imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Single 2.7V 3.6V Supply
- Serial Peripheral Interface (SPI) Compatible
 - Supports SPI Modes 0 and 3
 - Supports RapidS™ Operation
 - Supports Dual-Input Program and Dual-Output Read
- Very High Operating Frequencies
 - 100MHz for RapidS
 - 75MHz for SPI
 - Clock-to-Output (t_v) of 5ns Maximum
- Flexible, Optimized Erase Architecture for Code + Data Storage Applications
 - Uniform 4-Kbyte Block Erase
 - Uniform 32-Kbyte Block Erase
 - Uniform 64-Kbyte Block Erase
 - Full Chip Erase
- Individual Sector Protection with Global Protect/Unprotect Feature
 - 128 Sectors of 64-Kbytes Each
- Hardware Controlled Locking of Protected Sectors via WP Pin
- Sector Lockdown
 - Make Any Combination of 64-Kbyte Sectors Permanently Read-Only
- 128-Byte Programmable OTP Security Register
- Flexible Programming
 - Byte/Page Program (1- to 256-Bytes)
- Fast Program and Erase Times
 - 1.0ms Typical Page Program (256-Bytes) Time
 - 50ms Typical 4-Kbyte Block Erase Time
 - 250ms Typical 32-Kbyte Block Erase Time
 - 400ms Typical 64-Kbyte Block Erase Time
- Program and Erase Suspend/Resume
- Automatic Checking and Reporting of Erase/Program Failures
- Software Controlled Reset
- JEDEC Standard Manufacturer and Device ID Read Methodology
- Low Power Dissipation
 - 5mA Active Read Current (Typical at 20MHz)
 - 5µA Deep Power-Down Current (Typical)
- Endurance: 100,000 Program/Erase Cycles
- Data Retention: 20 Years
- Complies with Full Industrial Temperature Range
- Industry Standard Green (Pb/Halide-free/RoHS Compliant) Package Options
 - 16-Lead SOIC (300-mil wide)
 - 8-Contact Very Thin DFN (6 x 8mm)

64-Mbit, 2.7V Minimum Serial Peripheral Interface Serial Flash Memory

AT25DF641

3680F-DFLASH-4/10

Description

The AT25DF641 is a serial interface Flash memory device designed for use in a wide variety of high-volume consumer based applications in which program code is shadowed from Flash memory into embedded or external RAM for execution. The flexible erase architecture of the AT25DF641, with its erase granularity as small as 4-Kbytes, makes it ideal for data storage as well, eliminating the need for additional data storage EEPROM devices.

The physical sectoring and the erase block sizes of the AT25DF641 have been optimized to meet the needs of today's code and data storage applications. By optimizing the size of the physical sectors and erase blocks, the memory space can be used much more efficiently. Because certain code modules and data storage segments must reside by themselves in their own protected sectors, the wasted and unused memory space that occurs with large sectored and large block erase Flash memory devices can be greatly reduced. This increased memory space efficiency allows additional code routines and data storage segments to be added while still maintaining the same overall device density.

The AT25DF641 also offers a sophisticated method for protecting individual sectors against erroneous or malicious program and erase operations. By providing the ability to individually protect and unprotect sectors, a system can unprotect a specific sector to modify its contents while keeping the remaining sectors of the memory array securely protected. This is useful in applications where program code is patched or updated on a subroutine or module basis or in applications where data storage segments need to be modified without running the risk of errant modifications to the program code segments. In addition to individual sector protection capabilities, the AT25DF641 incorporates Global Protect and Global Unprotect features that allow the entire memory array to be either protected or unprotected all at once. This reduces overhead during the manufacturing process since sectors do not have to be unprotected one-by-one prior to initial programming.

To take code and data protection to the next level, the AT25DF641 incorporates a sector lockdown mechanism that allows any combination of individual 64-Kbyte sectors to be locked down and become permanently read-only. This addresses the need of certain secure applications that require portions of the Flash memory array to be permanently protected against malicious attempts at altering program code, data modules, security information, or encryption/decryption algorithms, keys, and routines. The device also contains a specialized OTP (One-Time Programmable) Security Register that can be used for purposes such as unique device serialization, system-level Electronic Serial Number (ESN) storage, locked key storage, etc.

Specifically designed for use in 3-volt systems, the AT25DF641 supports read, program, and erase operations with a supply voltage range of 2.7V to 3.6V. No separate voltage is required for programming and erasing.

1. Pin Descriptions and Pinouts

Symbol	Name and Function	Asserted State	Туре
CS	CHIP SELECT: Asserting the \overline{CS} pin selects the device. When the \overline{CS} pin is deasserted, the device will be deselected and normally be placed in standby mode (not Deep Power-Down mode), and the SO pin will be in a high-impedance state. When the device is deselected, data will not be accepted on the SI pin. A high-to-low transition on the \overline{CS} pin is required to start an operation, and a low-to-high transition is required to end an operation. When ending an internally self-timed operation such as a program or erase cycle, the device will not enter the standby mode until the completion of the operation.	Low	Input
SCK	SERIAL CLOCK: This pin is used to provide a clock to the device and is used to control the flow of data to and from the device. Command, address, and input data present on the SI pin is always latched in on the rising edge of SCK, while output data on the SO pin is always clocked out on the falling edge of SCK.	_	Input
SI (SIO)	SERIAL INPUT (SERIAL INPUT/OUTPUT): The SI pin is used to shift data into the device. The SI pin is used for all data input including command and address sequences. Data on the SI pin is always latched in on the rising edge of SCK. With the Dual-Output Read Array command, the SI pin becomes an output pin (SIO) to allow two bits of data (on the SO and SIO pins) to be clocked out on every falling edge of SCK. To maintain consistency with SPI nomenclature, the SIO pin will be referenced as SI throughout the document with exception to sections dealing with the Dual-Output Read Array command in which it will be referenced as SIO. Data present on the SI pin will be ignored whenever the device is deselected ($\overline{^{CS}}$ is deasserted).	_	Input/Output
SO (SOI)	 SERIAL OUTPUT (SERIAL OUTPUT/INPUT): The SO pin is used to shift data out from the device. Data on the SO pin is always clocked out on the falling edge of SCK. With the Dual-Input Byte/Page Program command, the SO pin becomes an input pin (SOI) to allow two bits of data (on the SOI and SI pins) to be clocked in on every rising edge of SCK. To maintain consistency with SPI nomenclature, the SOI pin will be referenced as SO throughout the document with exception to sections dealing with the Dual-Input Byte/Page Program command in which it will be referenced as SOI. The SO pin will be in a high-impedance state whenever the device is deselected (CS is deasserted). 	_	Output/Input
WP	WRITE PROTECT: The \overline{WP} pin controls the hardware locking feature of the device. Please refer to "Protection Commands and Features" on page 21 for more details on protection features and the WP pin. The \overline{WP} pin is internally pulled-high and may be left floating if hardware controlled protection will not be used. However, it is recommended that the \overline{WP} pin also be externally connected to V _{CC} whenever possible.	Low	Input

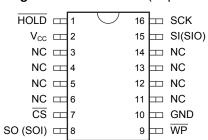

Symbol	Name and Function	Asserted State	Туре
	HOLD: The HOLD pin is used to temporarily pause serial communication without		
HOLD	deselecting or resetting the device. While the HOLD pin is asserted, transitions on the SCK pin and data on the SI pin will be ignored, and the SO pin will be in a high-impedance state.		
	The \overline{CS} pin must be asserted, and the SCK pin must be in the low state in order for a Hold condition to start. A Hold condition pauses serial communication only and does not have an effect on internally self-timed operations such as a program or erase cycle. Please refer to "Hold" on page 45 for additional details on the Hold operation.	Low	Input
	The HOLD pin is internally pulled-high and may be left floating if the Hold function will not		
	be used. However, it is recommended that the $\overline{\text{HOLD}}$ pin also be externally connected to V_{CC} whenever possible.		
V _{cc}	DEVICE POWER SUPPLY: The V_{cc} pin is used to supply the source voltage to the device. Operations at invalid V_{cc} voltages may produce spurious results and should not be	-	Power
	attempted.		
GND	GROUND: The ground reference for the power supply. GND should be connected to the system ground.	-	Power

Table 1-1.	Pin Descriptions	(Continued)

Figure 1-1. 8-VDFN (Top View)

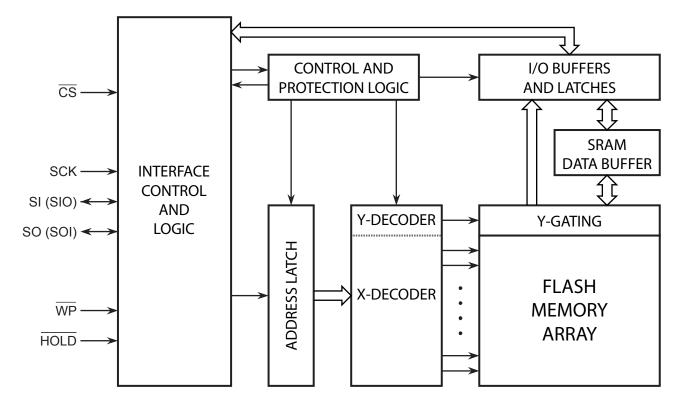
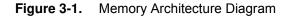

$\overline{\text{CS}}$	1	8	V _{cc}
SO (SOI)	2	7	HOLD
WP	3	6	SCK
GND	4	5	SI (SIO)

Figure 1-2. 16-SOIC (Top View)

2. Block Diagram

Figure 2-1. Block Diagram



3. Memory Array

To provide the greatest flexibility, the memory array of the AT25DF641 can be erased in four levels of granularity including a full chip erase. In addition, the array has been divided into physical sectors of uniform size, of which each sector can be individually protected from program and erase operations. The size of the physical sectors is optimized for both code and data storage applications, allowing both code and data segments to reside in their own isolated regions. The Memory Architecture Diagram illustrates the breakdown of each erase level as well as the breakdown of each physical sector.

