

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

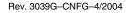
Features

- Programmable 4,194,304 x 1 and 8,388,608 x 1-bit Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
- 3.3V Output Capability
- 5V Tolerant I/O Pins
- Program Support using the Atmel ATDH2200E System or Industry Third Party Programmers
- In-System Programmable (ISP) via 2-wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with Atmel AT40K and AT94K Devices, Altera FLEX[®], APEX[™] Devices, Lucent ORCA[®] FPGAs, Xilinx XC3000[™], XC4000[™], XC5200[™], Spartan[®], Virtex[®] FPGAs, Motorola MPA1000 FPGAs
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Low-power CMOS FLASH Process
- Available in 6 mm x 6 mm x 1 mm 8-lead LAP (Pin-compatible with 8-lead SOIC/VOIC Packages), 20-lead PLCC, 44-lead PLCC and 44-lead TQFP Packages
- Emulation of Atmel's AT24CXXX Serial EEPROMs
- Low-power Standby Mode
- Single Device Capable of Holding 4 Bit Stream Files Allowing Simple System Reconfiguration
- Fast Serial Download Speeds up to 33 MHz
- Endurance: 5,000 Write Cycles Typical

Description

The AT17F Series of In-System Programmable Configuration PROMs (Configurators) provide an easy-to-use, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17F Series device is packaged in the 8-lead LAP, 20-lead PLCC, 44-lead PLCC and 44-lead TQFP, see Table 1. The AT17F Series Configurator uses a simple serial-access procedure to configure one or more FPGA devices.

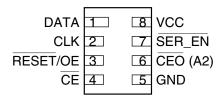
The AT17F Series Configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable.

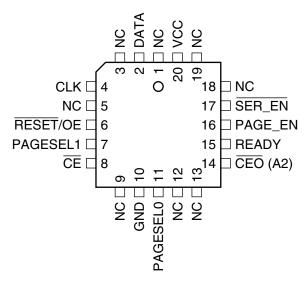

Table 1. AT17F Series Packages

Package	AT17F040	AT17F080
8-lead LAP	Yes	Yes
20-lead PLCC	Yes	Yes
44-lead PLCC	_	Yes
44-lead TQFP	_	Yes

