imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Fast Read Access Time 70 ns
- Low Power CMOS Operation
 - 100 µA Max Standby
 - 30 mA Max Active at 5 MHz
- JEDEC Standard Packages
 - 32-lead, 600-mil PDIP
 - 32-lead PLCC
 - 32-lead TSOP
- + 5V \pm 10% Supply
- High Reliability CMOS Technology
 - 2000V ESD Protection
- 200 mA Latchup Immunity
- Rapid[™] Programming Algorithm 100 µs/Byte (Typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial and Industrial Temperature Ranges

Description


The AT27C040 chip is a low-power, high-performance, 4,194,304-bit one-time programmable read-only memory (OTP EPROM) organized as 512K by 8 bits. The AT27C040 requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 70 ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems.

Pin Configurations

Pin Name	Function
A0 - A18	Addresses
00 - 07	Outputs
CE	Chip Enable
ŌĒ	Output Enable

PDIP Top View

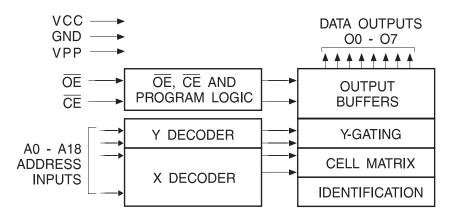
		•		
		\bigcirc		
VPP 🗆	1		32	🗅 vcc
A16 🗆	2		31	🗆 A18
A15 🗆	3		30	🗆 A17
A12 🗆	4		29	🗅 A14
A7 🗆	5		28	🗆 A13
A6 🗆	6		27	🗆 A8
A5 🗆	7		26	🗅 A9
A4 🗆	8		25	D A11
АЗ 🗆	9		24	
A2 🗆	10		23	A10
A1 🗆	11		22	
A0 🗆	12		21	07
O0 🗆	13		20	06
O1 🗆	14		19	05
O2 🗆	15		18	04
GND 🗆	16		17	03

4-Megabit (512K x 8) OTP EPROM

AT27C040

0189F-EPROM-4/03

Atmel's scaled CMOS technology provides low active power consumption, and fast programming. Power consumption is typically 8 mA in active mode and less than 10 μA in standby mode.


The AT27C040 is available in a choice of industry standard JEDEC-approved one-time programmable (OTP) plastic PDIP, PLCC and TSOP packages. The device features two-line control (\overline{CE} , \overline{OE}) to eliminate bus contention in high-speed systems.

Atmel's AT27C040 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Switching Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Operating Modes

Mode/Pin	CE	OE	Ai	V _{PP}	Outputs
Read	V _{IL}	V _{IL}	Ai	X ⁽¹⁾	D _{OUT}
Output Disable	Х	V _{IH}	Х	Х	High Z
Standby	V _{IH}	Х	Х	Х	High Z
Rapid Program ⁽²⁾	V _{IL}	V _{IH}	Ai	V _{PP}	D _{IN}
PGM Verify	Х	V _{IL}	Ai	V _{PP}	D _{OUT}
PGM Inhibit	V _{IH}	V _{IH}	Х	V _{PP}	High Z
Product Identification ⁽⁴⁾	V _{IL}	V _{IL}	$A9 = V_{H}^{(3)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A18 = V_{IL}$	x	Identification Code

Notes: 1. X can be V_{IL} or V_{IH} .

2. Refer to Programming Characteristics

- 3. $V_{\rm H} = 12.0 \pm 0.5 V.$
- Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V
Voltage on A9 with Respect to Ground2.0V to +14.0V
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V

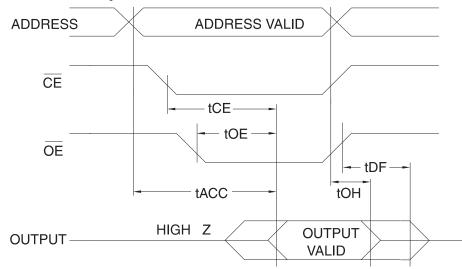
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC and AC Operating Conditions for Read Operation

		AT27C040-70	AT27C040-90	AT27C040-12	AT27C040-15
Operating Temperature (Case)	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
V _{CC} Power Supply		5V ± 10%	$5V\pm10\%$	$5V\pm10\%$	$5V\pm10\%$