Internal Sectoring for Protection, Lock Frase (Bib Command) Back Attales (Bib Command) Back Attales (Bib Command) Page Address (Bib Command) Page Address (Bib Command) 64KB (Sector 127) 44KB 7FEFFh-7FE00h 44KB 7FEFFh-7FE00h 44KB 7FEFFh-7FE00h 226 bibs 7FEFFh-7FFE00h 226 bibs 7FEFFh-7FFE00h 226 bibs 7FFFFh-7FFE00h 226 bibs<		Block Erase Detail			Page Program Detail		
64KB (Sector 127) 64KB 7EFEFFh-7E000h 4KB 7EFEFFh-7FE000h 7EGFFh-7F000h 4KB 7EFEFFh-7FE000h 265 Bytes 7FFEFh-7FFE000h 265 Bytes 7FFEFh-7FFE000h 265 Bytes 64KB (Sector 127) 64KB 64KB 7EFFFh-7F800h 4KB 7EFFFh-7F800h 265 Bytes 7FFFh-7FF800h 265 Bytes 7FF9Fh-7FF800h 265 Bytes 7FF9Fh-7FF80h 7FF9Fh-7FF800h 265 Bytes 7FF9Fh-7FF80h 7FF9Fh-7FF800h 265 Bytes 7FF9Fh-7FF80h 7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF80h 7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF9Fh-7FF90h 265 Bytes 7FF9Fh-7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF9Fh-7FF90h 265 Bytes 7FF9Fh-7FF9Fh-7FF80h 265 Bytes 7FF9Fh-7FF9Fh-7FF90h 265 Bytes 7FF9Fh-7FF9Fh-7FF90h 265 Bytes 7FF9Fh-7FF9Fh-7FF90h 265 Bytes 7FF9Fh-7FF9Fh-7FF9Fh-7FF90h 265 Bytes	Protection, Lockdown,	Block Erase	Block Erase	Block Erase		Page Program	0
64KB (Sector 127) 64KB 7E/DFFh-7F0000h 4KB 7E/DFFh-7F000h 7F0FFh-7F8000h 4KB 7E/DFFh-7F8000h 256 Butes 7FF0Fh-7FF800h 256 Butes 7FF0FFh-7FF800h 256 Butes 7FF0Fh-7FF800h 256 Butes 7FF2Fh-7FF800h 256 Butes 7F2FFh-7FF800h 256 Butes 7F2FFh-7FF800h 256 Butes 7F2FFh-7FFF90H 256 Butes 7F2FFh-7FF80H 256 Butes 7F2FFh-7FF80H 256 Butes 7F2FFh-7FFF90H 256 Butes 7F2FFh-7FFF90H 256 Butes 7F2FFh-7FF80H 256 Butes 7F2FFh-7FF80H 256 Butes 7F2FFh-7FF80H 256 Butes 7F2FFh-7FF80H 256 Butes 7F2FFh-7FF80H 256 Butes 7F2FFh-7FFFFFh-7FFFFH 256 Butes 7F2FFh-7FFFFH 256 Butes							
64KB (Sector 127) 64KB 32KB 44S 7FCFFFh-7FC000h 7FBFFh-7F800h 44S 256 bytes 7FFFFh-7F800h 256 bytes 7FFFFh-7F800h 44S 276 bytes 7FFFFh-7F800h 256 bytes 7FFFFh-0170h 256 bytes 7FFFFh-01700h 256 bytes 7FFFFh-0170h 256 bytes 7FFFFh-0170h							
64KB 64KB 756FFFh-7FR00h 256 Bytes 77F6FFh-7FR00h 64KB 64KB 764FFh-7F800h 256 Bytes 77F6FFh-7F800h 256 Bytes 77F6FFh-7F800h 64KB 64KB 450 7769FFh-7F800h 256 Bytes 77F6FFh-7F90Fh-7F900h 256 Bytes 77F6FFh-7F90Fh-7F800h 256 Bytes 77F6FFh-7F90Ph-7F800h 256 Bytes 77F6FFh-7F90Ph-7F800h 256 Bytes 77F6FFh-7F80Ph-7F800h 256 Bytes 77F6FFh-7FF90Ph-7F800h 256 Bytes 77F6FFh-7FF90Ph-7F7800h 256 Bytes 77F6FFh-7FF90Ph-7F7800h 256 Bytes 77F6FFh-7FF90Ph-7F7800h 256 Bytes 77F6FFh-7FF00h 256 Bytes 77F6FFh-7FF00h 256 Bytes 77F6FFh-7FE00h 256 Bytes 0017FFh-7FFFh-7FE00h							
64KB (Sector 127) 64KB 764KB 776 FFh - 7F 2000h 769 FFh - 7F 2000h 776 FFh - 7F 2000h 776 FFh - 7F 2000h 776 FFh - 7F 2000h 776 FFh - 7F 2000h 266 Dydes 776 FFh - 7F 2700h 266 Dydes 776 FFh - 7F 2700h 266 Dydes 32KB 32KB 32KB 769 FFh - 7F 2000h 44B 776 FFh - 7F 2000h 769 FFh - 7F 2000h 266 Dydes 776 FFh - 7F 7500h 266 Dydes 776 FFh - 7F 760h 266 Dydes 776 FFh - 7F 7500h 266 Dydes 776 FFh - 7F 7500h 266 Dydes 776 FFh - 7F 760h 266 Dydes 776 FFh - 7F 760h 266 Dydes 776 FFh - 7F 70h 266 Dydes 776 FFh - 7F 70h 776 FFh - 7F 760h 266 Dydes 776 FFh - 7F 70h 266 Dydes 776 FFh - 7F 70h 776 FFh - 7F 76 Dyh 776 FFh - 7F 20h 776 FFh			32KB				
64KB (Sector 127) 64KB 4KB 7F9FFh - 7F900h 7F9FFh - 7F900h 7F9FFh - 7F900h 7F9FFh - 7F900h 7F9FFh - 7F900h 226 Bvts 7F9FFh - 7F900h 7F97FFh - 7F900h 226 Bvts 7F9FFh - 7F900h 7F97FFh - 7F900h 226 Bvts 7F97FFh - 7F900h 226 Bvts 7							
(Sector 127) 64KB 4KB TF7FFFh - 7F 000h 228 BMss TF7FFh - 7F F00h 32KB 4KB TF6FFFh - 7F 000h 228 BMss TF6FFFh - 7F 500h 228 BMss TF6FFFh - 7F 500h 32KB 4KB TF6FFFh - 7F 000h 228 BMss TF6FFFh - 7F 500h 228 BMss TF67FFh - 7F 500h 32KB 4KB TF2FFFh - 7F 200h 228 BMss TF72FFh - 7F 500h 228 BMss TF72FFh - 7F 500h 4KB TF2FFh - 7F 100h 226 BMss TF72FFh - 7F 500h 226 BMss TF72FFh - 7F 7F 00h 4KB TE9FFh - 7F 100h 226 BMss TF72FFh - 7F 500h 226 BMss TF72FFh - 7F 500h 4KB TE9FFh - 7F 100h 226 BMss TF72FFh - 7F 100h 226 BMss TF72FFh - 7F 100h 4KB TE9FFh - 7E 000h 226 BMss TF12FFh - 7F 100h 226 BMss TF12FFh - 7F 100h 32KB 4KB TE9FFh - 7E 000h 226 BMss TF12FFh - 7F 100h 226 BMss TF12FFh - 7F 100h 32KB 4KB TE9FFh - 7E 000h 226 BMss 0117FFh - 0150h 117FFh - 7F 100h 117FF							
(sector 12/) 448 7F7FFh-7F700h 228 Bdes 7F7F7Fh-7F700h 32KB 4K8 7F6FFh-7F600h 7F6FFh-7F500h 228 Ddes 7F7F7Fh-7F7500h 32KB 4K8 7F6FFh-7F500h 228 Ddes 7F7F7Fh-7F7500h 228 Ddes 7F7F7Fh-7F7500h 32KB 4K8 7F3FFh-7F500h 258 Ddes 7F7F7Fh-7F7500h 258 Ddes 7F7F7Fh-7F7F30h 4K8 7F3FFh-7F7b-7F700h 4K8 7F2FFFh-7F500h 258 Ddes 7F7F7Fh-7F7F10h 4K8 7F2FFFh-7FF00h 258 Ddes 7F7F7Fh-7FF10h 7F7F7Fh-7FF10h 4K8 7F2FFFh-7FE00h 258 Ddes 7F2FFFh-7FE00h 258 Ddes 7F2FFFh-7FE00h 32KB 4K8 7E2FFFh-7E000h 258 Ddes 7F2FFFh-7FE00h 258 Ddes 7F2FFFh-7FE00h 32KB 4K8 7E3FFFh-7E300h 258 Ddes 7F2FFFh-7FE00h 258 Ddes 7F2FFFh-7FE00h 32KB 4K8 7E3FFFh-7E300h 258 Ddes 7F2FFFh-7FE300h 258 Ddes 7F2FFFh-7FE30h 32KB 4K8 7E3FFFh-7FE300h 258 Ddes	64KB	0.41/2					
64KB (Sector 126) 64KB 64KB (Sector 0) 64KB 64KB (Sector 0) 64KB 64KB 64KB 64KB 64KB 64KB 64KB 64KB 64KB 64KB 64KB 64KB 754FFh-75000h 64KB 754FFh-75400h 7555FFh-75000h 256 Bytes 755FFh-75000h 256 Bytes 755FFh-75500h 256 Bytes <t< td=""><td>(Sector 127)</td><td>64KB</td><td></td><td>4KB</td><td>7F7FFFh-7F7000h</td><td>256 Bytes</td><td>7FF7FFh-7FF700h</td></t<>	(Sector 127)	64KB		4KB	7F7FFFh-7F7000h	256 Bytes	7FF7FFh-7FF700h
64KB (Sector 126) 64KB 32KB 4K3 7F4FFFh - 7F3000h 7F2FFh - 7F3000h 4K3 7F4FFFh - 7F300h 256 Bytes 7F4FFh - 7F7300h 256 Bytes 64KB (Sector 126) 32KB 4K3 7F0FFh - 7F000h 4K3 7F0FFh - 7F7000h 256 Bytes 7F0FFh - 7F7000h 256 Bytes 64KB (Sector 126) 64KB 32KB 4K3 7E0FFFh - 7E000h 7EFFFh - 7E000h 4K3 7E0FFFh - 7E000h 7EFFFh - 7E000h 266 Bytes 7F2FFh - 7F200h 7F2FFh - 7F200h 7F2FFh - 7F200h 256 Bytes 7F2FFh - 7F200h 7F2FFh - 7F200h 7F2FFh - 7F200h 64KB 64KB 4K3 7E0FFFh - 7E000h 4K3 7E0FFFh - 7E000h 266 Bytes 7F2FFh - 7F200h 7F2FFh - 7F200h 64KB 64KB 4K3 7E0FFFh - 7E000h 4K3 7E0FFFh - 7E000h 7E1FFh - 7E000h 256 Bytes 7F2FFh - 7F200h 7F2FFh - 7F200h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>, , ,</td><td></td><td></td><td>4KB</td><td></td><td>256 Bytes</td><td>7FF6FFh-7FF600h</td></td<>	, , ,			4KB		256 Bytes	7FF6FFh-7FF600h
64KB (Sector 126) 64KB 64KB 763FFh - 778000h (4KB) 773FFh - 778000h (4KB) 773FFh - 777800h (256 Bytes) 7753FFh - 777820h (256 Bytes) 64KB (Sector 126) 32KB 4KB 770FFFh - 778000h (4KB) 77000h (256 Bytes) 7769FFh - 776200h (256 Bytes) 64KB (Sector 126) 32KB 4KB 770FFFh - 776000h (4KB) 256 Bytes) 770FFFh - 776200h (256 Bytes) 64KB 4KB 770FFFh - 726000h (4KB) 256 Bytes) 770FFFh - 776200h (256 Bytes) 770FFFh - 776200h (256 Bytes) 64KB 4KB 770FFFh - 72600h (4KB) 726 FFh - 776200h (256 Bytes) 770FFFh - 776200h (256 Bytes) 770FFFh - 776200h (256 Bytes) 64KB 4KB 770FFFh - 72600h (4KB) 770FFFh - 776200h (256 Bytes) 770FFFh - 776200h (256 Bytes) 32KB 4KB 770FFFh - 72600h (4KB) 770FFFh - 776200h (256 Bytes) 017FFh - 001700h (256 Bytes) 32KB 4KB 760FFFh - 72600h (256 Bytes) 0017FFh - 001700h (256 Bytes) 0017FFh - 001700h (256 Bytes) 32KB 4KB 700FFFh - 72600h (256 Bytes) 0018FFh - 00130h (000FFFh - 00070h) (256 Bytes) 0018FFh - 00130h (000FFFh - 00070h) (256 Bytes) 0018FFh - 00130h (0000FFFh - 00000h) (4KB		256 Bytes	
64KB (Sector 126) 64KB 743 FFh - 778000h (4KB) 753 FFh - 778000h (256 Bytes) 775 FFh - 77520h (256 Bytes) 775 FFh - 77520h (256 Bytes) 775 FFh - 77520h (256 Bytes) 32KB 4KB (Sector 126) 726 FFh - 775000h (4KB) 775 FFh - 77520h (256 Bytes) 0017FFh - 00170h (256 Bytes) 0017FFh - 00130h (256 Bytes) 00017FFh - 00130h (256 Bytes) 000FFFh - 000			20140	4KB	7F4FFFh-7F4000h	256 Bytes	7FF4FFh-7FF400h