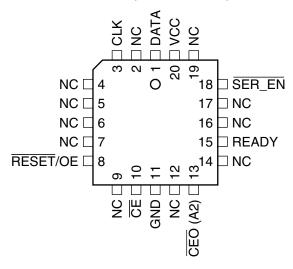
FPGA Configuration Flash Memory

AT17F040 AT17F080

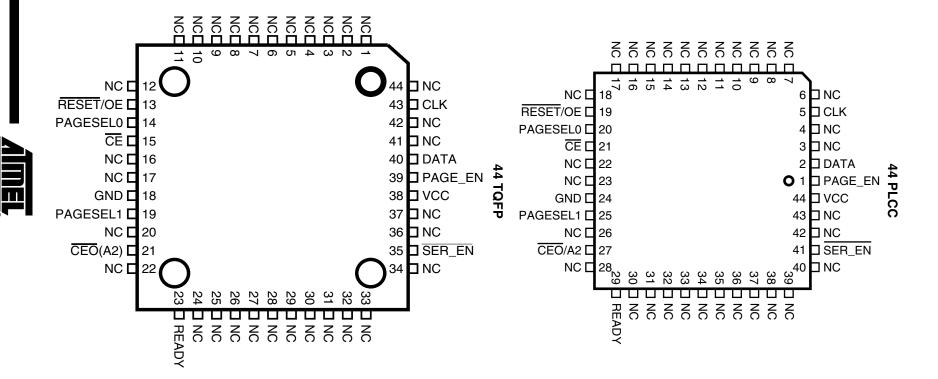




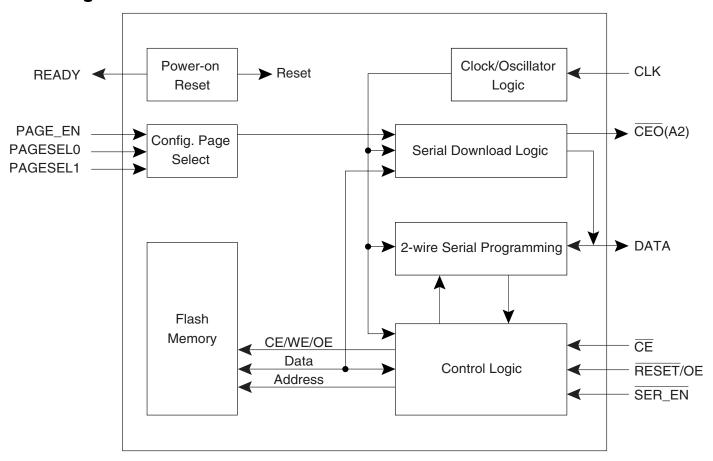
Pin Configuration


8-lead LAP

20-lead PLCC



20-lead PLCC (Virtex® Pinout)(1)(2)


Notes: 1. 20-lead PLCC (Virtex® pinout) is only available in the AT17F040.

2. Virtex pinout is compatible with the XC17V and XC18V Series PROM.

Block Diagram

Device Description

The control signals for the configuration memory device (\overline{CE} , \overline{RESET}/OE and CLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration device without requiring an external intelligent controller.

The $\overline{\text{RESET}}/\text{OE}$ and $\overline{\text{CE}}$ pins control the tri-state buffer on the DATA output pin and enable the address counter. When $\overline{\text{RESET}}/\text{OE}$ is driven Low, the configuration device resets its address counter and tri-states its DATA pin. The $\overline{\text{CE}}$ pin also controls the output of the AT17F Series Configurator. If $\overline{\text{CE}}$ is held High after the $\overline{\text{RESET}}/\text{OE}$ reset pulse, the counter is disabled and the DATA output pin is tri-stated. When OE is subsequently driven High, the counter and the DATA output pin are enabled. When $\overline{\text{RESET}}/\text{OE}$ is driven Low again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of $\overline{\text{CE}}$.

When the configurator has driven out all of its data and $\overline{\text{CEO}}$ is driven Low, the device tri-states the DATA pin to avoid contention with other configurators. Upon power-up, the address counter is automatically reset.

Pin Description

			AT17F040		AT17F080			
Name	I/O	8 LAP	20 PLCC	20 PLCC (Virtex)	8 LAP	20 PLCC	44 PLCC	44 TQFP
DATA	I/O	1	2	1	1	2	2	40
CLK	I	2	4	3	2	4	5	43
PAGE_EN	I	_	16	_	_	16	1	39
PAGESEL0	I	_	11	_	_	11	20	14
PAGESEL1	I	_	7	_	_	7	25	19
RESET/OE	I	3	6	8	3	6	19	13
CE	I	4	8	10	4	8	21	15
GND	_	5	10	11	5	10	24	18
CEO	0		4.4	10		4.4	07	0.1
A2	I	6	14	13	6	14	27	21
READY	0	_	15	15	_	15	29	23
SER_EN	ı	7	17	18	7	17	41	35
V _{CC}	_	8	20	20	8	20	44	38

DATA⁽¹⁾

Three-state DATA output for configuration. Open-collector bi-directional pin for programming.

CLK⁽¹⁾

Clock input. Used to increment the internal address and bit counter for reading and programming.

PAGE EN⁽²⁾

Input used to enable page download mode. When PAGE_EN is high the configuration download address space is partitioned into 4 equal pages. This gives users the ability to easily store and retrieve multiple configuration bitstreams from a single configuration device. This input works in conjunction with the PAGESEL inputs. PAGE_EN must be remain low if paging is not desired. When SER_EN is Low (ISP mode) this pin has no effect.

Notes: 1. This pin has an internal 20 $K\Omega$ pull-up resistor.

2. This pin has an internal 30 $\mbox{K}\Omega$ pull-down resistor.

PAGESEL[1:0](2)

Page select inputs. Used to determine which of the 4 memory pages are targeted during a serial configuration download. The address space for each of the pages is shown in Table 2. When SER EN is Low (ISP mode) these pins have no effect.

