imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

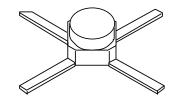
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AT-42035

Up to 6 GHz Medium Power Silicon Bipolar Transistor

Data Sheet

Description


Avago Technologies' AT-42035 is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT-42035 is housed in a cost effective surface mount 100 mil micro-X package. The 4 micron emitter-to-emitter pitch enables this transistor to be used in many different functions. The 20 emitter finger interdigitated geometry yields a medium sized transistor with impedances that are easy to match for low noise and medium power applications. This device is designed for use in low noise, wideband amplifier, mixer and oscillator applications in the VHF, UHF, and microwave frequencies. An optimum noise match near 50 Ω up to 1 GHz, makes this device easy to use as a low noise amplifier.

The AT-42035 bipolar transistor is fabricated using Avago's 10 GHz f_T Self-Aligned-Transistor (SAT) process. The die is nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, self-alignment techniques, and gold metalization in the fabrication of this device.

Features

- High Output Power: 21.0 dBm Typical P_{1 dB} at 2.0 GHz 20.5 dBm Typical P_{1 dB} at 4.0 GHz
- High Gain at 1 dB Compression: 14.0 dB Typical G_{1 dB} at 2.0 GHz 9.5 dB Typical G_{1 dB} at 4.0 GHz
- Low Noise Figure:
 1.9 dB Typical NF_O at 2.0 GHz
- High Gain-Bandwidth Product: 8.0 GHz Typical f_T
- Cost Effective Ceramic Microstrip Package

35 micro-X Package

AT-42035 Absolute Maximum Ratings^[1]

Symbol	Parameter	Units	Absolute Maximum
V _{EBO}	Emitter-Base Voltage	V	1.5
V _{CBO}	Collector-Base Voltage	V	20
V _{CEO}	Collector-Emitter Voltage	V	12
۱ _C	Collector Current	mA	80
Ρ _T	Power Dissipation ^[2,3]	mW	600
Т _і	Junction Temperature	°C	150
T _{STG}	Storage Temperature ^[4]	°C	-65 to 150
T _{STG}	I		

Thermal Resistance^[2,5]:

 $\theta_{jc} = 175^{\circ}C/W$

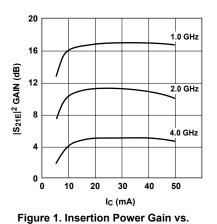
Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 5.7 mW/°C for $T_c > 95$ °C.

4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit.

5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section "Thermal Resistance" for more information.


Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions ^[1]		Units	Min.	Тур.	Max.
S _{21E} ²	Insertion Power Gain; $V_{CE} = 8 V$, $I_C = 35 mA$	f = 2.0 GHz	dB	10.0	11.0	
		f = 4.0 GHz			5.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression	f = 2.0 GHz	dBm		21.0	
	$V_{CE} = 8 V, I_{C} = 35 mA$	f= 4.0 GHz			20.5	
G _{1 dB}	1 dB Compressed Gain; V _{CE} = 8 V, I _C = 35 mA	f = 2.0 GHz	dB		14.0	
		f = 4.0 GHz			9.5	
NFO	Optimum Noise Figure: V _{CE} = 8 V, I _C = 10 mA	f = 2.0 GHz	dB		2.0	
		f = 4.0 GHz			3.0	
G _A	Gain @ NF _O ; V _{CE} = 8 V, I _C = 10 mA	f = 2.0 GHz	dB		13.5	
		f = 4.0 GHz			10.0	
f _T	Gain Bandwidth Product: $V_{CE} = 8 V$, $I_C = 35 mA$		GHz		8.0	
h _{FE}	Forward Current Transfer Ratio; $V_{CE} = 8 V$, $I_C = 35 mA$		_	30	150	270
I _{CBO}	Collector Cutoff Current; $V_{CB} = 8 V$		μΑ			0.2
I _{EBO}	Emitter Cutoff Current; $V_{EB} = 1 V$		μΑ			2.0
C _{CB}	Collector Base Capacitance ^[1] : $V_{CB} = 8 V$, f = 1 MHz		pF		0.28	

Notes:

1. For this test, the emitter is grounded.

AT-42035 Typical Performance, $T_A = 25^{\circ}C$

Collector Current and Frequency. $V_{CE} = 8 V.$

Figure 2. Output Power and 1 dB Compressed Gain vs. Collector Current and Frequency. V_{CE} = 8 V.

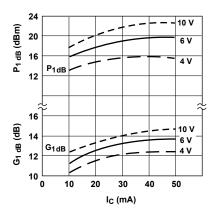


Figure 3. Output Power and 1 dB Compressed Gain vs. Collector Current and Voltage. f = 2.0 GHz.