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to V_{CC}		Ħ	μA
I _{LO}	Output Leakage Current	$V_{OUT} = 0V$ to V_{CC}		±5	μA
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μA
I _{SB}	V _{CC1} ⁽¹⁾ Standby Current	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		100	μA
		I_{SB2} (TTL), $\overline{CE} = 2.0$ to $V_{CC} + 0.5V$		1	mA
I _{CC}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$		30	mA
V _{IL}	Input Low Voltage		-0.6	0.8	V
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V

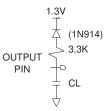

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} 2. V_{PP} may be connected directly to V_{CC}, except during programming. The supply current would then be the sum of I_{CC} and I_{PP}

AC Characteristics for Read Operation

			AT27C040								
			-	-70 -90		-12		-15			
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	$\overline{CE} = \overline{OE} \\ = V_{IL}$		70		90		120		150	ns
t _{CE} ⁽²⁾	CE to Output Delay	$\overline{OE} = V_{IL}$		70		90		120		150	ns
$t_{OE}^{(2)(3)}$	OE to Output Delay	$\overline{CE} = V_{IL}$		30		35		35		40	ns
$t_{DF}^{(4)(5)}$	OE or CE High to Output Float, whichever occurred first			20		20		30		30	ns
t _{OH}	Output Hold from Address, CE or OE, whichever occurred first		0		0		0		0		ns

1. 2, 3, 4, 5 – see AC Waveforms for Read Operation Note:


AC Waveforms for Read Operation⁽¹⁾


- Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.
 - 2. \overline{OE} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
 - 3. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} . 4. This parameter is only sampled and is not 100% tested.

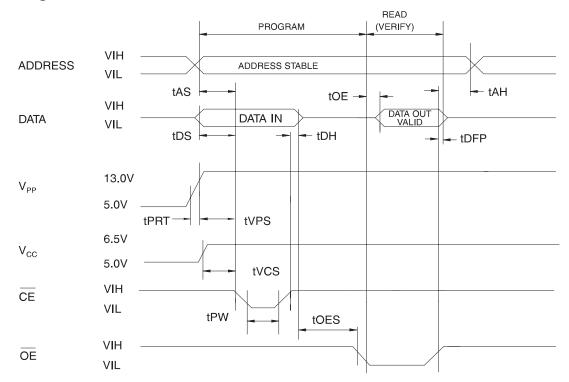
 - 5. Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load

Pin Capacitance

f = 1	MHz,	T =	25°	C ⁽¹⁾
-------	------	-----	-----	------------------


Symbol	Тур	Мах	Units	Conditions
C _{IN}	4	8	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms⁽¹⁾

- Notes: 1. The Input Timing Reference is 0.8V for $\rm V_{IL}$ and 2.0V for $\rm V_{IH}.$
 - 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
 - 3. When programming the AT27C040 a 0.1 μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

DC Programming Characteristics

 $T_{A} = 25 \pm 5^{\circ}C, \, V_{CC} = 6.5 \pm 0.25V, \, V_{PP} = 13.0 \pm 0.25V$

			Lir	Limits	
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μA
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{CC} + 0.7	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	V _{CC} Supply Current (Program and Verify)			40	mA
I _{PP2}	V _{PP} Supply Current	$\overline{CE} = V_{IL}$		20	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

AC Programming Characteristics

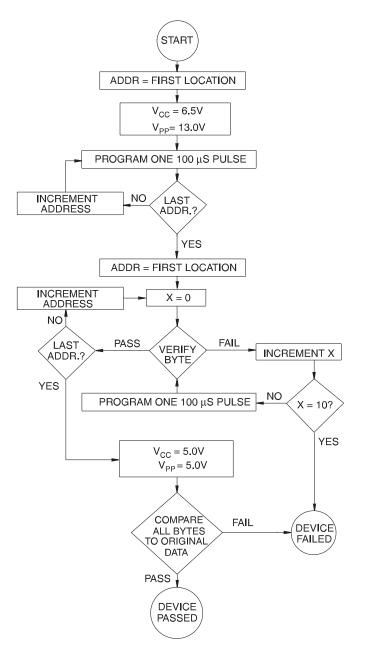
 $T_{A} = 25 \pm 5^{\circ}C, \ V_{CC} = 6.5 \pm 0.25V, \ V_{PP} = 13.0 \pm 0.25V$

