

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ASTMTXK

Moisture Sensitivity Level (MSL) – 1

> **FEATURES**:

- Smallest 32.768kHz TCXO in the market: 1.54 x 0.84 x 0.6mm
- Supply Voltage: 1.5V to 3.63V
- Ultra-Low Current Consumption: 1.52µA max.(core current, no load)
- Frequency Stabilities include: ± 5 ppm, ± 10 ppm, ± 20 ppm over 0 to +70°C and -40 to +85°C
- Internal power supply filtering eliminates external bypass capacitor for Vdd port.
- High Performance MEMS Technology by SiTime

APPLICATIONS:

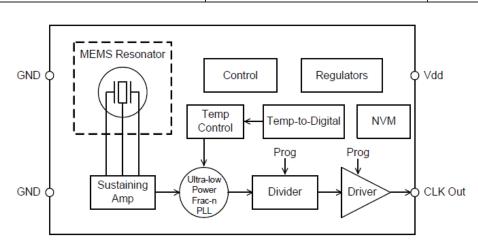
- Fitness/Medical monitoring sensors
- Smart Meters
- Portable devices
- RTC reference clock

STANDARD SPECIFICATIONS:

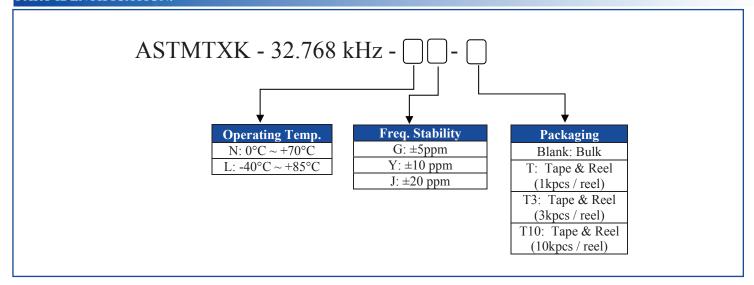
Paran	neters	Min	Тур	Max	Unit	Notes
Output Frequency (Fout)		32.768		kHz		
F C4-1:1:4-		-5		+5		Stability Option "G"
Frequency Stability	vitial Offset (2)	-10		+10	ppm	Stability Option "Y"
(F _{stab}) ⁽¹⁾ (without Initial Offset ⁽²⁾)		-20		+20		Stability Option "J"
Frequency Stability	y over Temperature	-10		+10		Stability Option "G"
(F_{stab}) (with Initial (-13		+13	ppm	Stability Option "Y"
(1 stab) (With initial C	Jiiset)	-22		+22		Stability Option "J"
Eraguanay Stability	Frequency Stability vs Voltage (F _{vdd})			+0.75	nnm	1.8V±10%
Frequency Stability	vs voltage (F _{vdd})	-1.5		+1.5	ppm	1.5-3.63V
Aging (@+25°C)		-1		+1	ppm	First year. V_{dd} = 3.3V
Supply Voltage (Vo	ld)	1.5		3.63	V	$T_A = -40$ °C to $+85$ °C
Core Supply Currer	nt (I.,) ⁽³⁾		0.99		μA	T_A = +25°C, V_{dd} : 1.8V. LVCMOS output. No load.
Core Supply Curren	iit (1 _{dd})			1.52	μΑ	T_A = -40°C to +85°C, V_{dd} max: 1.5V - 3.63V. No load.
Power Supply Ram	$p(t_{Vdd_Ramp})$			100	ms	T_A = -40°C to +60°C, 0 to 90%* V_{dd}
			180	300		T_A = -40°C to +60°C, valid output
Start-up Time at Po	ower-up (T _{start})			350	ms	T_A = +60°C to +70°C, valid output
				380		T_A = +70°C to +85°C, valid output
Operating Tempera	tura Danga (T.)	0		+70	°C	Option "N"
Operating Tempera	iture Kange (T _{use})	-40		+85		Option "L"
Long Term Jitter				2.5	μs_{pp}	81920 cycles (2.5sec), 100 samples
Period Jitter			35		ns _{RMS}	Cycles=10000, T _A = +25°C, V _{dd} :1.5-3.63V
LVCMOS Output	Option (T_A = -40°C	to +85°C. Typ	ical values ar	e at $T_A = +25$ °C	C)	
Output Rise/Fall Time (t _r /t _f)			100	200	nc	10-90%(V _{dd}), 15pF load
				50	ns	10-90%(V _{dd}), 5pF load, V _{dd} ≥1.62V
Output Clock Duty Cycle		48		52	%	
Output Voltage	V_{OH}	90%*V _{dd}			V	V_{dd} :1.5-3.63V. I_{OH} = -1 μ A, 15pF
Output Voltage	V_{OL}			10%*V _{dd}	v	V_{dd} :1.5-3.63V. I_{OL} = 1 μ A, 15 p F

Note:

- 1. No board level underfill. Measured as peak-to-peak/2. Inclusive of 3x-reflow and ±20% load variation. Tested with Agilent 53132A frequency counter. Due to the low operating frequency, the gate time must be ≥100ms to ensure an accurate frequency measurement.
- 2. Initial offset is defined as the frequency deviation from the ideal 32.768kHz at room temperature, past reflow.
- 3. Core operating current does not include output driver operating current or load current. To derive total operating current (no load), add core operating current + output driver operating current, where output driver operating current = $C_{driver} *V_{out} *F_{out}$.