Table 2. Address Space

Paging Decodes	AT17F040 (4 Mbits)	AT17F080 (8 Mbits)
PAGESEL = 00, PAGE_EN = 1	00000 – 0FFFFh	00000 – 1FFFFh
PAGESEL = 01, PAGE_EN = 1	10000 – 1FFFFh	20000 – 3FFFFh
PAGESEL = 10, PAGE_EN = 1	20000 – 2FFFFh	40000 – 5FFFFh
PAGESEL = 11, PAGE_EN = 1	30000 – 3FFFFh	60000 – 7FFFFh
PAGESEL = XX, PAGE_EN = 0	00000 – 3FFFFh	00000 – 7FFFFh

RESET/OE(1)

Output Enable (active High) and RESET (active Low) when SER_EN is High. A Low level on RESET/OE resets both the address and bit counters. A High level (with CE Low) enables the data output driver.

CE(1)

Chip Enable input (active Low). A Low level (with OE High) allows CLK to increment the address counter and enables the data output driver. A High level on $\overline{\text{CE}}$ disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will *not* enable/disable the device in the 2-wire Serial Programming mode ($\overline{\text{SER}}_{EN}$ Low).

GND

Ground pin. A 0.2 μF decoupling capacitor between V_{CC} and GND is recommended.

CEO

Chip Enable Output (when SER_EN is High). This output goes Low when the internal address counter has reached its maximum value. If the PAGE_EN input is set High, the maximum value is the highest address in the selected partition. The PAGESEL[1:0] inputs are used to make the 4 partition selections. If the PAGE_EN input is set Low, the device is not partitioned and the address maximum value is the highest address in the device, see Table 2 on page 6. In a daisy chain of AT17F Series devices, the CEO pin of one device must be connected to the CE input of the next device in the chain. It will stay Low as long as CE is Low and OE is High. It will then follow CE until OE goes Low; thereafter, CEO will stay High until the entire EEPROM is read again.

 $A2^{(1)}$

Device selection input, (when $\overline{SER_EN}$ Low). The input is used to enable (or chip select) the device during programming (i.e., when $\overline{SER_EN}$ is Low). Refer to the AT17F Programming Specification available on the Atmel web site for additional details.

READY

Open collector reset state indicator. Driven Low during power-up reset, released when power-up is complete. (recommended 4.7 k Ω pull-up on this pin if used).

SER_EN(1)

The serial enable input must remain High during FPGA configuration operations. Bringing \overline{SER}_{EN} Low enables the 2-Wire Serial Programming Mode. For non-ISP applications, \overline{SER}_{EN} should be tied to V_{CC} .

 V_{CC}

+3.3V (±10%).

Notes: 1. This pin has an internal 20 $K\Omega$ pull-up resistor.

2. This pin has an internal 30 K Ω pull-down resistor.

FPGA Master Serial Mode Summary

The I/O and logic functions of any SRAM-based FPGA are established by a configuration program. The program is loaded either automatically upon power-up, or on command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17F Serial Configuration PROM has been designed for compatibility with the Master Serial mode.

This document discusses the Atmel AT40K, AT40KAL and AT94KAL applications as well as Xilinx applications.

Control of Configuration

Most connections between the FPGA device and the AT17F Serial Configurator PROM are simple and self-explanatory.

- The DATA output of the AT17F Series Configurator drives DIN of the FPGA devices.
- The master FPGA CCLK output drives the CLK input of theAT17F Series Configurator.
- The $\overline{\text{CEO}}$ output of any AT17F Series Configurator drives the $\overline{\text{CE}}$ input of the next Configurator in a cascade chain of configurator devices.
- SER_EN must be connected to V_{CC} (except during ISP).
- The READY pin is available as an open-collector indicator of the device's reset status; it is driven Low while the device is in its power-on reset cycle and released (tri-stated) when the cycle is complete.
- PAGE_EN must be held Low if download paging is not desired. The PAGESEL[1:0] inputs must be tied off High or Low. If paging is desired, PAGE_EN must be High and the PAGESEL pins must be set to High or Low such that the desired page is selected, see Table 2 on page 6.