			Lir	nits		
Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Max	Units	
t _{AS}	Address Setup Time	Input Rise and Fall Times:	2		μs	
t _{OES}	OE Setup Time	(10% to 90%) 20 ns	2		μs	
t _{DS}	Data Setup Time	Input Pulse Levels:	2		μs	
t _{AH}	Address Hold Time	0.45V to 2.4V	0		μs	
t _{DH}	Data Hold Time	Input Timing Reference Level:	2		μs	
t _{DFP}	OE High to Output Float Delay ⁽²⁾	0.8V to 2.0V	0	130	ns	
t _{VPS}	V _{PP} Setup Time		2		μs	
t _{VCS}	V _{CC} Setup Time	Output Timing Reference Level: 0.8V to 2.0V	2		μs	
t _{PW}	CE Program Pulse Width ⁽³⁾		95	105	μs	
t _{OE}	Data Valid from $\overline{OE}^{(2)}$			150	ns	
t _{PRT}	V _{PP} Pulse Rise Time During Programming		50		ns	

 Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}
2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven - see timing diagram.

3. Program Pulse width tolerance is 100 μ sec \pm 5%.

Atmel's AT27C040 Integrated Product Identification Code

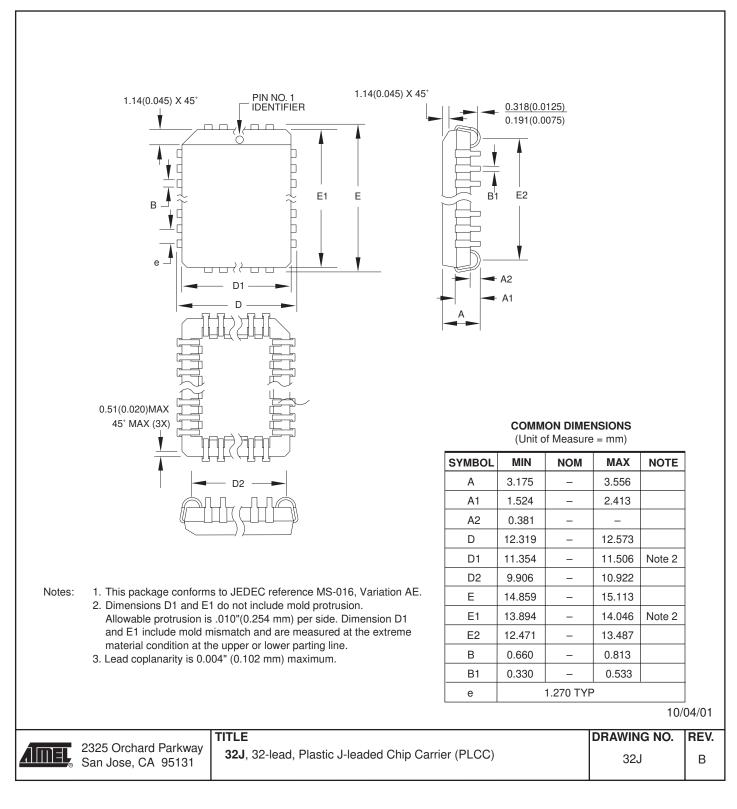

		Pins								
Codes	A 0	07	O 6	O5	O4	O3	02	01	00	Hex Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	1	0	1	1	0B

Rapid Programming Algorithm

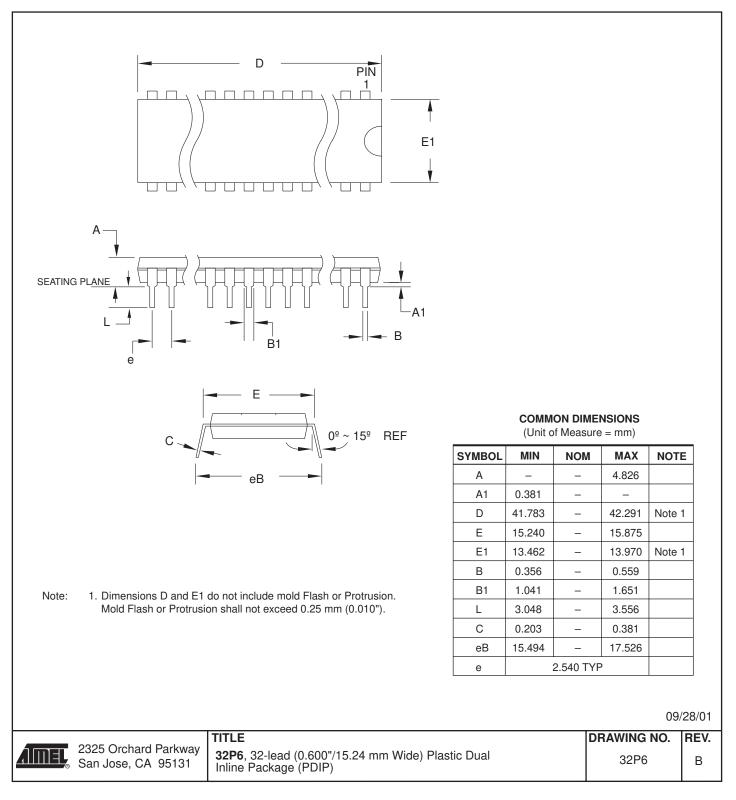
A 100 μ s \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μ s \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

