imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

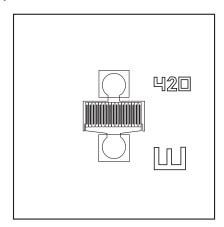
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

Description

Avago's AT-42000 is a general purpose NPN bipolar transistor chip that offers excellent high frequency performance. The 4 micron emitter-to-emitter pitch enables this transistor to be used in many different functions. The 20 emitter finger interdigitated geometry yields a medium sized transistor with impedances that are easy to match for low noise and medium power applications.

This device is designed for use in low noise, wideband amplifier, mixer and oscillator applications in the VHF, UHF, and microwave frequencies. An optimum noise match near 50Ω up to 1 GHz, makes this device easy to use as a low noise amplifier.


The AT-42000 bipolar transistor is fabricated using Avago's 10 GHz fT Self-Aligned-Transistor (SAT) process. The die is nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ionimplantation, self-alignment techniques, and gold metalization in the fabrication of this device.

The recommended assembly procedure is gold-eutectic die attach at 400oC and either wedge or ball bonding using 0.7 mil gold wire. See APPLICATIONS section, "Chip Use".

Features

- High Output Power:
 21.0 dBm Typical P1 dB at 2.0 GHz
 20.5 dBm Typical P1 dB at 4.0 GHz
- High Gain at 1 dB Compression:
 15.0 dB Typical G1 dB at 2.0 GHz
 10.0 dB Typical G1 dB at 4.0 GHz
- Low Noise Figure: 1.9 dB Typical NFO at 2.0 GHz
- High Gain-Bandwidth
 Product: 9.0 GHz Typical fT

Chip Outline

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

AT-42000 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{EBO}	Emitter-Base Voltage	V	1.5
V _{CBO}	Collector-Base Voltage	V	20
V _{CEO}	Collector-Emitter Voltage	V	12
Ι _C	Collector Current	mA	80
PT	Power Dissipation ^[2,3]	mW	600
Tj	Junction Temperature	°C	200
T _{STG}	Storage Temperature	°C	-65 to 200

Part Number Ordering Information

Part Number	Devices Per Tray
AT-42000-GP4	100

Thermal Resistanc $e^{[2,4]}$: $\theta_{jc} = 70^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{Mounting Surface} = 25^{\circ}C.$
- Derate at 14.3 mW/C for T_{Mounting Surface} > 158°C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section ÒThermal ResistanceÓ for more information.

Electrical Specifications, T_A = 25 °C

Symbol	Parameters and Test Conditions	[1]	Units	Min.	Тур.	Max.
$ S_{21E} ^2$	Insertion Power Gain; V_{CE} = 8 V, b = 35 mA	f = 2.0 GHz f = 4.0 GHz	dB		11.5 5.5	
P _{1 dB}	Power Output @ 1 dB Gain Compression V_{CE} = 8 V, L = 35 mA	f = 2.0 GHz f= 4.0 GHz	dBm		21.0 20.5	
$G_{1 \ dB}$	1 dB Compressed Gain; V _{CE} = 8 V, b = 35 mA	f = 2.0 GHz f = 4.0 GHz	dB		15.0 10.0	
NFo	Optimum Noise Figure: V_{CE} = 8 V, I_C = 10 mA	f = 2.0 GHz f = 4.0 GHz	dB		1.9 3.0	
G _A	Gain @ NF _O ; V _{CE} = 8 V, I _C = 10 mA	f = 2.0 GHz f = 4.0 GHz	dB		14.0 10.5	
f_{T}	Gain Bandwidth Product: V_{CE} = 8 V, c_{L} = 35 mA		GHz		9.0	
h _{FE}	Forward Current Transfer Ratio; V_{CE} = 8 V, E = 35	i mA	Ñ	30	150	270
I _{CBO}	Collector Cutoff Current; V _{CB} = 8 V		mA			0.2
I_{EBO}	Emitter Cutoff Current; V EB = 1 V		mA			2.0
C_{CB}	Collector Base Capacitance ^[2] : V _{CB} = 8 V, f = 1 MH	Z	pF		0.23	

Notes:

1. RF performance is determined by packaging and testing 10 devices per wafer.

2. For this test, the emitter is grounded.

AT-42000 Typical Performance, $T_A = 25$ °C

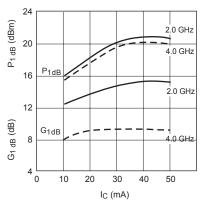


Figure 1. Output Power and 1 dB Compressed Gain vs. Collector Current and Frequency. V $_{\rm CE}\,$ = 8 V.

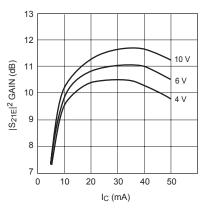


Figure 4. Insertion Power Gain vs. Collector Current and Voltage. f = 2.0 GHz.