64KB (Sector 126) 64KB 64KB 74 FFF h-7FE 100h 4KB 77 FFF h-7FE 100h 7F0 FF h-7E000h 4KB 256 Bytes 7F0 FF h-7FE 00h 7FE FF h-7FE 00h 7FE FF h-7FE 00h 266 Bytes 7FF 0FF h-7FE 00h 7FE FF h-7FE 00h 7FE FF h-7FE 00h 266 Bytes 64KB (Sector 126) 64KB 4KB 7E0 FF h-7E 000h 4KB 7E0 FF h-7E 000h 7E0 FF h-7E 000h 4KB 7E0 FF h-7E 000h 266 Bytes 7FE 0F Fh-7FE 00h 7FE 0F Fh-7FE 00h 266 Bytes 010 FF Fh-00170h 001 6F Fh-00170h 266 Bytes 001 6F 6F Fh-00170h 266 Bytes 000 6F Fh-00000h 266 Bytes 000 6F Fh-00000h 266 Bytes 000 6F Fh-00000h 266 Bytes			JZKB	4KB	7F3FFFh-7F3000h	256 Bytes	7FF3FFh-7FF300h
64KB (Sector 126) 64KB 64KB 760 FFF h-7FE000h 7EFFFh-7EE000h 4KB 256 Bytes 7FE FFh-7FE000h 266 Bytes 7FE FFh-7FF000h 7FE FFh-7FE000h 7FE FFh-7FE000h 266 Bytes 7FE FFh-7FFF00h 7FE FFh-7FE000h 266 Bytes 64KB (Sector 126) 64KB 64KB 7E87FFh-7E000h 4KB 7E87FFh-7FE000h 7E87FFh-7E8000h 7E87FFh-7E8000h 7E87FFh-7E8000h 7E87FFh-7E8000h 7E87FFh-7E8000h 7E87FFh-7E8000h 7E87FFh-7FE800h 7E87FFh-7FE800h 7E87FFh-7FE800h 7E87FFh-7FE800h 7E87FFh-7FE800h 7E87FFh-7FE800h 7E87FFh-7FE800h 7E87FFh-7FE800h 7E87FFh-7E800h 256 Bytes 0015FFh-00160h 256 Bytes 0015FFh-00160h 256 Bytes 0002FFh-00120h 256 Bytes 0002FFh-00120h 256 Bytes 0002FFh-00100h 256 Bytes 0002FFh-00100h 256 Bytes 0002FFh-00000h 256 Bytes 0002FFh-00000h 256 Bytes 0002FFh-00000h 256 Bytes 0002FFh-00000h 256 Bytes 0002FFh-00000h 256 Bytes 0002FFh-00000h 256 Bytes 0002FFh-00000h 256 Bytes 0003FFh-00080h 256				4KB	7F2FFFh-7F2000h	256 Bytes	7FF2FFh-7FF200h
64KB 4KB 7EFFFh-7EF000h 256 Bytes 7FEFFFh-7FE00h 32KB 4KB 7EDFFFh-7EE000h 256 Bytes 7FEFFFh-7FED00h 32KB 4KB 7EDFFFh-7EE000h 256 Bytes 7FEFFFh-7FED00h 4KB 7EBFFFh-7EE000h 256 Bytes 7FEFFFh-7FED00h 256 Bytes 64KB 4KB 7EBFFFh-7EE000h 256 Bytes 7FEFFFh-7FE000h 4KB 7EBFFFh-7EE000h 256 Bytes 7FEFFFh-7FE000h 7E9FFFh-7E000h 256 Bytes 7FE8FFh-7FE000h 256 Bytes 7FE8FFh-7FF0 7FE8FFh-7FE000h 256 Bytes 7FE8FFh-7FE000h 7E9FFFh-7E000h 256 Bytes 0017FFh-001700h 256 Bytes 32KB 4KB 7E4FFFh-7E000h 256 Bytes 0017FFh-001700h 32KB 4KB 7E4FFFh-7E1000h 256 Bytes 0017FFh-001700h 32KB 4KB 7E1FFh-7E1000h 256 Bytes 0014FFh-001400h 256 Bytes 0014FFh-00120h 256 Bytes 0014FFh-001400h 256 Bytes 0014FFh-00120h 256 Bytes 0014FFh				4KB	7F1FFFh-7F1000h	256 Bytes	7FF1FFh-7FF100h
64KB (Sector 126) 64KB 64KB 7EEFFh-7EE000h 4KB 7EEFFh-7EE000h 7EDFFh-7ED00h 7EDFFh-7ED00h 7EEFFh-7FEC00h 256 Bytes 7FEEFFh-7FEC00h 7FEDFFh-7FE00h 64KB (Sector 126) 64KB 64KB 7EBFFh-7EB00h 7EBFFh-7EB00h 256 Bytes 7FEEFFh-7FE00h 7FEDFFh-7FE00h 32KB 4KB 7EAFFFh-7EB00h 7EBFFFh-7EB00h 256 Bytes 7FEBFFh-7FE00h 7FEBFFh-7FE00h 32KB 4KB 7EFFFh-7E500h 7EFFFh-7E500h 256 Bytes 7FEBFFh-7FE00h 7FEBFFh-7FE00h 32KB 4KB 7EFFFh-7E500h 7EFFFh-7E500h 256 Bytes 017FFh-0170h 32KB 4KB 7EFFFh-7E200h 7E2FFFh-7E200h 256 Bytes 014FFh-0170h 32KB 4KB 7E2FFFh-7E200h 7E2FFFh-7E200h 256 Bytes 014FFh-00170h 32KB 4KB 7E2FFFh-7E200h 7E2FFFh-7E200h 256 Bytes 014FFh-00130h 32KB 4KB 00FFFh-0E000h 256 Bytes 0015FFh-00130h 32KB 4KB 00FFFh-00F00h 256 Bytes 0012FFh-00130h 32KB 4KB 00FFFh-00F00h 256 Bytes 000FFFh-00F00h 32KB 4KB				4KB	7F0FFFh-7F0000h	256 Bytes	7FF0FFh-7FF000h
64KB (Sector 126) 64KB 64KB 7EDFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 7EBFFh-7EB00h 256 Bytes 7FEBFFh-7EB00h 256 Bytes 0017FFh-01170h 256 Bytes 0017FFh-00170h 256 Bytes 0018FFh-00150h 256 Bytes 0018FFh-00120h 256 Bytes 0018FFh-00120h 256 Bytes 0018FFh-00120h 256 Bytes 0018FFh-00120h 256 Bytes 0018FFh-00120h 256 Bytes 0018FFh-00120h 256 Bytes 0018FFh-00120h 256 Bytes 0018FFh-00120h 256 Bytes 0008FFh-00120h 256 Bytes 0008FFh-00120h 256 Bytes 0008FFh-00080h 256 Bytes 00008FFh-00080h 256 B				4KB	7EFFFFh-7EF000h	256 Bytes	7FEFFFh-7FEF00h
64KB (Sector 126) 64KB 32KB 4KB 4KB 4KB 7E CFFFh-7E000h 7E BFFh-7E800h 7E AFFh-7E800h 7E AFFh-7E800h 7E AFFh-7E800h 7E AFFh-7E800h 7E AFFh-7E800h 7E AFFh-7E800h 7E AFFh-7E800h 7E AFFh-7FE800h 7E AFFh-7FE800h 256 Bytes 0014FFh-001300h 0014FFh-001300h 0014FFh-001300h 0014FFh-001300h 256 Bytes 0004FFh-000500h 256 Bytes				4KB	7EEFFFh-7EE000h	256 Bytes	7FEEFFh-7FEE00h
64KB (Sector 126) 64KB 32KB 4KB 4KB 7EBFFFh-7EB000h 7EBFFFh-7E900h 7EBFFFh-7E900h 256 Bytes 256 Bytes 7FEBFFh-7FEA0h 7EBFFh-7FEA0h 64KB (Sector 126) 64KB 4KB 7EBFFFh-7E900h 7EBFFFh-7E900h 256 Bytes 7FEBFFh-7FEA0h 7EBFFFh-7E800h 32KB 4KB 7EBFFFh-7E900h 7EBFFFh-7E900h 256 Bytes 0017FFh-0170h 32KB 4KB 7EBFFFh-7E400h 7EBFFFh-7E400h 1 1 32KB 4KB 7EFFFh-7E400h 1 1 32KB 4KB 7EFFFh-7E400h 256 Bytes 0017FFh-00170h 32KB 4KB 7EFFFh-7E400h 256 Bytes 0018FFh-00160h 32KB 4KB 7EFFFh-7E1000h 256 Bytes 0018FFh-00170h 1 1 1 1 1 1 1 1				4KB	7EDFFFh-7ED000h	256 Bytes	7FEDFFh-7FED00h
64KB (Sector 126) 64KB 64KB 74KB 74KFFh-7E8000h 256 Bytes 7FE8FFh-7FE800h 64KB (Sector 126) 64KB 4KB 7E8FFFh-7E8000h 256 Bytes 7FE8FFh-7FE800h 32KB 4KB 7E8FFFh-7E8000h 7E8FFFh-7FE800h 256 Bytes 7FE8FFh-7FE800h 32KB 4KB 7E8FFFh-7E8000h 256 Bytes 0017FFh-001700h 4KB 7E8FFFh-7E8000h 256 Bytes 0017FFh-001700h 4KB 7E8FFFh-7E8000h 256 Bytes 0018FFh-01600h 4KB 7E8FFFh-7E8000h 256 Bytes 0018FFh-011300h 256 Bytes 0018FFh-01500h 256 Bytes 0018FFh-01300h 4KB 7E8FFFh-7E1000h 256 Bytes 0013FFh-01300h 256 Bytes 0013FFh-01300h 256 Bytes 0013FFh-01300h 256 Bytes 0013FFh-01500h 256 Bytes 0013FFh-001200h 32KB 4KB 00FFFh-00F000h 256 Bytes 000FFh-000E00h 00DFFFh-00B00h 256 Bytes 0000FFh-000B00h 256 Bytes 0000FFh-000B00h 64KB			32KB	4KB	7ECFFFh-7EC000h	256 Bytes	7FECFFh-7FEC00h
64KB (Sector 126) 64KB 7E9FFh-7E900h 4KB 7E9FFh-7E900h 7E7FFh-7E8000h 4KB 7E9FFh-7E900h 7E7FFh-7E8000h 4KB 7E9FFh-7E900h 7E6FFh-7E8000h 7E6FFh-7E8000h 7E9FFh-7F900h 256 Bytes 7F9Fh-7F900h 7F8FFh-7F800h 32KB 4KB 7E9FFh-7E900h 4KB 7E3FFh-7E3000h 7E3FFh-7E3000h 256 Bytes 0017FFh-01700h 32KB 4KB 7E3FFh-7E3000h 4KB 7E3FFh-7E3000h 256 Bytes 0017FFh-01700h 32KB 4KB 7E3FFh-7E3000h 256 Bytes 0017FFh-01700h 256 Bytes 0013FFh-001600h 1 <					7EBFFFh-7EB000h	256 Bytes	7FEBFFh-7FEB00h
64KB (Sector 126) 64KB 64KB 7E8FFh-7E800h 4KB 7E8FFh-7E800h 7E7FFh-7E7000h 7E7FFh-7E000h 7E6FFh-7E600h 7E6FFh-7E600h 7E6FFh-7E000h 7E8FFh-7FFh-7E800h 7E6FFh-7E5000h 7E6FFh-7E5000h 7FE8FFh-7FFh-7E800h 256 Bytes 0017FFh-001700h 026 Bytes 32KB 4KB 7E3FFh-7E000h 4KB 7E4FFFh-7E2000h 7E1FFh-7E2000h 256 Bytes 0017FFh-001600h 256 Bytes 0013FFh-001600h 1 1 1 1 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 1 1 1 1 1 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 1 1 1 1 1 1 256 Bytes 0014FFh-00100h 1 1 1 1 1 1 256 Bytes 0014FFh-00100h 256 Bytes 0014FFh-001300h 256 Bytes 00017FFh-00100h 256 Bytes 0000FFh-00000h 256 Bytes 0000FFh-00000h 256 Bytes 0000FFh-00000h 256 Bytes 0000FFh-000000h 64KB					7EAFFFh-7EA000h	256 Bytes	7FEAFFh-7FEA00h
(Sector 126) 64KB 4KB 7E7FFFh-7E3000h i: 32KB 4KB 7E3FFh-7E3000h 256 Bytes 0017FFh-001700h 32KB 4KB 7E3FFh-7E3000h 256 Bytes 0016FFh-001600h 4KB 7E3FFh-7E3000h 256 Bytes 0013FFh-001300h 4KB 7E3FFh-7E3000h 256 Bytes 0013FFh-001300h 4KB 7E0FFh-7E1000h 256 Bytes 0013FFh-001300h 4KB 7E0FFh-7E1000h 256 Bytes 0013FFh-001300h 32KB 4KB 00FFFh-00F00h 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-00100h 256 Bytes 0013FFh-00100h 0256 Bytes 0013FFh-00100h 32KB 4KB 00FFFh-00E00hh 256 Bytes 000FFFh-000E00h 00FFFh-000B00h 000FFFh-000B00h 64KB 64KB 00FFFh-00B00h 256 Bytes 0000FFFh-000B00h 000FFFh-000B00h 000FFFh							
(Sector 126) 4KB 7E7FFFh-7E7000h :: 32KB 4KB 7E3FFFh-7E5000h 256 Bytes 0017FFh -001700h 32KB 4KB 7E3FFFh-7E3000h 256 Bytes 0016FFh -001600h 4KB 7E3FFFh-7E3000h 256 Bytes 0016FFh -001600h 4KB 7E3FFFh-7E3000h 256 Bytes 0016FFh -001600h 4KB 7E3FFFh-7E3000h 256 Bytes 0014FFh -001400h 4KB 7E3FFFh-7E1000h 256 Bytes 0014FFh -001300h 4KB 7E3FFFh-7E1000h 256 Bytes 0013FFh -001300h 56 Bytes 0013FFh -00120h 256 Bytes 0014FFh -00120h 1 1 1 1 256 Bytes 0012FFh -00120h 256 Bytes 0010FFh -000F00h 256 Bytes 000FFFh -000F00h 256 Bytes 000FFFh -000F00h 32KB 4KB 00FFFFh -00E00h 256 Bytes 000FFFh -000F00h 256 Bytes 000FFFh -000F00h 64KB 32KB 4KB 00FFFFh -00F00h 256 Bytes 0000FFFh -000FFFh -000FFFh -000F00h 000FFFh -000FFFh -000FFFh -0		64KB			1	256 Bytes	7FE8FFh-7FE800h