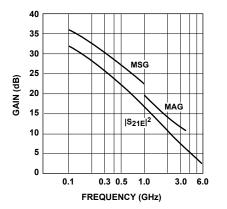


Figure 4. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. V_{CE} = 8 V, I_C = 35 mA.

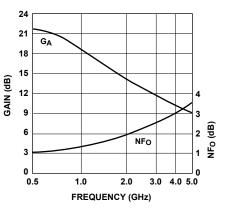


Figure 5. Noise Figure and Associated Gain vs. Frequency. V_{CE} = 8 V, I_C = 10 \square mA.

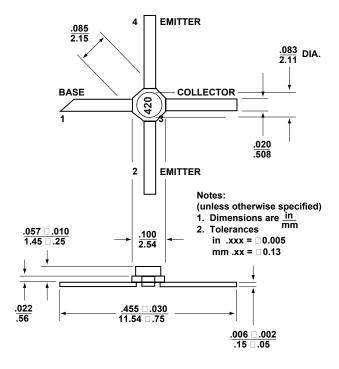
Freq.		S ₁₁		S ₂₁			S ₁₂		S	22
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.1	.72	-46	28.3	26.09	152	-37.0	.014	73	.92	-14
0.5	.59	-137	20.9	11.13	102	-31.0	.028	44	.58	-27
1.0	.56	-171	15.4	5.91	80	-28.2	.039	47	.51	-29
1.5	.56	169	12.1	4.03	67	-26.6	.047	52	.50	-33
2.0	.58	155	9.7	3.06	55	-24.2	.062	55	.48	-38
2.5	.59	147	8.0	2.50	48	-22.6	.074	61	.47	-42
3.0	.61	137	6.5	2.10	38	-20.8	.092	65	.46	-51
3.5	.63	128	5.2	1.82	27	-19.6	.105	62	.47	-63
4.0	.63	117	4.0	1.60	17	-18.0	.126	57	.49	-72
4.5	.63	106	3.1	1.43	7	-16.5	.149	53	.51	-80
5.0	.64	93	2.3	1.30	-3	-15.4	.169	48	.52	-87
5.5	.67	79	1.5	1.19	-13	-14.3	.193	41	.51	-94
6.0	.72	70	0.6	1.07	-23	-13.4	.215	35	.46	-105

AT-42035 Typical Scattering Parameters, Common Emitter, $Z_O = 50 \ \Omega$, $T_A = 25^{\circ}$ C, $V_{CE} = 8 \ V$, $I_C = 10 \ mA$

AT-42035 Typical Scattering Parameters, Common Emitter, $Z_O = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{CE} = 8 V$, $I_C = 35 mA$

Freq.		S ₁₁		S ₂₁			S ₁₂		S	22
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.1	.50	-88	33.2	45.64	135	-42.0	.008	68	.77	-22
0.5	.52	-164	22.4	13.24	92	-32.8	.023	57	.45	-25
1.0	.53	174	16.6	6.75	76	-28.2	.039	63	.42	-26
1.5	.53	160	13.1	4.55	64	-25.6	.053	66	.41	-30
2.0	.55	148	10.8	3.45	53	-23.2	.069	65	.41	-36
2.5	.57	142	9.0	2.81	47	-21.6	.084	67	.39	-40
3.0	.59	134	7.5	2.37	37	-20.0	.101	64	.38	-49
3.5	.60	125	6.3	2.06	27	-18.4	.120	61	.39	-61
4.0	.60	116	5.2	1.81	17	-17.0	.141	57	.41	-71
4.5	.60	104	4.2	1.62	7	-16.0	.158	50	.43	-78
5.0	.61	92	3.4	1.47	-2	-14.9	.179	45	.44	-84
5.5	.64	79	2.6	1.35	-13	-14.1	.198	37	.43	-91
6.0	.69	70	1.7	1.21	-23	-13.2	.219	30	.38	-102

A model for this device is available in the DEVICE MODELS section.


AT-42035 Noise Parameters: $V_{CE} = 8 V$, $I_C = 10 mA$

Freq.	NFo	Га		
GHz	dB	Mag	Ang	R _N /50
0.1	1.0	.04	10	0.13
0.5	1.1	.04	66	0.12
1.0	1.3	.07	150	0.12
2.0	2.0	.20	-178	0.12
4.0	3.0	.51	-110	0.36

Ordering	Information
·····	

Part Numbers	No. of Devices
AT-42035G	100

35 micro-X Package Dimensions

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2652EN AV02-0299EN - April 29, 2008