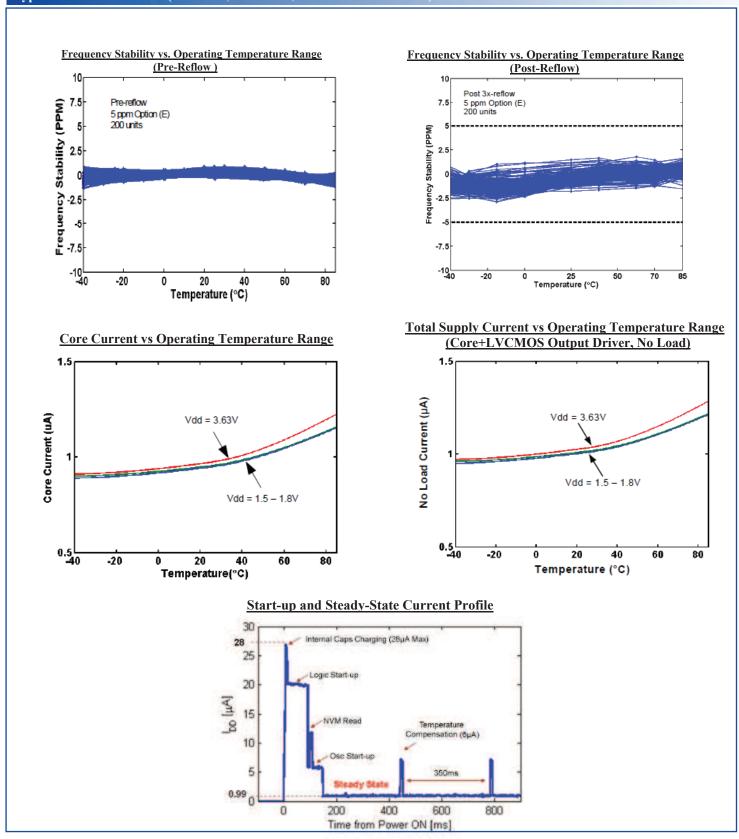
Absolute Maximum Ratings


Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

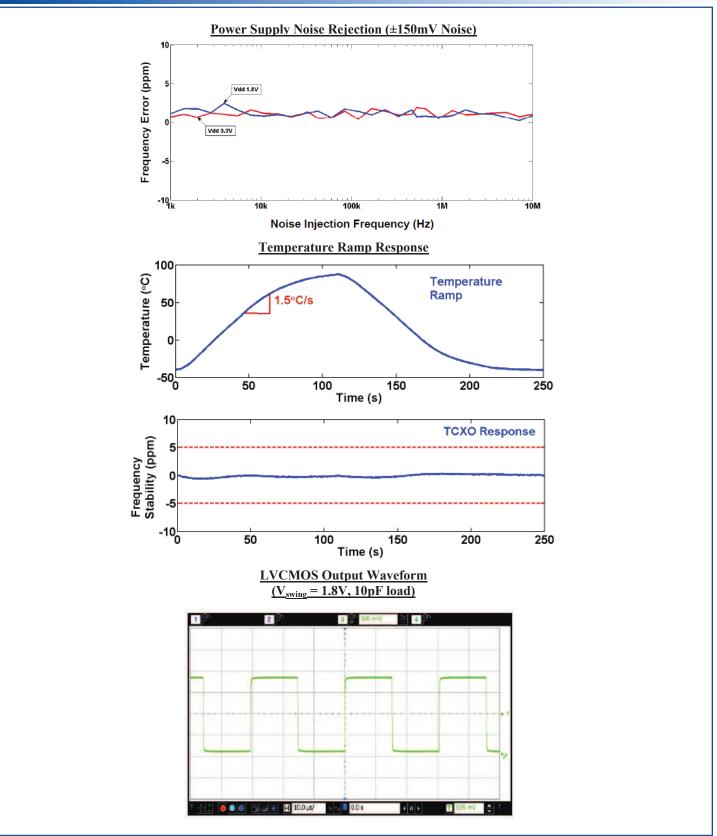
Parameters	Test Condition	Value	Unit
Continuous Power Supply Voltage Range (V _{dd})		-0.5 to 3.63	V
Short Duration Max. Power Supply Voltage (V _{dd})	≤30 minutes	4.0	V
Continuous Maximum Operating Temperature Range	Vdd:1.5-3.63V	105	°C
Short Duration Max. Operating Temperature Range	Vdd:1.5-3.63V, ≤30 minutes	125	°C
Human Body Model (HBM) ESD Protection	JESD22-A114	3000	V
Charge-Device Model (CDM) ESD Protection	JESD22-C101	750	V
Machine Model (MM) ESD Protection	JESD22-A115	300	V
Latch-up Tolerance	JESD78 Compl	iant	
Mechanical Shock Resistance	Mil 883, Method 2002	10000	g
Mechanical Vibration Resistance	Mil 883, Method 2007	70	g
1508 CSP Junction Temperature		150	°C
Storage Temperature		-65 to +150	°C