64KB (Sector 0) 64KB 64KB 32KB 4KB 4KB 7E5FFFh-7E5000h 7E3FFFh-7E3000h 4KB 256 Bytes 7E3FFFh-7E3000h 256 Bytes 0017FFh-001700h 256 Bytes 1<	(Sector 126)	0.1.2				•	
32KB 4KB 4KB 4KB 7E3FFFh-7E3000h 7E3FFFh-7E3000h 7E3FFFh-7E3000h 7E3FFFh-7E3000h 7E3FFFh-7E1000h 7E3FFFh-7E1000h 7E3FFFh-7E1000h 7E3FFFh-7E1000h 7E36 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 256 Bytes 0013FFh-001300h 256 Bytes 0010FFh-001000h 256 Bytes 000FFh-00000h 256 Bytes 000FFh-00000h 256 Bytes 000FFh-00000h 256 Bytes 0000FFh-00000h 256 Bytes 0003FFh-00000h 256 Byt						:	
64KB (Sector 0) 64KB 64KB 64KB 64KB 64KB 7E3FFh - 001000h 256 Bytes 0016FFh - 001600h 0013FFh - 001500h 0013FFh - 001500h 0013FFh - 001300h 0013FFh - 001300h 0013FFh - 001300h 0013FFh - 001200h 0014FFh - 00000h 0256 Bytes 0000FFFh - 00000h 0256 Bytes 0000FFh - 000200h 0256 Bytes 0000FFh - 000300h 0256 Bytes 0000FFFh - 000300h 0256 Bytes <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>							-
64KB (Sector 0) 64KB 64KB 64KB 32KB 4KB 00FFFh - 00F000h 256 Bytes 0015FFh - 001300h 000FFFh - 001400h 0013FFh - 001300h 0014FFh - 001100h 0011FFh - 00100h 000FFFh - 001500h 000FFFh - 001500h 000FFFh - 001500h 000FFFh - 001500h 000FFFh - 001200h 000FFFh - 000100h 000FFFh - 000100h 000FFFh - 000100h 000FFFh - 000100h 000FFFh - 00000h 000FFFh - 000800h 0000FFFh - 000800h 0000FFFh - 000800h 0000F			32KB				
64KB (Sector 0) 64KB 64KB 64KB 7E1FFh - 7E1000h 4KB 256 Bytes 7E0FFFh - 7E0000h 0014FFh - 001300h 256 Bytes 0013FFh - 001300h 256 Bytes 64KB 64KB 64KB 00FFFFh - 00E000h 4KB 00FFFFh - 00E000h 00FFFFh - 00D000h 256 Bytes 000FFFh - 000F00h 256 Bytes 000FFFh - 000B00h 256 Bytes 000FFFh - 000B00h			OLINE				
4KB 7E0FFFh-7E0000h 256 Bytes 0013FFh-001300h :							
i i							1
64KB (Sector 0) 64KB 64KB 64KB 64KB 00FFFh - 00F00h 256 Bytes 000FFFh - 000F00h 256 Bytes 000FFFh - 000P00h 256 Bytes				4KB	/E0FFFh-/E0000h		
64KB (Sector 0) 64KB 64KB 64KB 64KB 64KB 00FFFh - 00800h 256 Bytes 000FFFh - 000200h 256 Bytes 0000FFh - 000300h 256 Bytes 0000FFh - 000400h 256 Bytes 0000FFh - 000300h 256 Bytes 00004FFh - 000300h <td>:</td> <td>:</td> <td>:</td> <td></td> <td></td> <td></td> <td></td>	:	:	:				
64KB (Sector 0) 64KB 64KB 64KB 64KB 00FFFh - 005F00h 256 Bytes 000FFFh - 000C00h 256 Bytes 000FFFh - 000D00h 256 Bytes 0000FFFh - 000B00h 256 Bytes 0000FFFh - 000B00h 256 Bytes 0000FFFh - 000B00h 256 Bytes 0000AFFh - 000B00h 256 Bytes 0000FFFh - 000B00h 256 Bytes 000FFFh - 000B00h 256 Bytes 000FFFh - 000B00h 256 Bytes 000FFFh - 000B00h 256 Bytes 0000FFFh - 000B00h 256 Bytes 000FFFh - 000B00h 256 Bytes 000FFFh - 000B00h 256 Bytes 000FFFh - 000B00h 256 Bytes 0000FFFh - 000B00h 256 Bytes 0000FFFh - 000B00h	: 1	:	:	:			1
64KB (Sector 0) 64KB 64KB 64KB 64KB 000FFFh - 00000h 256 Bytes 0000FFh - 00000h 256 Bytes 0003FFh - 000300h 256 Bytes 00003FFh - 000300h 256 Bytes 00000				41/12	005555k 005000k		
64KB (Sector 0) 64KB 64KB 64KB 64KB 64KB 64KB 64KB 64KB 000FFFh-00000h 256 Bytes 0000FFh-00000h 256 Bytes 0003FFh-00000h 256 Bytes <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
64KB (Sector 0) 64KB 32KB 4KB 4KB 00CFFFh-00C000h 00BFFh-00B00h 256 Bytes 256 Bytes 0000FFh-000000h 64KB 64KB 008FFh-00800h 256 Bytes 0000FFh-000900h 256 Bytes 0000FFh-000900h 4KB 009FFh-008000h 256 Bytes 0009FFh-000900h 256 Bytes 0009FFh-000900h 4KB 008FFFh-008000h 256 Bytes 0008FFh-000900h 256 Bytes 0008FFh-000900h 4KB 008FFFh-008000h 256 Bytes 0008FFh-000300h 256 Bytes 0008FFh-000300h 32KB 4KB 005FFFh-00500h 256 Bytes 0004FFh-000500h 256 Bytes 0004FFh-000500h 32KB 4KB 003FFFh-003000h 256 Bytes 0004FFh-000400h 256 Bytes 0004FFh-000400h 4KB 003FFFh-003000h 256 Bytes 0004FFh-000400h 256 Bytes 0002FFh-000200h 256 Bytes 000					1		
64KB (Sector 0) 64KB 32KB 4KB 00BFFh-00B00h 256 Bytes 000BFFh-000B00h 64KB 64KB 04KB 009FFFh-00900h 256 Bytes 0008FFh-000900h 64KB 4KB 008FFFh-00800h 256 Bytes 0008FFh-000900h 64KB 4KB 008FFFh-00800h 256 Bytes 0008FFh-000800h 64KB 4KB 008FFFh-00700h 256 Bytes 0007FFh-000700h 64KB 4KB 007FFFh-00700h 256 Bytes 0007FFh-000700h 32KB 4KB 005FFFh-005000h 256 Bytes 0006FFFh-000400h 32KB 4KB 003FFFh-003000h 256 Bytes 0004FFh-000300h 32KB 4KB 003FFFh-00200h 256 Bytes 0004FFh-000300h 4KB 003FFFh-00200h 256 Bytes 0004FFh-000300h 256 Bytes 0002FFh-000200h 4KB 002FFFh-002000h 256 Bytes 0002FFh-000200h 256 Bytes 0002FFh-000200h 4KB 002FFFh-002000h 256 Bytes 0002FFh-000200h 256 Bytes 0002FFh-000200h				-			1
64KB (Sector 0) 64KB 04KB 004FFh - 00000h 256 Bytes 0004FFh - 00000h 256 Bytes 0009FFh - 000900h 256 Bytes 0009FFh - 000900h 256 Bytes 0008FFh - 000900h 256 Bytes 0008FFh - 000900h 256 Bytes 0008FFh - 000900h 256 Bytes 0007FFh - 000700h 256 Bytes 0007FFh - 000700h 256 Bytes 0006FFh - 000700h 256 Bytes 0006FFh - 000600h 256 Bytes 0000FFh - 00000h 256 Bytes 0000FFh - 000300h 256 Bytes 0003FFh - 000300h 256 Bytes 0003FFh - 000300h 256 Bytes 0002FFh - 000200h			32KB				
64KB (Sector 0) 64KB 009FFh - 00900h 256 Bytes 0009FFh - 000900h 64KB 4KB 008FFh - 00800h 256 Bytes 0008FFh - 000800h 4KB 007FFFh - 00700h 256 Bytes 0007FFh - 000700h 4KB 007FFFh - 00600h 256 Bytes 0007FFh - 000700h 4KB 005FFFh - 00500h 256 Bytes 0005FFh - 000500h 32KB 4KB 004FFFh - 004000h 256 Bytes 0003FFh - 000300h 32KB 4KB 003FFFh - 003000h 256 Bytes 0003FFh - 000300h 4KB 002FFFh - 002000h 256 Bytes 0002FFh - 000300h 4KB 002FFFh - 003000h 256 Bytes 0002FFh - 000200h 4KB 002FFFh - 001000h 256 Bytes 0002FFh - 000200h							1
64KB (Sector 0) 64KB 4KB 008FFh - 00800h 256 Bytes 0008FFh - 000800h 4KB 007FFh - 00700h 256 Bytes 0007FFh - 000700h 256 Bytes 0007FFh - 000700h 4KB 006FFFh - 00600h 256 Bytes 0006FFh - 000600h 256 Bytes 0006FFh - 000600h 4KB 005FFFh - 00500h 256 Bytes 0005FFh - 000500h 256 Bytes 0004FFh - 000400h 32KB 4KB 003FFFh - 003000h 256 Bytes 0003FFh - 000300h 256 Bytes 0003FFh - 000300h 4KB 002FFFh - 002000h 256 Bytes 0003FFh - 000300h 256 Bytes 0002FFh - 000200h 4KB 001FFFh - 00100h 256 Bytes 0003FFh - 000200h 256 Bytes 0001FFh - 000200h							
(Sector 0) 64KB 4KB 007FFFh -007000h 256 Bytes 0007FFh -000700h 4KB 006FFFh -006000h 256 Bytes 0006FFh -000600h 256 Bytes 0006FFh -000600h 32KB 4KB 004FFFh -004000h 256 Bytes 0004FFh -000300h 256 Bytes 0004FFh -000300h 4KB 003FFFh -003000h 256 Bytes 0003FFh -000300h 256 Bytes 0003FFh -000300h 4KB 002FFFh -002000h 256 Bytes 0003FFh -000300h 256 Bytes 0003FFh -000300h 4KB 001FFFh -00100h 256 Bytes 0003FFh -000200h 256 Bytes 0001FFh -000300h	64KB						
4KB 006FFFh - 006000h 256 Bytes 0006FFh - 000600h 32KB 4KB 005FFFh - 005000h 256 Bytes 0005FFh - 000500h 32KB 4KB 004FFFh - 004000h 256 Bytes 0004FFh - 000400h 4KB 003FFFh - 003000h 256 Bytes 0003FFh - 000300h 4KB 002FFFh - 002000h 256 Bytes 0002FFh - 000200h 4KB 001FFFh - 001000h 256 Bytes 0002FFh - 000200h	-	64KB					
4KB 005FFFh -005000h 256 Bytes 0005FFh -000500h 32KB 4KB 004FFFh -004000h 256 Bytes 0004FFh -000400h 4KB 003FFFh -003000h 256 Bytes 0003FFh -000300h 4KB 002FFFh -002000h 256 Bytes 0002FFh -000200h 4KB 001FFFh -001000h 256 Bytes 0002FFh -000200h	(
32KB 4KB 004FFFh - 004000h 256 Bytes 0004FFh - 000400h 4KB 003FFFh - 003000h 256 Bytes 0003FFh - 000300h 4KB 002FFFh - 002000h 256 Bytes 0002FFh - 000200h 4KB 001FFFh - 001000h 256 Bytes 0002FFh - 000200h							
32KB 4KB 003FFFh - 003000h 256 Bytes 0003FFh - 000300h 4KB 002FFFh - 002000h 256 Bytes 0002FFh - 000200h 4KB 001FFFh - 001000h 256 Bytes 0001FFh - 000100h							
4KB 002FFFh - 002000h 256 Bytes 0002FFh - 000200h 4KB 001FFFh - 001000h 256 Bytes 0001FFh - 000100h			32KB		1		1
4KB 001FFh - 00100h 256 Bytes 0001FFh - 000100h							
				4KB	000FFFh - 000000h	256 Bytes	0000FFh -000000h