Cascading Serial Configuration Devices

For multiple FPGAs configured as a daisy-chain, or for FPGAs requiring larger configuration memories, cascaded configurators provide additional memory.

After the last bit from the first configurator is read, the clock signal to the configurator asserts its $\overline{\text{CEO}}$ output Low and disables its DATA line driver. The second configurator recognizes the Low level on its $\overline{\text{CE}}$ input and enables its DATA output.

After configuration is complete, the address counters of all cascaded configurators are reset if the RESET/OE on each configurator is driven to its active (Low) level.

If the address counters are not to be reset upon completion, then the $\overline{\text{RESET}}/\text{OE}$ input can be tied to its inactive (High) level.

Programming Mode

The programming mode is entered by bringing $\overline{SER_EN}$ Low. In this mode the chip can be programmed by the 2-wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip. The AT17F parts are read/write at 3.3V nominal. Refer to the AT17F Programming Specification available on the Atmel web site (www.atmel.com) for more programming details. AT17F devices are supported by the Atmel ATDH2200 programming system along with many third party programmers.

Standby Mode

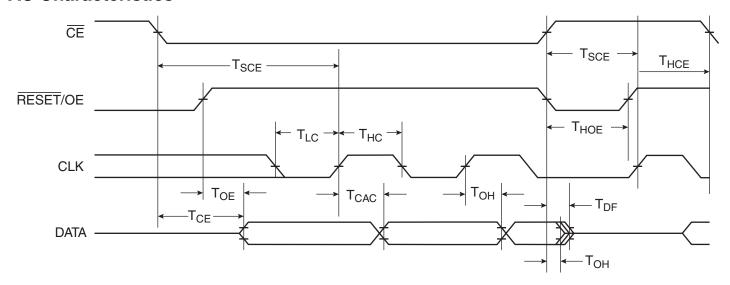
The AT17F Series Configurators enter a low-power standby mode whenever SER_EN is High and CE is asserted High. In this mode, the AT17F Configurator consumes less than 1 mA of current at 3.3V. The output remains in a high-impedance state regardless of the state of the OE input.

Absolute Maximum Ratings*

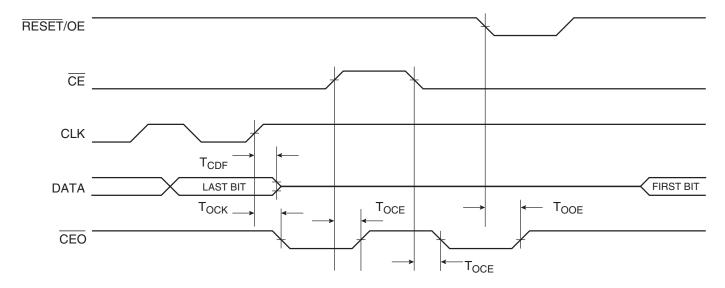
Operating Temperature40°C to +8	5°C
Storage Temperature65 °C to +15	50°C
Voltage on Any Pin with Respect to Ground0.1V to V _{CC} +0).5V
Supply Voltage (V _{CC})0.5V to +4	1.0V
Maximum Soldering Temp. (10 sec. @ 1/16 in.)26	60°C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)20	00V

*NOTICE:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.


Operating Conditions

			AT17F Series		
Symbol	Description		Min	Max	Units
.,	Commercial	Supply voltage relative to GND -0°C to +70°C	2.97	3.63	V
V _{cc}	Industrial	Supply voltage relative to GND -40°C to +85°C	2.97	3.63	V


DC Characteristics

			AT1	7F040	AT17	7F080	
Symbol	Description		Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	2.0	V _{CC}	V
V_{IL}	Low-level Input Voltage		0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	Come ma a valial	2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	la di atai l	2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode			20		20	mA
IL	Input or Output Leakage Current (V _{IN} = V _{CC} or GND)		-10	10	-10	10	μA
	Cumply Current Standby Made	Commercial		1		1	mA
I _{CCS}	Supply Current, Standby Mode	Industrial		1		1	mA

