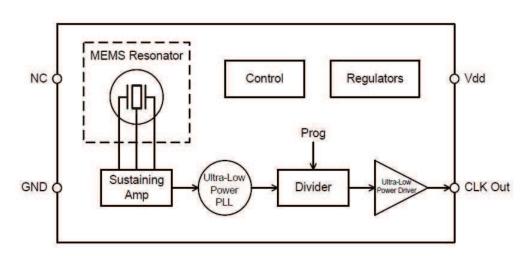
Parameters	Min	Тур	Max	Unit	Notes
Output Frequency (Fout)	32.768		kHz		
Initial Frequency Tolerance (F _{init}) (1)	-20		+20	ppm	T_A = +25°C, post reflow, V_{dd} :1.5-3.63V
Frequency Stability over Temperature	-75		+75	ppm	T_A = -10°C to +70°C, V_{dd} :1.5-3.63V
$(F_{\text{stab}})^{(2)}$	-100		+100	ppiii	$T_A = -40^{\circ}C$ to +85°C, V_{dd} :1.5-3.63V
Aging (@+25°C)	-1		+1	ppm	First year
Supply Voltage (V _{dd})	1.5		3.63	V	T _A = over temperature
		1.0			T _A = +25°C, V _{dd} :1.5-3.63V. No load.
Current Consumption (I _{dd})			1.9	μΑ	T_A = -10°C to +70°C, V_{dd} max: 3.63V. No load
			2.2		T_A = -40°C to +85°C, V_{dd} max: 3.63V. No load.
Power Supply Ramp (t _{Vdd_Ramp})			100	ms	Over temperature, 0 to 90% V_{dd}
		180	300		T_A = +25°C±10°C
Start-up Time at Power-up (T _{start})			450	ms	$T_A = -40$ °C to $+70$ °C
			500		$T_A = +85$ °C
Operating Temperature Range (T _{use})	-10		+70	°C	Option "M"
	-40		+85		Option "L"
LVCMOS Output (T _A = Over Temperate	ure. Typical val	ues are at T _A =	= +25°C)		
Output Rise/Fall Time (t _r /t _f)		100	200	ns	10-90%, 15pF load, V _{dd} :1.5-3.63V
Output Clock Duty Cycle	48		52	%	
Output Voltage V _{OH}	90%*V _{dd}			V	V_{dd} :1.5-3.63V. I_{OH} = -10 μ A, 15pF
Output Voltage V_{OL}	11 V 01130P		V_{dd} :1.5-3.63V. I_{OL} = 10 μ A, 15pF		
Output Drive Level			50	pF	≥80% LVCMOS swing, V _{dd} :1.8V, 2.5V, 3.3V
Period Jitter (T _{jitt})		35		ns _{RMS}	Cycles – 10000, $T_A = +25$ °C

Note:

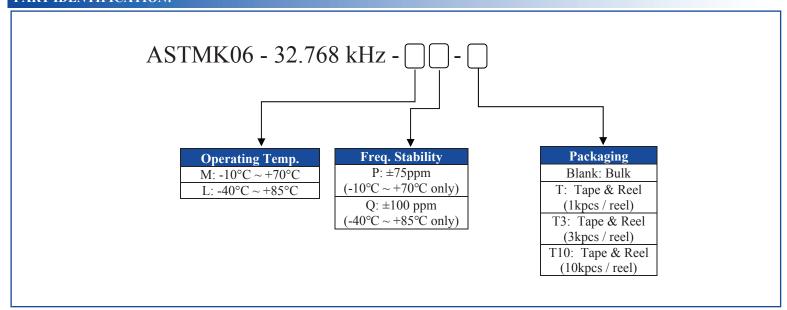
- Measured peak-to-peak. Tested with Agilent 53132A frequency counter. Due to the low operating frequency, the gate time must be ≥100ms to ensure an accurate frequency measurement.
- 2. Measured peak-to-peak. Inclusive of initial tolerance at +25°C, and variations over operating temperature, rated power supply voltage and load.

Revised: 06.17.2017

ASTMK06



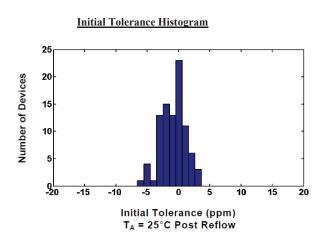
Absolute Maximum Ratings

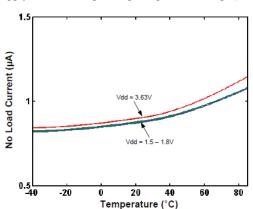

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

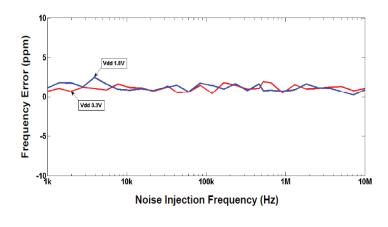
Parameters	Test Condition	Value	Unit	
Continuous Power Supply Voltage Range (V _{dd})		-0.5 to 3.63	V	
Short Duration Max. Power Supply Voltage (V _{dd})	≤30 minutes	4.0	V	
Short Duration Max. Operating Temperature Range	Vdd:1.5-3.63V, ≤30 minutes	125	°C	
Human Body Model (HBM) ESD Protection	JESD22-A114	3000	V	
Charge-Device Model (CDM) ESD Protection	JESD22-C101	750	V	
Machine Model (MM) ESD Protection	JESD22-A115	300	V	
Latch-up Tolerance	JESD78 Compli	1		
Mechanical Shock Resistance	Mil 883, Method 2002	10000	g	
Mechanical Vibration Resistance	Mil 883, Method 2007	70	g	
2012 SMD Junction Temperature		150	$^{\circ}\mathrm{C}$	
Storage Temperature		-65 to +150	$^{\circ}\!\mathrm{C}$	