AT25DF641

6

4. Device Operation

The AT25DF641 is controlled by a set of instructions that are sent from a host controller, commonly referred to as the SPI Master. The SPI Master communicates with the AT25DF641 via the SPI bus which is comprised of four signal lines: Chip Select (\overline{CS}), Serial Clock (SCK), Serial Input (SI), and Serial Output (SO).

The AT25DF641 features a dual-input program mode in which the SO pin become an input. Similarly, the device also features a dual-output read mode in which the SI pin becomes an output. In the Dual-Input Byte/Page Program command description, the SO pin will be referred to as the SOI (Serial Output/Input) pin, and in the Dual-Output Read Array command, the SI pin will be referenced as the SIO (Serial Input/Output) pin.

The SPI protocol defines a total of four modes of operation (mode 0, 1, 2, or 3) with each mode differing in respect to the SCK polarity and phase and how the polarity and phase control the flow of data on the SPI bus. The AT25DF641 supports the two most common modes, SPI Modes 0 and 3. The only difference between SPI Modes 0 and 3 is the polarity of the SCK signal when in the inactive state (when the SPI Master is in standby mode and not transferring any data). With SPI Modes 0 and 3, data is always latched in on the rising edge of SCK and always output on the falling edge of SCK.

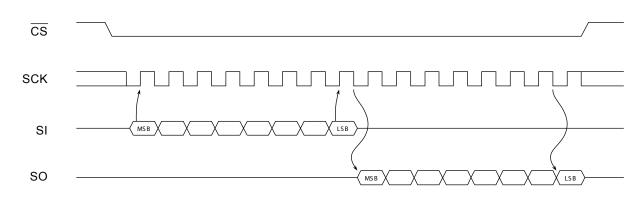


Figure 4-1. SPI Mode 0 and 3

5. Commands and Addressing

A valid instruction or operation must always be started by first asserting the \overline{CS} pin. After the \overline{CS} pin has been asserted, the host controller must then clock out a valid 8-bit opcode on the SPI bus. Following the opcode, instruction dependent information such as address and data bytes would then be clocked out by the host controller. All opcode, address, and data bytes are transferred with the most-significant bit (MSB) first. An operation is ended by deasserting the \overline{CS} pin.

Opcodes not supported by the AT25DF641 will be ignored by the device and no operation will be started. The device will continue to ignore any data presented on the SI pin until the start of the next operation ($\overline{^{CS}}$ pin being deasserted and then reasserted). In addition, if the $\overline{^{CS}}$ pin is deasserted before complete opcode and address information is sent to the device, then no operation will be performed and the device will simply return to the idle state and wait for the next operation.

Addressing of the device requires a total of three bytes of information to be sent, representing address bits A23-A0. Since the upper address limit of the AT25DF641 memory array is 7FFFFh, address bit A23 is always ignored by the device.

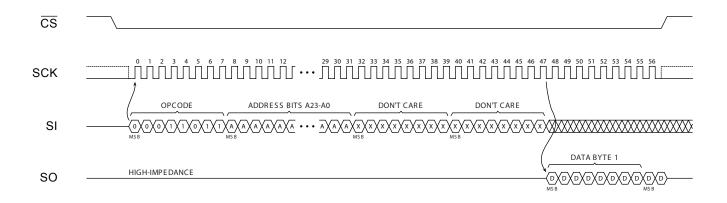
Table 5-1. Command Listing

Command		Opcode	Clock Frequency	Address Bytes	Dummy Bytes	Data Bytes
Read Commands						
	1Bh	0001 1011	Up to 75MHz	3	2	1+
Read Array	0Bh	0000 1011	Up to 75MHz	3	1	1+
	03h	0000 0011	Up to 45MHz	3	0	1+
Dual-Output Read Array	3Bh	0011 1011	Up to 55MHz	3	1	1+
Program and Erase Commands			1			
Block Erase (4-KBytes)	20h	0010 0000	Up to 75MHz	3	0	0
Block Erase (32-KBytes)	52h	0101 0010	Up to 75MHz	3	0	0
Block Erase (64-KBytes)	D8h	1101 1000	Up to 75MHz	3	0	0
	60h	0110 0000	Up to 75 MHz	0	0	0
Chip Erase	C7h	1100 0111	Up to 75MHz	0	0	0
Byte/Page Program (1 to 256 Bytes)	02h	0000 0010	Up to 75MHz	3	0	1+
Dual-Input Byte/Page Program (1 to 256 Bytes)	A2h	1010 0010	Up to 75MHz	3	0	1+
Program/Erase Suspend	B0h	1011 0000	Up to 75MHz	0	0	0
Program/Erase Resume	D0h	1101 0000	Up to 75MHz	0	0	0
Protection Commands						
Write Enable	06h	0000 0110	Up to 75MHz	0	0	0
Write Disable	04h	0000 0100	Up to 75MHz	0	0	0
Protect Sector	36h	0011 0110	Up to 75MHz	3	0	0
Unprotect Sector	39h	0011 1001	Up to 75MHz	3	0	0
Global Protect/Unprotect	Use Write Status Register Byte 1 Command					
Read Sector Protection Registers	3Ch	0011 1100	Up to 75MHz	3	0	1+
ecurity Commands			1			
Sector Lockdown	33h	0011 0011	Up to 75MHz	3	0	1
Freeze Sector Lockdown State	34h	0011 0100	Up to 75MHz	3	0	1
Read Sector Lockdown Registers	35h	0011 0101	Up to 75MHz	3	0	1+
Program OTP Security Register	9Bh	1001 1011	Up to 75MHz	3	0	1+
Read OTP Security Register	77h	0111 0111	Up to 75MHz	3	2	1+
status Register Commands			1			
Read Status Register	05h	0000 0101	Up to 75MHz	0	0	1+
Write Status Register Byte 1	01h	0000 0001	Up to 75MHz	0	0	1
Write Status Register Byte 2	31h	0011 0001	Up to 75MHz	0	0	1
liscellaneous Commands						
Reset	F0h	1111 0000	Up to 75MHz	0	0	1
Read Manufacturer and Device ID	9Fh	1001 1111	Up to 75MHz	0	0	1 to 4
Deep Power-Down	B9h	1011 1001	Up to 75MHz	0	0	0
Resume from Deep Power-Down	ABh	1010 1011	Up to 75MHz	0	0	0

8

6. Read Commands

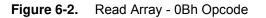
6.1. Read Array

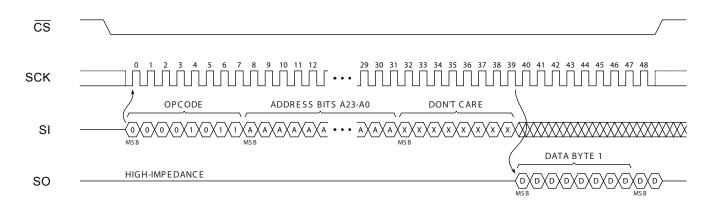

The Read Array command can be used to sequentially read a continuous stream of data from the device by simply providing the clock signal once the initial starting address has been specified. The device incorporates an internal address counter that automatically increments on every clock cycle.

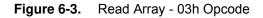
Three opcodes (1Bh, 0Bh, and 03h) can be used for the Read Array command. The use of each opcode depends on the maximum clock frequency that will be used to read data from the device. The 0Bh opcode can be used at any clock frequency up to the maximum specified by f_{CLK} , and the 03h opcode can be used for lower frequency read operations up to the maximum specified by f_{RDLF} . The 1Bh opcode allows the highest read performance possible and can be used at any clock frequency up to the maximum specified by f_{RDLF} . The 1Bh opcode allows the highest read performance possible and can be used at any clock frequency up to the maximum specified by f_{MAX} ; however, use of the 1Bh opcode at clock frequencies above f_{CLK} should be reserved to systems employing the RapidS protocol.

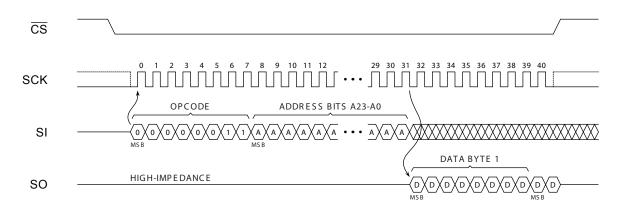
To perform the Read Array operation, the \overline{CS} pin must first be asserted and the appropriate opcode (1Bh, 0Bh, or 03h) must be clocked into the device. After the opcode has been clocked in, the three address bytes must be clocked in to specify the starting address location of the first byte to read within the memory array. Following the three address bytes, additional dummy bytes may need to be clocked into the device depending on which opcode is used for the Read Array operation. If the 1Bh opcode is used, then two dummy bytes must be clocked into the device after the three address bytes. If the 0Bh opcode is used, then a single dummy byte must be clocked in after the address bytes.