Block Diagram

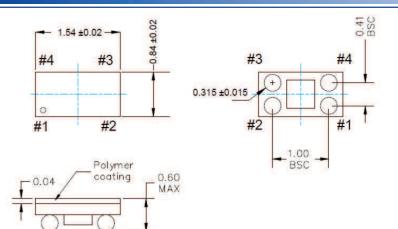
▶ PART IDENTIFICATION:



Typical Performance Data (TA=25°C, Vdd=1.8V, unless otherwise stated)

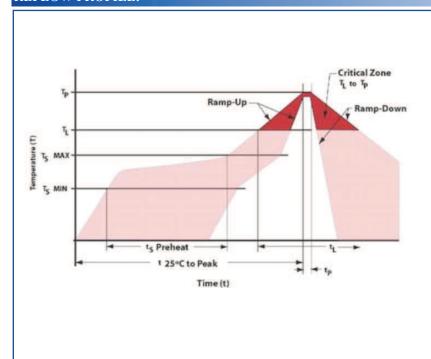


> PART IDENTIFICATION:



OUTLINE DIMENSION:

Recommended Land Pattern #4 #0.25 (4x) NSMD pads #3 #0.35 (4x) Soldermask openings (soldermask openings shown


Recommend 4-mil (0.1mm) stencil thickness

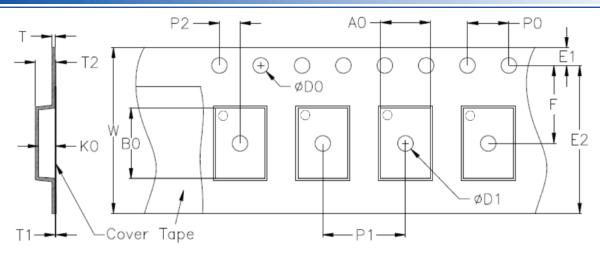
with heavy dashed line)

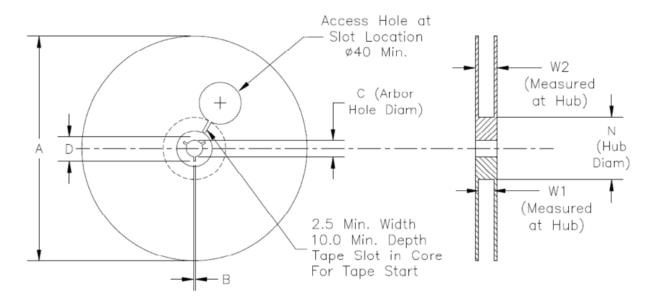
Pin	Name	I/O	Functionality			
1,4	GND	Power Supply Ground	Connect to ground. All GND pins must be connected to power supply ground. The GND pins can be connected together, as long as both GND pins are connected to ground.			
2	CLK Out	OUT	Oscillator clock output.			
3	V_{dd}	Power Supply	Connect to power supply 1.5V \leq V _{dd} \leq 3.63V. Under normal operating conditions, V _{dd} doesn't require external bypass/decoupling capacitor(s). Internal power supply filtering will reject more than \pm 150mVpp with frequency components through 10MHz.			

Dimensions: mm

REFLOW PROFILE:

Item	Conditions		
T _S MAX to T _L (Ramp-up Rate)	3°C/second max		
Preheat			
Temperature Minimum (T _S MIN)	150°C		
Temperature Typical (T _S TYP)	175℃		
Temperature Maximum (T _S MAX)	200°C		
Time (t _S)	60 – 180 seconds		
Ramp-up Rate (T _L to T _P)	3°C/second max		
Time Maintained Above			
Temperature (T _L)	217°C		
Time (t _L)	60 – 150 seconds		
Peak Temperature (T _P)	260°C max		
Target Peak Temperature (T _P Target)	255℃		
Time within 5°C of actual peak (t _P)	20 – 40 seconds		
Max. Number of Reflow Cycles	3		
Ramp-down Rate	6°C/second max		
Time 25°C to Peak Temperature (t)	8 minutes max		





> TAPE & REEL:

							Unit: mm
D0	D1 min.	E 1	E2 min.	F	P0	P1	P2
1.55±0.05	0.18	1.75±0.1	6.05	3.5±0.05	4.0±0.1	4.0±0.1	2.0±0.05
T	T1 max.	T2 max.	W max.	A0	В0	K0	
0.20 ± 0.02	0.1	1.55	8.3	0.96±0.03	1.66±0.03	0.63±0.03]

								Cint. min
	Option	A max.	B min.	C	D min.	N	W1	W2 max.
Ī	T & T3	180	1.5	13.0+0.6/-0.2	20.2	60±0.5	8.4+1.5/-0	14.4
ſ	T10	330	1.5	13.0±0.2	20.2	100±0.5	8.4+1.5/-0	14.4

T= Tape and reel (1,000pcs/reel)

T3= Tape and reel (3,000pcs/reel)

T10= Tape and reel (10,000pcs/reel)

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

Unit: mm