

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AT-41486

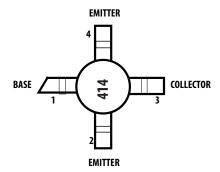
Up to 6 GHz Low Noise Silicon Bipolar Transistor

Data Sheet

Description

Avago's AT-41486 is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT-41486 is housed in a low cost surface mount .085" diameter plastic package. The 4 micron emitter-to-emitter pitch enables this transistor to be used in many different functions. The 14 emitter finger interdigitated geometry yields an intermediate sized transistor with impedances that are easy to match for low noise and moderate power applications. Applications include use in wireless systems as an LNA, gain stage, buffer, oscillator, and mixer. An optimum noise match near $50\,\Omega$ at 900 MHz, makes this device easy to use as a low noise amplifier.

The AT-41486 bipolar transistor is fabricated using Avago's 10 GHz f_T Self-Aligned-Transistor (SAT) process. The die is nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, self-alignment techniques, and gold metalization in the fabrication of this device.


Features

- Low Noise Figure:
 1.4 dB Typical at 1.0 GHz
 1.7 dB Typical at 2.0 GHz
- High Associated Gain: 18.0 dB Typical at 1.0 GHz 13.0 dB Typical at 2.0 GHz
- High Gain-Bandwidth Product: 8.0 GHz Typical f_T
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

86 Plastic Package

Pin Connections

AT-41486 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_{EBO}	Emitter-Base Voltage	V	1.5
V _{CBO}	Collector-Base Voltage	V	20
V _{CEO}	Collector-Emitter Voltage	V	12
I _C	Collector Current	mA	60
P _T	Power Dissipation [2,3]	mW	500
Tj	Junction Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150

Thermal Resistance [2,4]:

 $\theta_{ic} = 165$ °C/W

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- $2. \quad T_{\text{CASE}} = 25^{\circ}\text{C}.$
- 3. Derate at 6 mW/°C for $T_c > 68$ °C.
- 4. See MEASUREMENTS section "Thermal Resistance" for more information.

Ordering Information

Part Numbers	No. of Devices	Comments
AT-41486-BLK	100	Bulk
AT-41486-BLKG	100	Bulk
AT-41486-TR1	1000	7" Reel
AT-41486-TR1G	1000	7" Reel
AT-41486-TR2	4000	13" Reel
AT-41486-TR2G	4000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
S _{21E} ²	Insertion Power Gain; $V_{CE} = 8 \text{ V}$, $I_C = 25 \text{ mA}$	f = 1.0 GHz f = 2.0 GHz	dB		17.5 11.5	
P _{1 dB}	Power Output @ 1 dB Gain Compression $V_{CE} = 8 \text{ V}$, $I_C = 25 \text{ mA}$	f = 2.0 GHz	dBm		18.0	
G_{1dB}	1 dB Compressed Gain; $V_{CE} = 8 \text{ V}$, $I_C = 25 \text{ mA}$	f = 2.0 GHz	dB		13.5	
NF ₀	Optimum Noise Figure: $V_{CE} = 8 \text{ V}$, $I_{C} = 10 \text{ mA}$	f = 1.0 GHz f = 2.0 GHz f = 4.0 GHz	dB		1.4 1.7 3.0	1.8
G_A	Gain @ NF ₀ ; $V_{CE} = 8 \text{ V}$, $I_C = 10 \text{ mA}$	f = 1.0 GHz f = 2.0 GHz f = 4.0 GHz	dB	17.0	18.0 13.0 9.0	
f _T	Gain Bandwidth Product: $V_{CE} = 8 \text{ V}$, $I_C = 25 \text{ mA}$		GHz		8.0	
h _{FE}	Forward Current Transfer Ratio; $V_{CE} = 8 \text{ V}$, $I_C = 10 \text{ mA}$		_	30	150	270
I_{CBO}	Collector Cutoff Current; $V_{CB} = 8 V$		μΑ			0.2
I_{EBO}	Emitter Cutoff Current; $V_{EB} = 1 \text{ V}$		μΑ			1.0
C_{CB}	Collector Base Capacitance ^[1] : $V_{CB} = 8 \text{ V}$, $f = 1 \text{ MHz}$		pF		0.25	

Note:

1. For this test, the emitter is grounded.

AT-41486 Typical Performance, $T_A = 25^{\circ}C$

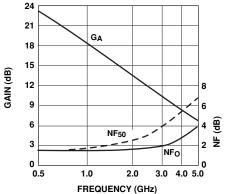


Figure 1. Noise Figure and Associated Gain vs. Frequency. $\rm V_{CE}=8~V,\,I_{C}=10~mA.$

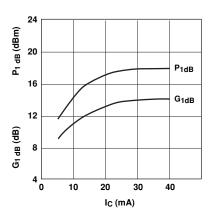


Figure 4. Output Power and 1 dB Compressed Gain vs. Collector Current and Frequency. $V_{CE} = 8 \text{ V}, f = 2.0 \text{ GHz}.$

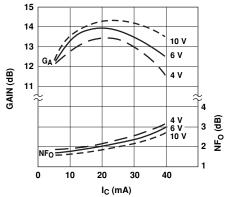


Figure 2. Optimum Noise Figure and Associated Gain vs. Collector Current and Collector Voltage. $f = 2.0 \, \text{GHz}.$

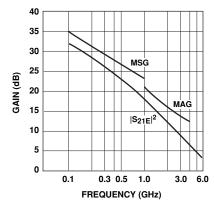


Figure 5. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency.