After the three address bytes (and the dummy bytes or byte if using opcodes 1Bh or 0Bh) have been clocked in, additional clock cycles will result in data being output on the SO pin. The data is always output with the MSB of a byte first. When the last byte (7FFFFh) of the memory array has been read, the device will continue reading back at the beginning of the array (000000h). No delays will be incurred when wrapping around from the end of the array to the beginning of the array.

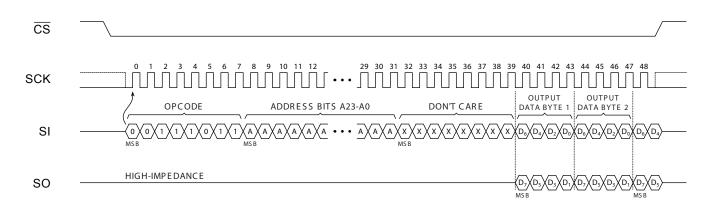

Deasserting the \overline{CS} pin will terminate the read operation and put the SO pin into a high-impedance state. The \overline{CS} pin can be deasserted at any time and does not require that a full byte of data be read.

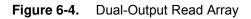



Figure 6-1. Read Array - 1Bh Opcode



6.2. Dual-Output Read Array


The Dual-Output Read Array command is similar to the standard Read Array command and can be used to sequentially read a continuous stream of data from the device by simply providing the clock signal once the initial starting address has been specified. Unlike the standard Read Array command, however, the Dual-Output Read Array command allows two bits of data to be clocked out of the device on every clock cycle rather than just one.


The Dual-Output Read Array command can be used at any clock frequency up to the maximum specified by f_{RDDO}.

To perform the Dual-Output Read Array operation, the CS pin must first be asserted and the opcode of 3Bh must be clocked into the device. After the opcode has been clocked in, the three address bytes must be clocked in to specify the starting address location of the first byte to read within the memory array. Following the three address bytes, a single dummy byte must also be clocked into the device.

After the three address bytes and the dummy byte have been clocked in, additional clock cycles will result in data being output on both the SO and SIO pins. The data is always output with the MSB of a byte first, and the MSB is always output on the SO pin. During the first clock cycle, bit seven of the first data byte will be output on the SO pin while bit six of the same data byte will be output on the SIO pin. During the next clock cycle, bits five and four of the first data byte will be output on the SO and SIO pins, respectively. The sequence continues with each byte of data being output after every four clock cycles. When the last byte (7FFFFh) of the memory array has been read, the device will continue reading back at the beginning of the array (000000h). No delays will be incurred when wrapping around from the end of the array to the beginning of the array.

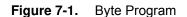
Deasserting the \overline{CS} pin will terminate the read operation and put the SO and SIO pins into a high-impedance state. The \overline{CS} pin can be deasserted at any time and does not require that a full byte of data be read.

7. Program and Erase Commands

7.1. Byte/Page Program

The Byte/Page Program command allows anywhere from a single byte of data to 256-bytes of data to be programmed into previously erased memory locations. An erased memory location is one that has all eight bits set to the logical "1" state (a byte value of FFh). Before a Byte/Page Program command can be started, the Write Enable command must have been previously issued to the device (see "Write Enable" on page 21) to set the Write Enable Latch (WEL) bit of the Status Register to a logical "1" state.

To perform a Byte/Page Program command, an opcode of 02h must be clocked into the device followed by the three address bytes denoting the first byte location of the memory array to begin programming at. After the address bytes have been clocked in, data can then be clocked into the device and will be stored in an internal buffer.


If the starting memory address denoted by A23-A0 does not fall on an even 256-byte page boundary (A7-A0 are not all 0), then special circumstances regarding which memory locations to be programmed will apply. In this situation, any data that is sent to the device that goes beyond the end of the page will wrap around back to the beginning of the same page. For example, if the starting address denoted by A23-A0 is 0000FEh, and three bytes of data are sent to the device, then the first two bytes of data will be programmed at addresses 0000FEh and 0000FFh while the last byte of data will be programmed at address 00000h. The remaining bytes in the page (addresses 00000FDh) will not be programmed and will remain in the erased state (FFh). In addition, if more than 256-bytes of data are sent to the device, then only the last 256-bytes sent will be latched into the internal buffer.

When the \overline{CS} pin is deasserted, the device will take the data stored in the internal buffer and program it into the appropriate memory array locations based on the starting address specified by A23-A0 and the number of data bytes sent to the device. If less than 256-bytes of data were sent to the device, then the remaining bytes within the page will not be programmed and will remain in the erased state (FFh). The programming of the data bytes is internally self-timed and should take place in a time of t_{PP} or t_{BP} if only programming a single byte.

The three address bytes and at least one complete byte of data must be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on even byte boundaries (multiples of eight bits); otherwise, the device will abort the operation and no data will be programmed into the memory array. In addition, if the address specified by A23-A0 points to a memory location within a sector that is in the protected state (see "Protect Sector" on page 22) or locked down (see "Sector Lockdown" on page 28), then the Byte/Page Program command will not be executed, and the device will return to the idle state once the \overline{CS} pin has been deasserted. The WEL bit in the Status Register will be reset back to the logical "0" state if the program cycle aborts due to an incomplete address being sent, an incomplete byte of data being sent, the \overline{CS} pin being deasserted on uneven byte boundaries, or because the memory location to be programmed is protected or locked down.

While the device is programming, the Status Register can be read and will indicate that the device is busy. For faster throughput, it is recommended that the Status Register be polled rather than waiting the t_{BP} or t_{PP} time to determine if the data bytes have finished programming. At some point before the program cycle completes, the WEL bit in the Status Register will be reset back to the logical "0" state.

The device also incorporates an intelligent programming algorithm that can detect when a byte location fails to program properly. If a programming error arises, it will be indicated by the EPE bit in the Status Register

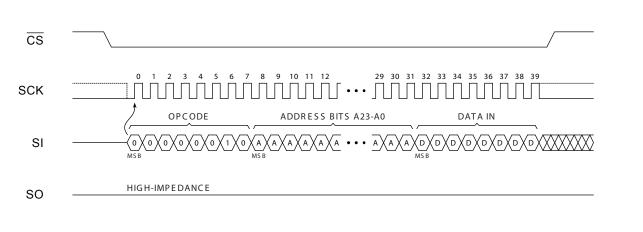
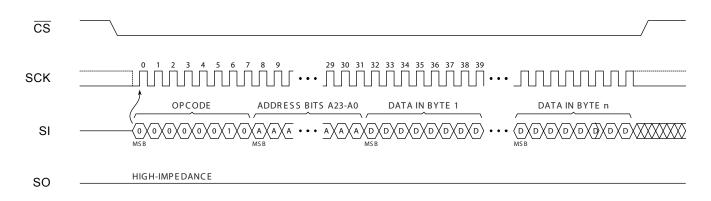



Figure 7-2. Page Program

7.2. Dual-Input Byte/Page Program

The Dual-Input Byte/Page Program command is similar to the standard Byte/Page Program command and can be used to program anywhere from a single byte of data up to 256-bytes of data into previously erased memory locations. Unlike the standard Byte/Page Program command, however, the Dual-Input Byte/Page Program command allows two bits of data to be clocked into the device on every clock cycle rather than just one.

Before the Dual-Input Byte/Page Program command can be started, the Write Enable command must have been previously issued to the device (see "Write Enable" on page 21) to set the Write Enable Latch (WEL) bit of the Status Register to a logical "1" state. To perform a Dual-Input Byte/Page Program command, an opcode of A2h must be clocked into the device followed by the three address bytes denoting the first byte location of the memory array to begin programming at. After the address bytes have been clocked in, data can then be clocked into the device two bits at a time on both the SOI and SI pins.

The data is always input with the MSB of a byte first, and the MSB is always input on the SOI pin. During the first clock cycle, bit seven of the first data byte would be input on the SOI pin while bit six of the same data byte would be input on the SI pin. During the next clock cycle, bits five and four of the first data byte would be input on the SOI and SI pins, respectively. The sequence would continue with each byte of data being input after every four clock cycles. Like the standard Byte/Page Program command, all data clocked into the device is stored in an internal buffer.

If the starting memory address denoted by A23-A0 does not fall on an even 256-byte page boundary (A7-A0 are not all 0), then special circumstances regarding which memory locations to be programmed will apply. In this situation, any data that is sent to the device that goes beyond the end of the page will wrap around back to the beginning of the same page. For example, if the starting address denoted by A23-A0 is 0000FEh, and three bytes of data are sent to the device, then the first two bytes of data will be programmed at addresses 0000FEh and 0000FFh while the last byte of data will be programmed at address 00000h. The remaining bytes in the page (addresses 00000FDh) will not be programmed and will remain in the erased state (FFh). In addition, if more than 256-bytes of data are sent to the device, then only the last 256-bytes sent will be latched into the internal buffer.

When the \overline{CS} pin is deasserted, the device will take the data stored in the internal buffer and program it into the appropriate memory array locations based on the starting address specified by A23-A0 and the number of data bytes sent to the device. If less than 256-bytes of data were sent to the device, then the remaining bytes within the page will not be programmed and will remain in the erased state (FFh). The programming of the data bytes is internally self-timed and should take place in a time of t_{PP} or t_{BP} if only programming a single byte.

The three address bytes and at least one complete byte of data must be clocked into the device before the ^{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on even byte boundaries (multiples of eight bits); otherwise, the device will abort the operation and no data will be programmed into the memory array. In addition, if the address specified by A23-A0 points to a memory location within a sector that is in the protected state (see "Protect Sector" on page 22) or locked down (see "Sector Lockdown" on page 28), then the Byte/Page Program command will not be executed, and the device will return to the idle state once the \overline{CS} pin has been deasserted. The WEL bit in the Status Register will be reset back to the logical "0" state if the program cycle aborts due to an incomplete address being sent, an incomplete byte of data being sent, the \overline{CS} pin being deasserted on uneven byte boundaries, or because the memory location to be programmed is protected or locked down.

While the device is programming, the Status Register can be read and will indicate that the device is busy. For faster throughput, it is recommended that the Status Register be polled rather than waiting the t_{BP} or t_{PP} time to determine if the data bytes have finished programming. At some point before the program cycle completes, the WEL bit in the Status Register will be reset back to the logical "0" state.

The device also incorporates an intelligent programming algorithm that can detect when a byte location fails to program properly. If a programming error arises, it will be indicated by the EPE bit in the Status Register.