Ordering Information

t _{ACC} (ns)	I _{CC} (mA)				
	Active	Standby	Ordering Code	Package	Operation Range
70	30	0.1	AT27C040-70JC	32J	Commercial
			AT27C040-70PC	32P6	(0° C to 70° C)
			AT27C040-70TC	32T	
	30	0.1	AT27C040-70JI	32J	Industrial
			AT27C040-70PI	32P6	(-40° C to 85° C)
			AT27C040-70TI	32T	
90	30	0.1	AT27C040-90JC	32J	Commercial
			AT27C040-90PC	32P6	(0° C to 70° C)
			AT27C040-90TC	32T	
	30	0.1	AT27C040-90JI	32J	Industrial
			AT27C040-90PI	32P6	(-40° C to 85° C)
			AT27C040-90TI	32T	
120	30	0.1	AT27C040-12JC	32J	Commercial
			AT27C040-12PC	32P6	(0° C to 70° C)
			AT27C040-12TC	32T	
	30	0.1	AT27C040-12JI	32J	Industrial
			AT27C040-12PI	32P6	(-40° C to 85° C)
			AT27C040-12TI	32T	
150	30	0.1	AT27C040-15JC	32J	Commercial
			AT27C040-15PC	32P6	(0° C to 70° C)
			AT27C040-15TC	32T	
	30	0.1	AT27C040-15JI	32J	Industrial
			AT27C040-15PI	32P6	(-40° C to 85° C)
			AT27C040-15TI	32T	

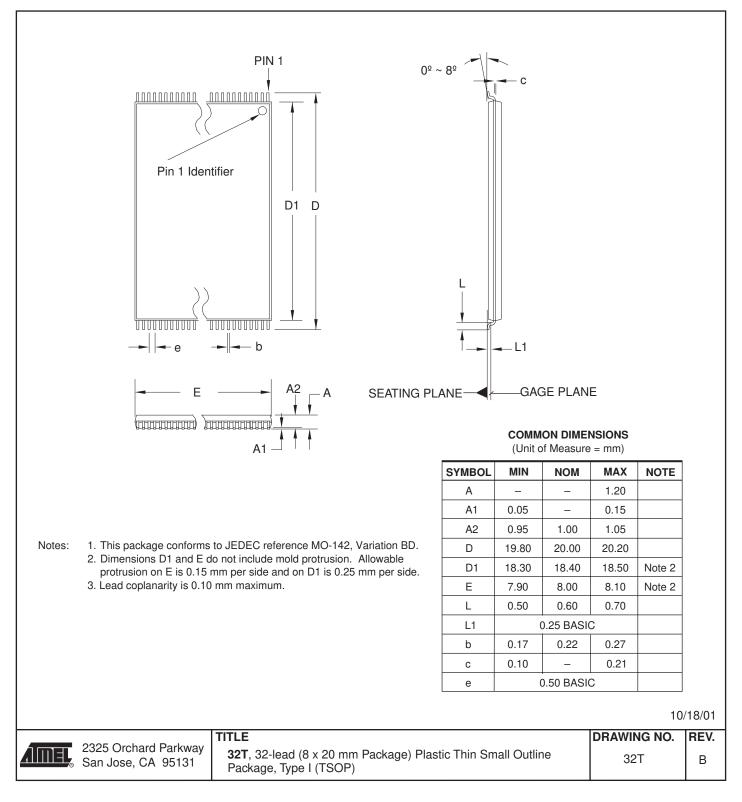

Package Type				
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)			
32P6	32-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)			
32T	32-lead, Plastic Thin Small Outline Package (TSOP)			

Package Information



AT27C040 🗖

AT27C040


32P6 - PDIP

32T – TSOP

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

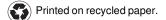
RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80


e-mail literature@atmel.com

Web Site

http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] and combinations thereof are the registered trademarks, Rapid[™] is the trademark of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