AC Characteristics

AC Characteristics when Cascading

AC Characteristics

			AT17	7F040	AT17F080		
Symbol	Description		Min	Max	Min	Max	Units
- (2)	OF to Data Dalay	Commercial		50		50	ns
T _{OE} ⁽²⁾	OE to Data Delay	Industrial ⁽¹⁾		55		55	ns
- (2)	<u> </u>	Commercial		60		55	ns
T _{CE} ⁽²⁾	CE to Data Delay	Industrial ⁽¹⁾		60		60	ns
T (2)	OLK to Data Dalar	Commercial		30	3	30	ns
T _{CAC} ⁽²⁾	CLK to Data Delay	Industrial ⁽¹⁾		30		30	ns
-	Date Hald from OF OF an OLK	Commercial	0		0		ns
T _{OH}	Data Hold from \overline{CE} , OE, or CLK	Industrial ⁽¹⁾	0		0		ns
- (3)	OF an OF to Date Floor Date:	Commercial		15		15	ns
$T_{DF}^{(3)}$	CE or OE to Data Float Delay	Industrial ⁽¹⁾		15		15	ns
_	OLIKI T	Commercial	15		15		ns
T_LC	CLK Low Time	Industrial ⁽¹⁾	15		15		ns
_	CLK High Time	Commercial	15		15		ns
T _{HC}		Industrial ⁽¹⁾	15		15		ns
_	CE Setup Time to CLK	Commercial	35		20		ns
T _{SCE}	(to guarantee proper counting)	Industrial ⁽¹⁾	40		25		ns
_	CE Hold Time from CLK	Commercial	0		0		ns
T _{HCE}	(to guarantee proper counting)	Industrial ⁽¹⁾	0		0		ns
-	Reset/OE Low Time	Commercial	20		20		ns
T _{HOE}	(guarantees counter is reset)	Industrial ⁽¹⁾	20		20		ns
F	Maximum Input Clock Frequency	Commercial		10		10	MHz
F_{MAX}	SEREN = 0	Industrial ⁽¹⁾		10		10	MHz
_	Maximum Input Clock Frequency	Commercial		33		33	MHz
F _{MAX}	SEREN = 1	Industrial ⁽¹⁾		33		33	MHz
т	Write Cycle Time ⁽⁴⁾	Commercial		30		30	μs
T_{WR}	write Cycle Time.	Industrial ⁽¹⁾		30		30	μs
т	Franc Cycle Time(4)	Commercial		30		10	μs
T _{EC}	Erase Cycle Time ⁽⁴⁾	Industrial ⁽¹⁾		30		10	μs

- Notes: 1. Preliminary specifications for military operating range only.
 - 2. AC test lead = 50 pF.
 - 3. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.
 - 4. See the AT17F Programming Specification for procedural information.

AC Characteristics When Cascading

			AT17F040		AT17F080		
Symbol	Description		Min	Max	Min	Max	Units
T _{CDF} ⁽³⁾	CLK to Data Float Delay	Commercial		60		50	ns
CDF`	CLN to Data Float Delay	Industrial		60		50	ns
- (2)	(2)	Commercial		55		50	ns
T _{OCK} ⁽²⁾	CLK to CEO Delay	Industrial		60		55	ns
T (2)	CE to CEO Delay	Commercial		55		35	ns
T _{OCE} ⁽²⁾	CE to CEO Delay	Industrial		60		40	ns
T (2)	DECET/OF to CEO Dalay	Commercial		40		35	ns
T _{OOE} ⁽²⁾ RESET/OE to CEC	RESET/OE to CEO Delay	Industrial		45		35	ns
_		Commercial		33		33	MHz
F _{MAX}	Maximum Input Clock Frequency	Industrial		33		33	MHz

Notes: 1. AC test lead = 50 pF.