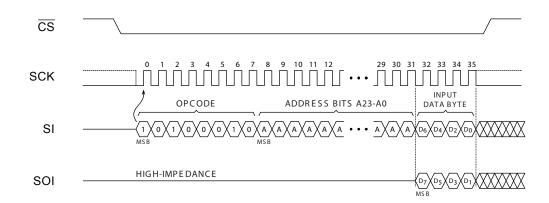
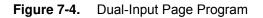
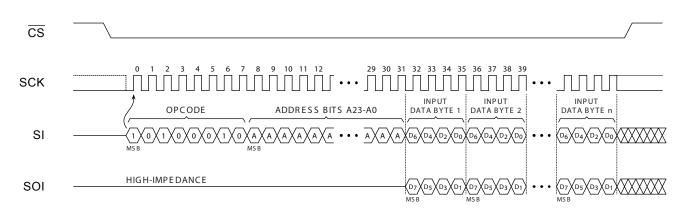




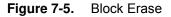
Figure 7-3. Dual-Input Byte Program

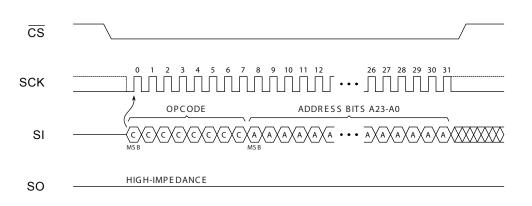
7.3. Block Erase

A block of 4-, 32-, or 64-Kbytes can be erased (all bits set to the logical "1" state) in a single operation by using one of three different opcodes for the Block Erase command. An opcode of 20h is used for a 4-Kbyte erase, an opcode of 52h is used for a 32-Kbyte erase, and an opcode of D8h is used for a 64-Kbyte erase. Before a Block Erase command can be started, the Write Enable command must have been previously issued to the device to set the WEL bit of the Status Register to a logical "1" state.

To perform a Block Erase, the \overline{CS} pin must first be asserted and the appropriate opcode (20h, 52h, or D8h) must be clocked into the device. After the opcode has been clocked in, the three address bytes specifying an address within the 4-, 32-, or 64-Kbyte block to be erased must be clocked in. Any additional data clocked into the device will be ignored. When the \overline{CS} pin is deasserted, the device will erase the appropriate block. The erasing of the block is internally self-timed and should take place in a time of t_{BLKE}.

Since the Block Erase command erases a region of bytes, the lower order address bits do not need to be decoded by the device. Therefore, for a 4-Kbyte erase, address bits A11-A0 will be ignored by the device and their values can be either a logical "1" or "0". For a 32-Kbyte erase, address bits A14-A0 will be ignored, and for a 64-Kbyte erase, address bits A15-A0 will be ignored by the device. Despite the lower order address bits not being decoded by the device, the complete three address bytes must still be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, the device will abort the operation and no erase operation will be performed.


If the address specified by A23-A0 points to a memory location within a sector that is in the protected or locked down state, then the Block Erase command will not be executed, and the device will return to the idle state once the \overline{CS} pin has been deasserted.

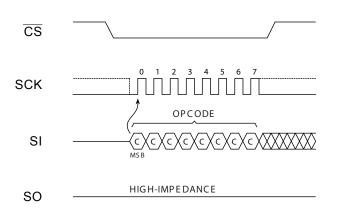

The WEL bit in the Status Register will be reset back to the logical "0" state if the erase cycle aborts due to an incomplete address being sent, the \overline{CS} pin being deasserted on uneven byte boundaries, or because a memory location within the region to be erased is protected or locked down.

While the device is executing a successful erase cycle, the Status Register can be read and will indicate that the device is busy. For faster throughput, it is recommended that the Status Register be polled rather than waiting the t_{BLKE} time to determine if the device has finished erasing. At some point before the erase cycle completes, the WEL bit in the Status Register will be reset back to the logical "0" state.

The device also incorporates an intelligent erase algorithm that can detect when a byte location fails to erase properly. If an erase error occurs, it will be indicated by the EPE bit in the Status Register.

7.4. Chip Erase

The entire memory array can be erased in a single operation by using the Chip Erase command. Before a Chip Erase command can be started, the Write Enable command must have been previously issued to the device to set the WEL bit of the Status Register to a logical "1" state.


Two opcodes, 60h and C7h, can be used for the Chip Erase command. There is no difference in device functionality when utilizing the two opcodes, so they can be used interchangeably. To perform a Chip Erase, one of the two opcodes (60h or C7h) must be clocked into the device. Since the entire memory array is to be erased, no address bytes need to be clocked into the device, and any data clocked in after the opcode will be ignored. When the \overline{CS} pin is deasserted, the device will erase the entire memory array. The erasing of the device is internally self-timed and should take place in a time of t_{CHPE} .

The complete opcode must be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, no erase will be performed. In addition, if any sector of the memory array is in the protected or locked down state, then the Chip Erase command will not be executed, and the device will return to the idle state once the \overline{CS} pin has been deasserted. The WEL bit in the Status Register will be reset back to the logical "0" state if the \overline{CS} pin is deasserted on uneven byte boundaries or if a sector is in the protected or locked down state.

While the device is executing a successful erase cycle, the Status Register can be read and will indicate that the device is busy. For faster throughput, it is recommended that the Status Register be polled rather than waiting the t_{CHPE} time to determine if the device has finished erasing. At some point before the erase cycle completes, the WEL bit in the Status Register will be reset back to the logical "0" state.

The device also incorporates an intelligent erase algorithm that can detect when a byte location fails to erase properly. If an erase error occurs, it will be indicated by the EPE bit in the Status Register.

7.5. Program/Erase Suspend

In some code plus data storage applications, it is often necessary to process certain high-level system interrupts that require relatively immediate reading of code or data from the Flash memory. In such an instance, it may not be possible for the system to wait the microseconds or milliseconds required for the Flash memory to complete a program or erase cycle. The Program/Erase Suspend command allows a program or erase operation in progress to a particular 64-Kbyte sector of the Flash memory array to be suspended so that other device operations can be performed. For example, by suspending an erase operation to a particular sector, the system can perform functions such as a program or read operation within another 64-Kbyte sector in the device. Other device operations, such as a R ead Status Register, can also be performed while a program or erase operation is suspended. Table 7-1 outlines the operations that are allowed and n ot allowed during a program or erase suspend.

Since the need to suspend a program or erase operation is immediate, the Write Enable command does not need to be issued prior to the Program/Erase Suspend command being issued. Therefore, the Program/Erase Suspend command operates independently of the state of the WEL bit in the Status Register.

To perform a Program/Erase Suspend, the \overline{CS} pin must first be asserted and the opcode of B0h must be clocked into the device. No address bytes need to be clocked into the device, and any data clocked in after the opcode will be ignored. When the \overline{CS} pin is deasserted, the program or erase operation currently in progress will be suspended within a time of t_{SUSP} . The Program Suspend (PS) bit or the Erase Suspend (ES) bit in the Status Register will then be s et to the logical "1" state to indicate that the program or erase operation has been suspended. In addition, the RDY/BSY bit in the Status Register will indicate that the device is ready for another operation. The complete opcode must be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, no suspend operation will be performed.

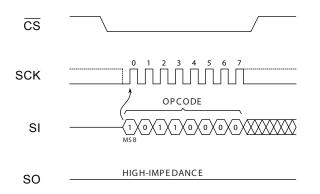
Read operations are not allowed to a 64-Kbyte sector that has had its program or erase operation suspended. If a read is attempted to a suspended sector, then the device will output undefined data. Therefore, when performing a Read Array operation to an unsuspended sector and the device's internal address counter increments and crosses the sector boundary to a suspended sector, the device will then start outputting undefined data continuously until the address counter increments and crosses a sector boundary to an unsuspended sector.

A program operation is not allowed to a sector that has been erase suspended. If a program operation is attempted to an erase suspended sector, then the program operation will abort and the WEL bit in the Status Register will be reset back to the logical "0" state. Likewise, an erase operation is not allowed to a sector that has been program suspended. If attempted, the erase operation will abort and the WEL bit in the Status Register will be reset to a logical "0" state.

During an Erase Suspend, a program operation to a different 64-Kbyte sector can be started and subsequently suspended. This results in a simultaneous Erase Suspend/Program Suspend condition and will be indicated by the states of both the ES and PS bits in the Status Register being set to the logical "1" state.

If a R eset operation (see "Reset" on page 40) is performed while a sector is erase suspended, the suspend operation will abort and the contents of the block in the suspended sector will be left in an undefined state. However, if a Reset is performed while a sector is program suspended, the suspend operation will abort but only the contents of the page that was being programmed and subsequently suspended will be undefined. The remaining pages in the 64-Kbyte sector will retain their previous contents.

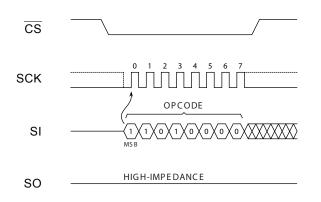
If an attempt is made to perform an operation that is not allowed during a program or erase suspend, such as a Protect Sector operation, then the device will simply ignore the opcode and no operation will be performed. The state of the WEL bit in the Status Register, as well as the SPRL (Sector Protection Registers Locked) and SLE (Sector Lockdown Enabled) bits, will not be affected.


Table 7-1. Operations Allowed and Not Allowed During a Program or Erase Suspendent
--

Command	Operation During Program Suspend	Operation During Erase Suspend
Read Commands		
Read Array (All Opcodes)	Allowed	Allowed
Program and Erase Commands		
Block Erase	Not Allowed	Not Allowed
Chip Erase	Not Allowed	Not Allowed
Byte/Page Program (All Opcodes)	Not Allowed	Allowed
Program/Erase Suspend	Not Allowed	Allowed
Program/Erase Resume	Allowed	Allowed
Protection Commands		
Write Enable	Not Allowed	Allowed
Write Disable	Not Allowed	Allowed
Protect Sector	Not Allowed	Not Allowed
Unprotect Sector	Not Allowed	Not Allowed
Global Protect/Unprotect	Not Allowed	Not Allowed
Read Sector Protection Registers	Allowed	Allowed
Security Commands	'	
Sector Lockdown	Not Allowed	Not Allowed
Freeze Sector Lockdown State	Not Allowed	Not Allowed
Read Sector Lockdown Registers	Allowed	Allowed
Program OTP Security Register	Not Allowed	Not Allowed
Read OTP Security Register	Allowed	Allowed
Status Register Commands		
Read Status Register	Allowed	Allowed
Write Status Register (All Opcodes)	Not Allowed	Not Allowed
Miscellaneous Commands		
Reset	Allowed	Allowed
Read Manufacturer and Device ID	Allowed	Allowed
Deep Power-Down	Not Allowed	Not Allowed
Resume from Deep Power-Down	Not Allowed	Not Allowed

Figure 7-7. Program/Erase Suspend

7.6. Program/Erase Resume


The Program/Erase Resume command allows a suspended program or erase operation to be resumed and continue programming a Flash page or erasing a Flash memory block where it left off. As with the Program/Erase Suspend command, the Write Enable command does not need to be issued prior to the Program/Erase Resume command being issued. Therefore, the Program/Erase Resume command operates independently of the state of the WEL bit in the Status Register.

To perform a Program/Erase Resume, the \overline{CS} pin must first be asserted and the opcode of D0h must be clocked into the device. No address bytes need to be clocked into the device, and any data clocked in after the opcode will be ignored. When the \overline{CS} pin is deasserted, the program or erase operation currently suspended will be resumed within a time of t_{RES}. The PS bit or the ES bit in the Status Register will then be reset back to the logical "0" state to indicate that the program or erase operation is no longer suspended. In addition, the RDY/BSY bit in the Status Register will indicate that the device is busy performing a program or erase operation. The complete opcode must be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, no resume operation will be performed.

During a s imultaneous Erase Suspend/Program Suspend condition, issuing the Program/Erase Resume command will result in the program operation resuming first. After the program operation has been completed, the Program/Erase Resume command must be issued again in order for the erase operation to be resumed.

While the device is busy resuming a program or erase operation, any attempts at issuing the Program/Erase Suspend command will be ignored. Therefore, if a resumed program or erase operation needs to be subsequently suspended again, the system must either wait the entire t_{RES} time before issuing the Program/Erase Suspend command, or it must check the status of the RDY/BSY bit or the appropriate PS or ES bit in the Status Register to determine if the previously suspended program or erase operation has resumed.