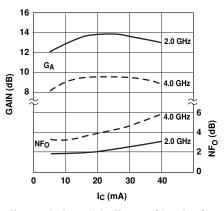


Figure 3. Optimum Noise Figure and Associated Gain vs. Collector Current and Frequency. $V_{CE}=8~V.$

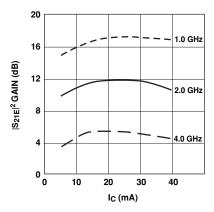
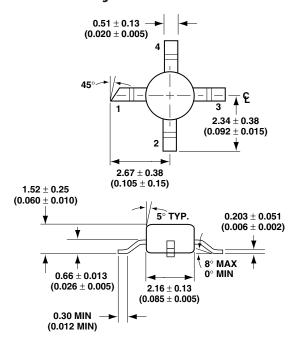


Figure 6. Insertion Power Gain vs. Collector Current and Frequency. $V_{\text{CE}} = 8 \text{ V}$.

AT-41486 Typical Scattering Parameters, Common Emitter, $Z_0 = 50~\Omega$, $T_A = 25^{\circ}\text{C}$, $V_{CE} = 8~\text{V}$, $I_C = 10~\text{mA}$

Freq.		S ₁₁		S ₂₁			S ₁₂		S	22
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.1	.74	-38	28.1	25.46	157	-39.6	.011	68	.94	-12
0.5	.59	-127	22.0	12.63	107	-30.2	.031	47	.60	-29
1.0	.56	-168	16.8	6.92	84	-27.7	.041	46	.49	-29
1.5	.57	169	13.5	4.72	69	-26.2	.049	49	.45	-32
2.0	.62	152	11.1	3.61	56	-24.8	.058	43	.42	-39
2.5	.63	142	9.3	2.91	47	-23.4	.068	52	.40	-42
3.0	.64	130	7.6	2.41	37	-22.2	.078	52	.39	-50
3.5	.68	122	6.3	2.06	26	-20.6	.093	51	.37	-60
4.0	.71	113	5.1	1.80	16	-19.5	.106	48	.35	-70
4.5	.74	105	4.0	1.59	7	-18.0	.125	48	.35	-84
5.0	.77	99	3.1	1.42	-4	-17.2	.139	43	.35	-98
5.5	.79	93	2.0	1.27	-13	-16.3	.153	38	.35	-114
6.0	.81	87	1.1	1.13	-22	-15.4	.170	34	.35	-131

AT-41486 Typical Scattering Parameters, Common Emitter, $Z_0 = 50~\Omega$, $T_A = 25^{\circ}$ C, $V_{CE} = 8~V$, $I_C = 25~m$ A


Freq.		S ₁₁		S ₂₁			S ₁₂			S ₂₂	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.	
0.1	.50	-75	32.0	40.01	142	-41.3	.009	54	.85	-17	
0.5	.55	-158	23.2	14.38	97	-34.1	.020	48	.51	-24	
1.0	.57	177	17.5	7.50	78	-29.9	.032	61	.46	-24	
1.5	.57	161	14.1	5.07	65	-27.3	.043	62	.44	-28	
2.0	.59	148	11.5	3.75	53	-24.8	.058	59	.43	-35	
2.5	.61	139	9.6	3.02	45	-22.9	.072	58	.40	-41	
3.0	.65	128	8.0	2.52	34	-21.6	.083	57	.38	-49	
3.5	.70	121	6.7	2.17	24	-20.1	.099	56	.36	-59	
4.0	.74	113	5.7	1.92	14	-18.8	.115	52	.34	-72	
4.5	.78	107	4.7	1.72	3	-17.6	.132	47	.32	-87	
5.0	.78	102	3.7	1.53	-8	-16.6	.149	42	.31	-106	
5.5	.78	96	2.7	1.36	-19	-15.4	.169	36	.31	-125	
6.0	.76	91	1.6	1.21	-29	-14.5	.188	31	.33	-144	

A model for this device is available in the DEVICE MODELS section.

AT-41486 Noise Parameters: $V_{CE} = 8 \text{ V}, I_{C} = 10 \text{ mA}$

Freq.	NFo	Γ	D /F0	
GHZ	dB	Mag	Ang	R _N /50
0.1	1.3	.12	3	0.17
0.5	1.3	.10	16	0.17
1.0	1.4	.04	43	0.16
2.0	1.7	.12	-145	0.16
4.0	3.0	.44	-99	0.40

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