^{2.} Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

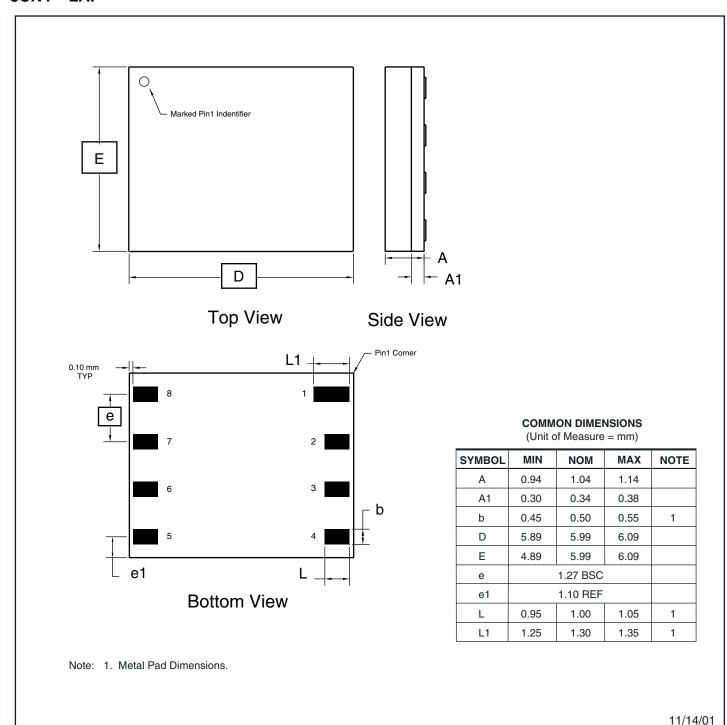
Thermal Resistance Coefficients

Package	э Туре		AT17F040	AT17F080
00114	Leadless Away Dockers (LAD)	θ _{JC} [°C/W]		-
8CN4	Leadless Array Package (LAP)	θ _{JA} [°C/W] ⁽¹⁾		_
20J	DI 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	θ _{JC} [°C/W]		_
	Plastic Leaded Chip Carrier (PLCC)	θ _{JA} [°C/W] ⁽¹⁾		_
	Thin Plastic Quad Flat Package (TQFP)	θ _{JC} [°C/W]	-	17
44A		θ _{JA} [°C/W] ⁽¹⁾	-	62
44J	Disatis London Chia Coming (DLCC)	θ _{JC} [°C/W]	-	15
	Plastic Leaded Chip Carrier (PLCC)	θ _{JA} [°C/W] ⁽¹⁾	-	50

Note: 1. Airflow = 0 ft/min.

Ordering Information

Memory Size	Ordering Code	Package	Operation Range
4-Mbit	AT17F040-30CC AT17F040-30JC AT17F040-30VJC	8CN4 - 8 LAP 20J - 20 PLCC 20J - 20 PLCC	Commercial (0°C to 70°C)
	AT17F040-30CI AT17F040-30JI AT17F040-30VJI	8CN4 - 8 LAP 20J - 20 PLCC 20J - 20 PLCC	Industrial (-40°C to 85°C)
8.Mhit	AT17F080-30CC AT17F080-30JC AT17F080-30TQC AT17F080-30BJC	8CN4 - 8 LAP 20J - 20 PLCC 44A - 44 TQFP 44J - 44 PLCC	Commercial (0°C to 70°C)
8-Mbit	AT17F080-30CI AT17F080-30JI AT17F080-30TQI AT17F080-30BJI	8CN4 - 8 LAP 20J - 20 PLCC 44A - 44 TQFP 44J - 44 PLCC	Industrial (-40°C to 85°C)


	Package Type					
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages					
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)					
44A	44-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)					
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)					

Packaging Information

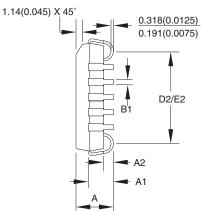
8CN4 - LAP

8CN4, 8-lead (6 x 6 x 1.04 mm Body), Lead Pitch 1.27 mm, Leadless Array Package (LAP)

2325 Orchard Parkway

San Jose, CA 95131


REV.