Figure 7-8. Program/Erase Resume

8. Protection Commands and Features

8.1. Write Enable

The Write Enable command is used to set the Write Enable Latch (WEL) bit in the Status Register to a logical "1" state. The WEL bit must be set before a Byte/Page Program, erase, Protect Sector, Unprotect Sector, Sector Lockdown, Freeze Sector Lockdown State, Program OTP Security Register, or Write Status Register command can be executed. This makes the issuance of these commands a two step process, thereby reducing the chances of a command being accidentally or erroneously executed. If the WEL bit in the Status Register is not set prior to the issuance of one of these commands, then the command will not be executed.

To issue the Write Enable command, the \overline{CS} pin must first be asserted and the opcode of 06h must be clocked into the device. No address bytes need to be clocked into the device, and any data clocked in after the opcode will be ignored. When the \overline{CS} pin is deasserted, the WEL bit in the Status Register will be set to a logical "1". The complete opcode must be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, the device will abort the operation and the state of the WEL bit will not change.

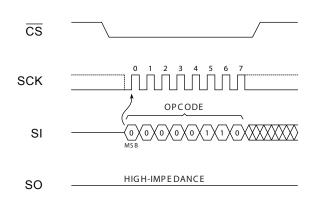
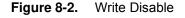
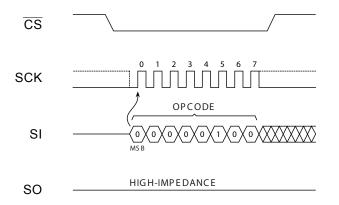


Figure 8-1. Write Enable





8.2. Write Disable

The Write Disable command is used to reset the Write Enable Latch (WEL) bit in the Status Register to the logical "0" state. With the WEL bit reset, all Byte/Page Program, erase, Protect Sector, Unprotect Sector, Sector Lockdown, Freeze Sector Lockdown State, Program OTP Security Register, and W rite Status Register commands will not be executed. Other conditions can also cause the WEL bit to be reset; for more details, refer to the WEL bit section of the Status Register description.

To issue the Write Disable command, the \overline{CS} pin must first be asserted and the opcode of 04h must be clocked into the device. No address bytes need to be clocked into the device, and any data clocked in after the opcode will be ignored. When the \overline{CS} pin is deasserted, the WEL bit in the Status Register will be reset to a logical "0". The complete opcode must be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, the device will abort the operation and the state of the WEL bit will not change.

8.3. Protect Sector

Every physical 64-Kbyte sector of the device has a corresponding single-bit Sector Protection Register that is used to control the software protection of a sector. Upon device power-up, each Sector Protection Register will default to the logical "1" state indicating that all sectors are protected and cannot be programmed or erased.

Issuing the Protect Sector command to a particular sector address will set the corresponding Sector Protection Register to the logical "1" state. The following table outlines the two states of the Sector Protection Registers.

Table 8-1.	Sector Protection	Register Values
------------	-------------------	-----------------

Value	Sector Protection Status
0	Sector is unprotected and can be programmed and erased
1	Sector is protected and cannot be programmed or erased This is the default state

22 AT25DF641

Before the Protect Sector command can be issued, the Write Enable command must have been previously issued to set the WEL bit in the Status Register to a logical "1". To issue the Protect Sector command, the \overline{CS} pin must first be as serted and the opcode of 36h must be clocked into the device followed by three address bytes designating any address within the sector to be protected. Any additional data clocked into the device will be ignored. When the \overline{CS} pin is deasserted, the Sector Protection Register corresponding to the physical sector addressed by A23-A0 will be set to the logical "1" state, and the sector itself will then be protected from program and erase operations. In addition, the WEL bit in the Status Register will be reset back to the logical "0" state.

The complete three address bytes must be clocked into the device before the \overline{CS} pin is deasserted, and the \overline{CS} pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, the device will abort the operation. When the device aborts the Protect Sector operation, the state of the Sector Protection Register will be unchanged, and the WEL bit in the Status Register will be reset to a logical "0".

As a safeguard against accidental or erroneous protecting or unprotecting of sectors, the Sector Protection Registers can themselves be locked from updates by using the SPRL (Sector Protection Registers Locked) bit of the Status Register (please refer to the Status Register Commands description for more details). If the Sector Protection Registers are locked, then any attempts to issue the Protect Sector command will be ignored, and the device will reset the WEL bit in the Status Register back to a logical "0" and return to the idle state once the \overline{CS} pin has been deasserted.

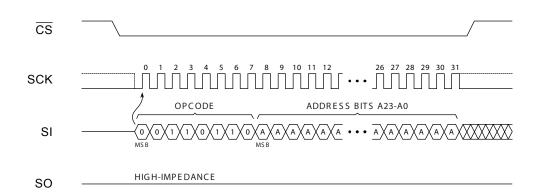
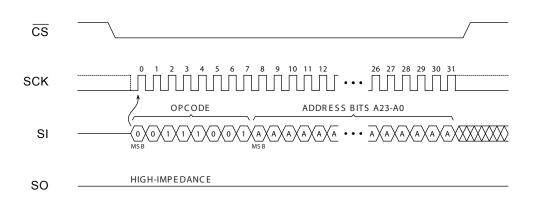


Figure 8-3. Protect Sector

8.4. Unprotect Sector

Issuing the Unprotect Sector command to a particular sector address will reset the corresponding Sector Protection Register to the logical "0" state (see Table 8-2 for Sector Protection Register values). Every physical sector of the device has a corresponding single-bit Sector Protection Register that is used to control the software protection of a sector.


Before the Unprotect Sector command can be issued, the Write Enable command must have been previously issued to set the WEL bit in the Status Register to a logical "1". To issue the Unprotect Sector command, the \overline{CS} pin must first be as serted and the opcode of 39h must be clocked into the device. After the opcode has been clocked in, the three address bytes designating any address within the sector to be unprotected must be clocked in. Any additional data clocked into the device after the address bytes will be ignored. When the \overline{CS} pin is deasserted, the Sector Protection Register corresponding to the sector addressed by A23-A0 will be reset to the logical "0" state, and the sector itself will be unprotected. In addition, the WEL bit in the Status Register will be reset back to the logical "0" state.



The complete three address bytes must be clocked into the device before the $\frac{1}{CS}$ pin is deasserted, and the $\frac{1}{CS}$ pin must be deasserted on an even byte boundary (multiples of eight bits); otherwise, the device will abort the operation, the state of the Sector Protection Register will be unchanged, and the WEL bit in the Status Register will be reset to a logical "0".

As a safeguard against accidental or erroneous locking or unlocking of sectors, the Sector Protection Registers can themselves be locked from updates by using the SPRL (Sector Protection Registers Locked) bit of the Status Register (please refer to the Status Register description for more details). If the Sector Protection Registers are locked, then any attempts to issue the Unprotect Sector command will be ignored, and the device will reset the WEL bit in the Status Register back to a logical "0" and return to the idle state once the \overline{CS} pin has been deasserted.

8.5. Global Protect/Unprotect

The Global Protect and Global Unprotect features can work in conjunction with the Protect Sector and Unprotect Sector functions. For example, a system can globally protect the entire memory array and then use the Unprotect Sector command to individually unprotect certain sectors and individually re-protect them later by using the Protect Sector command. Likewise, a system can globally unprotect the entire memory array and then individually protect certain sectors as needed.

Performing a Global Protect or Global Unprotect is accomplished by writing a certain combination of data to the Status Register using the Write Status Register Byte 1 command (see "Write Status Register Byte 1" on page 38 for command execution details). The Write Status Register command is also used to modify the SPRL (Sector Protection Registers Locked) bit to control hardware and software locking.

To perform a Global Protect, the appropriate \overline{WP} pin and SPRL conditions must be met, and the system must write a logical "1" to bits five, four, three, and two of the first byte of the Status Register. Conversely, to perform a Global Unprotect, the same \overline{WP} and SPRL conditions must be met but the system must write a logical "0" to bits five, four, three, and two of the first byte of the Status Register. Table 8-2 details the conditions necessary for a Global Protect or Global Unprotect to be performed.

Sectors that have been erase or program suspended must remain in the unprotected state. If a Global Protect operation is attempted while a sector is erase or program suspended, the protection operation will abort, the protection states of all sectors in the Flash memory array will not change, and WEL bit in the Status Register will be reset back to a logical "0".

Table 8-2.	Valid SPRL and Global Protect/Unprotect Conditions

	. .	New Write Status Register Byte 1 Data			New
WP State	Current SPRL Value	Bit 7 6 5 4 3 2 1 0	Protection Operation	on Operation	
		0 x 0 0 0 0 x x	Global Unprotect – all Sector Protection Registers reset to 0		0
		0 x 0 0 0 1 x x	No change to current protection.		0
		0 x 1 1 1 0 x x	No change to current protection.		0 0
		0 x 1 1 1 1 x x	No change to current protection. Global Protect – all Sector Protection Registers set to 1		0
0	0	0			0
0	0	1 x 0 0 0 0 x x	Clobal Linguistant - all Santar Protection Registers react to 0		1
		1 x 0 0 0 0 x x	Global Unprotect – all Sector Protection Registers reset to 0 No change to current protection.		1
		1,0001,7,7	No change to current protection.		1
		1 x 1 1 1 0 x x	No change to current protection.		1
		1 x 1 1 1 1 x x	Global Protect – all Sector Protection Registers set to 1		1
			No change to the current protection level. All sectors currently protect and all sectors currently unprotected will remain unprotected.	cted will remain	n protected
0	1	****	The Sector Protection Registers are hard-locked and cannot be changed when the \overline{WP} pin is LOW and the current state of SPRL is 1. Therefore, a Global Protect/Unprotect will not occur. In addition, the SPRL bit cannot be changed (the \overline{WP} pin must be HIGH in order to change SPRL back to a 0).		
		0 x 0 0 0 0 x x	Global Unprotect – all Sector Protection Registers reset to 0	0	
		0 x 0 0 0 1 x x	No change to current protection.	0	
		0 x 1 1 1 0 x x	No change to current protection.	0	
		0 x 1 1 1 0 x x 0 x 1 1 1 1 1 x x	No change to current protection. Global Protect – all Sector Protection Registers set to 1	0	
1	0	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		0	
	0	1 x 0 0 0 0 x x	Global Unprotect – all Sector Protection Registers reset to 0	1	
		1 x 0 0 0 1 x x	No change to current protection.	1	
			No change to current protection.	1	
		1 x 1 1 1 0 x x	No change to current protection.	1	
		1 x 1 1 1 1 x x	Global Protect – all Sector Protection Registers set to 1	1	
		0 x 0 0 0 0 x x	No change to the current protection level. All sectors currently	0	
		0 x 0 0 0 1 x x	protected will remain protected, and all sectors currently	0	
			unprotected will remain unprotected.	0	
		0 x 1 1 1 0 x x		0	
1	1	0 x 1 1 1 1 x x	The Sector Protection Registers are soft-locked and cannot be changed when the current state of SPRL is 1. Therefore, a Global	0	
		1 x 0 0 0 0 x x	Protect/Unprotect will not occur. However, the SPRL bit can be	1	
		1 x 0 0 0 1 x x	changed back to a 0 from a 1 since the WP pin is HIGH. To	1	
		1 x 1 1 1 0 x x	perform a Global Protect/Unprotect, the Write Status Register	1	
		1 x 1 1 1 1 x x	command must be issued again after the SPRL bit has been changed from a 1 to a 0.	1	
				•	

Essentially, if the SPRL bit of the Status Register is in the logical "0" state (Sector Protection Registers are not locked), then writing a 00h to the first byte of the Status Register will perform a Global Unprotect without changing the state of the SPRL bit. Similarly, writing a 7Fh to the first byte of the Status Register will perform a Global Protect and keep the SPRL bit in the logical "0" state. The SPRL bit can, of course, be changed to a logical "1" by writing an FFh if software-locking or hardware-locking is desired along with the Global Protect.

