imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

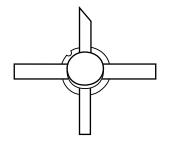
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AT-64020 Up to 4 GHz Linear Power Silicon Bipolar Transistor

Data Sheet

Description


The AT-64020 is a high performance NPN silicon bipolar transistor housed in a hermetic BeO disk package for good thermal characteristics. This device is designed for use in medium power, wide band amplifier and oscillator applications operating over VHF, UHF and microwave frequencies.

Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, selfalignment techniques, and gold metallization in the fabrication of these devices. The use of ion-implanted ballast resistors ensures uniform current distribution through the multiple emitter fingers.

Features

- High Output Power: 27.5 dBm Typical P1 dB at 2.0 GHz 26.5 dBm Typical P1 dB at 4.0 GHz
- High Gain at 1 dB Compression: 10.0 dB Typical G1 dB at 2.0 GHz 6.5 dB Typical G1 dB at 4.0 GHz
- 35% Total Efficiency
- Emitter Ballast Resistors
- Hermetic, Metal/Beryllia Package

200 mil BeO Package

AT-64020 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{EBO}	Emitter-Base Voltage	۷	2
V _{CB0}	Collector-Base Voltage	۷	40
V _{CEO}	Collector-Emitter Voltage	۷	20
Ι _C	Collector Current	mA	200
P _T	Power Dissipation ^[2,3]	W	3
Tj	Junction Temperature	°C	200
T _{STG}	Storage Temperature	°C	-65 to 200

Thermal Resistance^[2,4]:

 $\theta_{jc} = 40^{\circ}C/W$

- Notes: 1. Permanent damage may occur if any of these limits are exceeded.
- 2. Tcase = 25°C.
- 3. Derate at 25 mW/°C for Tc > 80°C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ jc than do alternate methods. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions ^[1]		Units	Min.	Тур.	Max.
S _{21E} ²	Insertion Power Gain; $V_{CE} = 16$ V, $I_C = 110$ mA	f = 2.0 GHz f = 4.0 GHz	dB		7.0 2.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression $V_{CE} = 16 V, I_C = 110 mA$	f = 2.0 GHz f= 4.0 GHz	dBm	26.5	27.5 26.5	
G_{1dB}	1 dB Compressed Gain; $V_{CE} = 16$ V, $I_C = 110$ mA	f = 2.0 GHz f = 4.0 GHz	dB	8.5	10.0 6.5	
η _T	Total Efficiency at 1 dB Compression: $V_{CE} = 16 V$, $I_C = 110 mA$	f = 4.0 GHz	%		35.0	
h _{FE}	Forward Current Transfer Ratio; $V_{CE} = 8 V$, $I_C = 110 mA$			20	50	200
I _{CBO}	Collector Cutoff Current; $V_{CB} = 16 V$		μA			100
I _{EBO}	Emitter Cutoff Current; $V_{EB} = 1 V$		μA			5.0

Note:

1. $\eta T = (RF Output Power)/(RF Input Power + VCEIC).$

AT-64020 Typical Performance, $T_A = 25^{\circ}C$

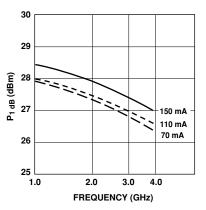


Figure 1. Power Output @ 1 dB Gain Compression vs. Frequency and Collector Current. V_{CE} = 16 V.

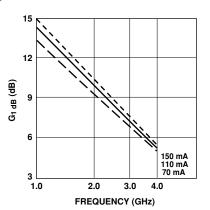
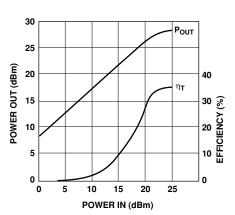
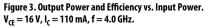




Figure 2. 1 dB Compressed Gain vs. Frequency and Collector Current. $V_{CE} = 16$ V.

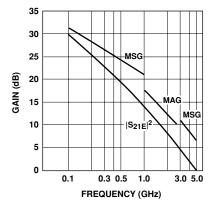
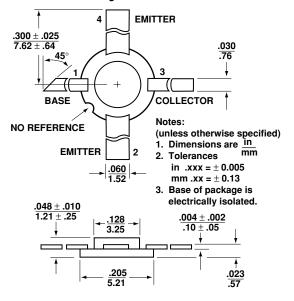


Figure 4. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{CE} = 16$ V, $I_C = 110$ mA.

	-			•						
Freq.		S ₁₁	\$ ₂₁		S ₁₂			S ₂₂		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.1	.61	-116	30.0	31.51	130	-33.1	.022	57	.67	-48
0.5	.75	-173	18.4	8.27	86	-28.8	.036	41	.23	-88
1.0	.75	171	12.5	4.23	66	-27.4	.043	49	.20	-100
1.5	.74	159	9.2	2.90	50	-23.5	.067	48	.21	-110
2.0	.74	148	7.0	2.23	35	-21.6	.083	46	.25	-120
2.5	.73	141	5.2	1.82	26	-19.8	.103	47	.27	-127
3.0	.73	130	3.8	1.56	12	-17.5	.133	41	.32	-135
3.5	.74	119	2.7	1.37	-2	-16.1	.157	35	.35	-146
4.0	.73	107	1.8	1.23	-16	-14.7	.186	26	.38	-158
4.5	.72	93	0.9	1.11	-30	-13.3	.217	18	.41	-168
5.0	.71	79	0.1	1.01	-43	-11.8	.256	8	.42	179


Typical Scattering Parameters, Common Emitter, $Z_0=50~\Omega,~T_A=25^\circ\text{C},~V_{CE}=16~\text{V},~I_C=110~\text{mA}$

A model for this device is available in the DEVICE MODELS section.

Ordering Information

Part Number	No. of Devices				
AT-64020	100				

200 mil BeO Package Dimensions

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2657EN AV02-1220EN May 5, 2008