Α

DRAWING NO.

8CN4

20J - PLCC

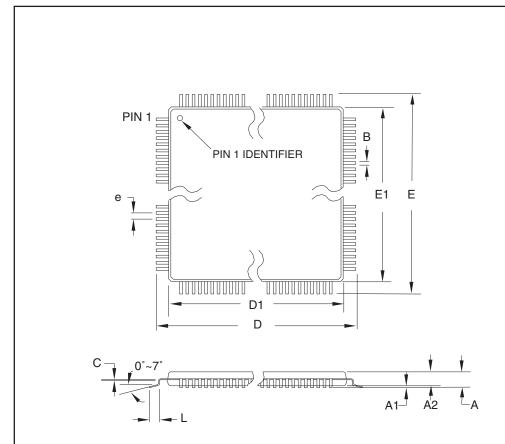
COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	4.191	-	4.572	
A1	2.286	_	3.048	
A2	0.508	-	_	
D	9.779		10.033	
D1	8.890	_	9.042	Note 2
Е	9.779	_	10.033	
E1	8.890	_	9.042	Note 2
D2/E2	7.366	_	8.382	
В	0.660	-	0.813	
B1	0.330	_	0.533	
е				

Notes:

- 1. This package conforms to JEDEC reference MS-018, Variation AA.
- Dimensions D1 and E1 do not include mold protrusion.
 Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.


10/04/01

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	20J, 20-lead, Plastic J-leaded Chip Carrier (PLCC)	20J	В

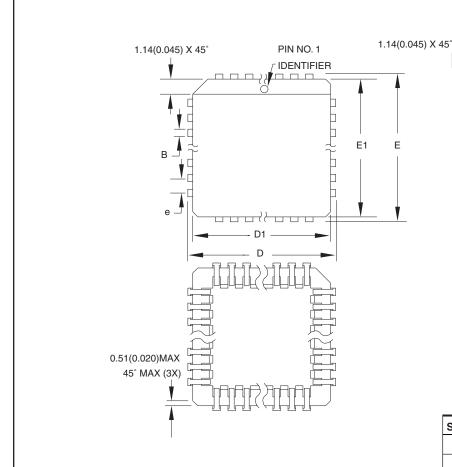
44A - TQFP

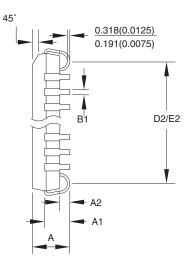
COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	11.75	12.00	12.25	
D1	9.90	10.00	10.10	Note 2
E	11.75	12.00	12.25	
E1	9.90	10.00	10.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е		0.80 TYP		

10/5/2001


Notes:


- 1. This package conforms to JEDEC reference MS-026, Variation ACB.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

TITLE
44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
44A	В

44J - PLCC

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	4.191	_	4.572	
A1	2.286	_	3.048	
A2	0.508	_	_	
D	17.399	-	17.653	
D1	16.510	_	16.662	Note 2
Е	17.399	_	17.653	
E1	16.510	_	16.662	Note 2
D2/E2	14.986	_	16.002	
В	0.660	_	0.813	
B1	0.330	_	0.533	
е	1.270 TYP			

Notes:

- 1. This package conforms to JEDEC reference MS-018, Variation AC.
- Dimensions D1 and E1 do not include mold protrusion.
 Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

10/04/01

2325 Orchard Parkway San Jose, CA 95131 **TITLE 44J**, 44-lead, Plastic J-leaded Chip Carrier (PLCC)

DRAWING NO. REV.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Iapan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

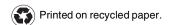
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123


38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] and combinations thereof, are the registered trademarks of Atmel Corporation or its subsidiaries. FLEX[™] is the trademarks of Altera Corporation. ORCA[™] is the trademark of Lucent Technologies, Inc. SPARTAN[®] and Virtex[®] are the registered trademarks, and XC3000[™], XC4000[™] and XC5200[™] are the trademarks of Xilinx, Inc. APEX[™] is the trademark of MIPS Technologies. Other terms and product names may be the trademarks of others.