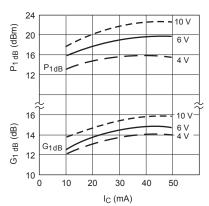


Figure 2. Output Power and 1 dB Compressed Gain vs. Collector Current and Voltage. f = 2.0 GHz.

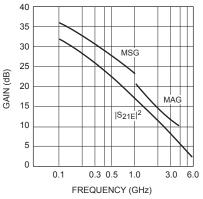


Figure 5. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. V_{CE} = 8 V, I $_{C}$ = 35 mA.

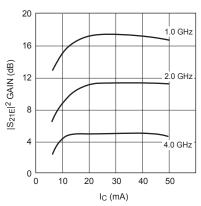


Figure 3. Insertion Power Gain vs. Collector Current and Frequency. V_{CE} = 8 V.

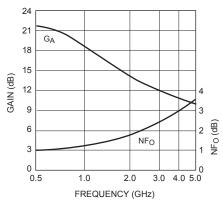


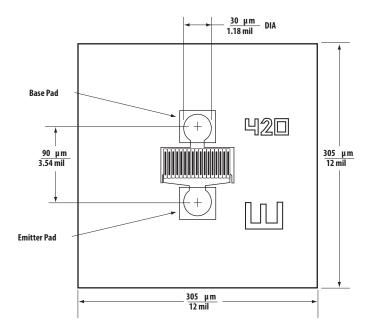
Figure 6. Noise Figure and Associated Gain vs. Frequency. V_{CE} = 8 V, I _C = 10 mA.

Freq.	-		$\frac{S_{11}}{S_{21}} = \frac{S_{22}}{S_{21}} = S_$			S ₁₂			S ₂₂	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.1	.70	-50	28.0	25.19	155	-37.7	.013	71	.92	-14
0.5	.67	-136	20.9	11.04	108	-30.5	.030	43	.57	-27
1.0	.66	-166	15.7	6.08	90	-28.9	.036	47	.50	-24
1.5	.66	-173	12.1	4.02	86	-28.2	.039	52	.48	-23
2.0	.66	179	9.8	3.09	82	-27.5	.042	57	.47	-23
2.5	.67	170	7.8	2.46	74	-26.0	.050	66	.47	-23
3.0	.67	165	6.3	2.08	68	-24.7	.058	72	.47	-26
3.5	.70	157	5.1	1.80	61	-23.4	.068	77	.47	-28
4.0	.70	151	3.9	1.56	57	-21.8	.081	82	.48	-30
4.5	.71	145	2.9	1.40	51	-20.7	.092	86	.50	-34
5.0	.73	138	1.9	1.24	41	-19.3	.109	87	.51	-38
5.5	.74	132	1.2	1.15	36	-17.2	.138	88	.51	-50
6.0	.76	129	0.2	1.02	32	-16.3	.154	87	.53	-56

AT-42000 Typical Scattering Parameters, Common Emitter, $Z_O = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{CE} = 8 V$, $I_C = 10 mA$

AT-42000 Typical Scattering Parameters, Common Emitter, $Z_O = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{CE} = 8$ V, $I_C = 35$ mA

Freq.	S ₁₁		S ₁₁ S ₂₁			S ₁₂			S ₂₂	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.1	.49	-96	33.0	44.61	143	-40.9	.009	65	.79	-24
0.5	.62	-163	22.8	13.87	98	-34.4	.019	58	.42	-26
1.0	.63	179	17.2	7.25	86	-30.5	.030	70	.38	-22
1.5	.63	171	13.5	4.74	78	-27.7	.041	76	.38	-23
2.0	.65	163	11.2	3.62	72	-25.4	.054	79	.38	-25
2.5	.65	159	9.3	2.90	67	-23.6	.066	82	.38	-27
3.0	.68	154	7.8	2.44	60	-22.1	.079	82	.38	-29
3.5	.67	148	6.5	2.12	57	-20.6	.093	84	.39	-32
4.0	.69	144	5.3	1.83	51	-19.7	.104	86	.40	-34
4.5	.70	139	4.4	1.65	47	-18.3	.121	86	.41	-40
5.0	.70	137	3.3	1.46	43	-17.5	.133	85	.42	-44
5.5	.72	131	2.7	1.36	38	-16.5	.149	86	.41	-48
6.0	.74	128	1.7	1.22	34	-15.7	.164	85	.44	-55


A model for this device is available in the DEVICE MODELS section.

AT-42000 Noise Parameters:

V_{CE} = 8 V, b = 10 mA

Freq.	NF o	G	D /50		
GHz	dB	Mag	Ang	R _N /50	
0.1	1.0	.04	13	0.13	
0.5	1.1	.05	69	0.13	
1.0	1.5	.09	127	0.12	
2.0	1.9	.23	171	0.11	
4.0	3.0	.47	-154	0.14	

AT-42000 Chip Dimensions

Note: Die thickness is 5 to 6 mil.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies Limited. All rights reserved. Obsoletes 5965-8909E AV02-1002EN - January 16, 2008