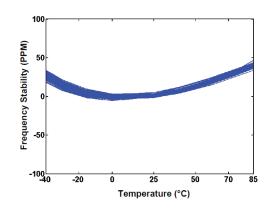
Block Diagram:

PART IDENTIFICATION:

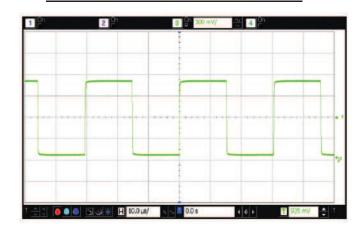

Revised: 06.17.2017




TYPICAL PERFORMANCE DATA (TA=25°C, Vdd=1.8V, unless otherwise stated)

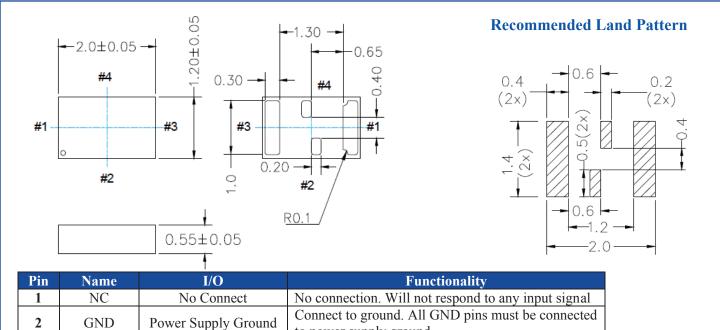

Supply Current vs Operating Temperature Range (No Load)


Power Supply Noise Rejection (±150mV Noise)

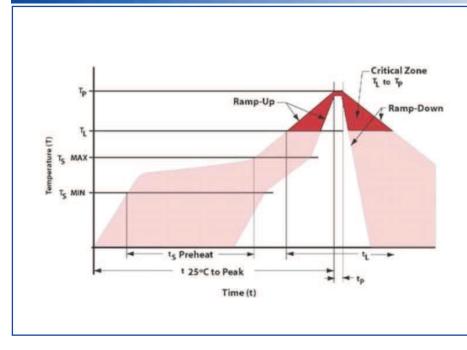

Frequency Stability vs. Operating Temperature Range

Start-up Time

LVCMOS Output Waveform ($V_{\text{swing}} = 1.8V$)


Revised: 06.17.2017

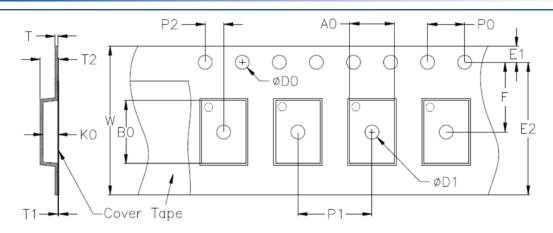
ASTMK06


OUTLINE DRAWING:

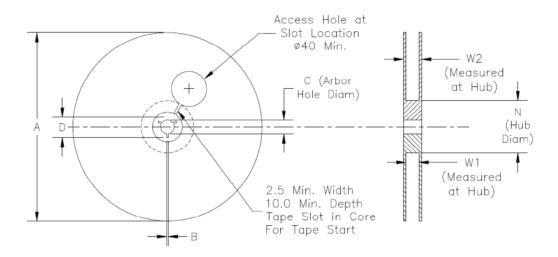
Dimensions: mm

REFLOW PROFILE:

Item	Conditions
T _S MAX to T _L (Ramp-up Rate)	3°C/second max
Preheat	
Temperature Minimum (T _S MIN)	150°C
Temperature Typical (T _S TYP)	175°C
Temperature Maximum (T _S MAX)	200°C
Time (t _S)	60 – 180 seconds
Ramp-up Rate (T _L to T _P)	3°C/second max
Time Maintained Above	
Temperature (T _L)	217℃
Time (t _L)	60 – 150 seconds
Peak Temperature (T _P)	260°C max
Target Peak Temperature (T _P Target)	255°C
Time within 5°C of actual peak (t _P)	20 – 40 seconds
Max. Number of Reflow Cycles	3
Ramp-down Rate	6°C/second max
Time 25°C to Peak Temperature (t)	8 minutes max



ASTMK06



TAPE & REEL:

D 0	D1 min.	E 1	E2 min.	F	P0	P1	P2
1.55±0.05	1.0	1.75±0.1	6.05	3.5±0.05	4.0±0.1	4.0±0.1	2.0±0.05
T	T1 max.	T2 max.	W max.	A0	В0	K0	
0.25±0.05	NA	NA	8.3	1.6±0.05	2.25±0.10	0.65±0.05	

Option	A max.	B min.	C	D min.	N	W1	W2 max.
T & T3	180.5	1.5	13.0+0.6/-0.2	20.2	60±0.5	8.4+1.5/-0	14.4
T10	330	1.5	13.0±0.2	20.2	100±0.5	8.4+1.5/-0	14.4

T= Tape and reel (1,000pcs/reel)

T3= Tape and reel (3,000pcs/reel)

T10= Tape and reel (10,000pcs/reel)

Unit: mm

Revised: 06.17.2017

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

