# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# Features

- High Performance, Low Power 32-Bit Atmel<sup>®</sup> AVR<sup>®</sup>Microcontroller
  - Compact Single-cycle RISC Instruction Set Including DSP Instruction Set
  - Read-Modify-Write Instructions and Atomic Bit Manipulation
  - Performing up to 1.39 DMIPS / MHz
    - Up to 83 DMIPS Running at 60 MHz from Flash
    - Up to 46 DMIPS Running at 30 MHz from Flash
  - Memory Protection Unit
- Multi-hierarchy Bus System
  - High-Performance Data Transfers on Separate Buses for Increased Performance
  - 7 Peripheral DMA Channels Improves Speed for Peripheral Communication
- Internal High-Speed Flash
  - 512K Bytes, 256K Bytes, 128K Bytes, 64K Bytes Versions
  - Single Cycle Access up to 30 MHz
  - Prefetch Buffer Optimizing Instruction Execution at Maximum Speed
  - 4ms Page Programming Time and 8ms Full-Chip Erase Time
  - 100,000 Write Cycles, 15-year Data Retention Capability
  - Flash Security Locks and User Defined Configuration Area
- Internal High-Speed SRAM, Single-Cycle Access at Full Speed
  - 96K Bytes (512KB Flash), 32K Bytes (256KB and 128KB Flash), 16K Bytes (64KB Flash)
- Interrupt Controller
  - Autovectored Low Latency Interrupt Service with Programmable Priority
- System Functions
  - Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator
  - Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) allowing Independant CPU Frequency from USB Frequency
  - Watchdog Timer, Real-Time Clock Timer
- Universal Serial Bus (USB)
  - Device 2.0 and Embedded Host Low Speed and Full Speed
  - Flexible End-Point Configuration and Management with Dedicated DMA Channels
  - On-chip Transceivers Including Pull-Ups
  - USB Wake Up from Sleep Functionality
- One Three-Channel 16-bit Timer/Counter (TC)
  - Three External Clock Inputs, PWM, Capture and Various Counting Capabilities
- One 7-Channel 20-bit Pulse Width Modulation Controller (PWM)
- Three Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
  - Independant Baudrate Generator, Support for SPI, IrDA and ISO7816 interfaces
  - Support for Hardware Handshaking, RS485 Interfaces and Modem Line
- One Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
- One Synchronous Serial Protocol Controller
  - Supports I<sup>2</sup>S and Generic Frame-Based Protocols
- One Master/Slave Two-Wire Interface (TWI), 400kbit/s I<sup>2</sup>C-compatible
- One 8-channel 10-bit Analog-To-Digital Converter, 384ks/s
- 16-bit Stereo Audio Bitstream DAC
  - Sample Rate Up to 50 KHz
- QTouch<sup>®</sup> Library Support
  - Capacitive Touch Buttons, Sliders, and Wheels
  - QTouch and QMatrix Acquisition



32-bit ATMEL AVR Microcontroller

AT32UC3B0512 AT32UC3B0256 AT32UC3B0128 AT32UC3B064 AT32UC3B1512 AT32UC3B1256 AT32UC3B1258 AT32UC3B1128

# Summary

32059L-01/2012



# AT32UC3B

- On-Chip Debug System (JTAG interface)
  - Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
- 64-pin TQFP/QFN (44 GPIO pins), 48-pin TQFP/QFN (28 GPIO pins)
- 5V Input Tolerant I/Os, including 4 high-drive pins
- Single 3.3V Power Supply or Dual 1.8V-3.3V Power Supply



# 1. Description

The AT32UC3B is a complete System-On-Chip microcontroller based on the AVR32 UC RISC processor running at frequencies up to 60 MHz. AVR32 UC is a high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt controller for supporting modern operating systems and real-time operating systems.

Higher computation capability is achieved using a rich set of DSP instructions.

The AT32UC3B incorporates on-chip Flash and SRAM memories for secure and fast access.

The Peripheral Direct Memory Access controller enables data transfers between peripherals and memories without processor involvement. PDCA drastically reduces processing overhead when transferring continuous and large data streams between modules within the MCU.

The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

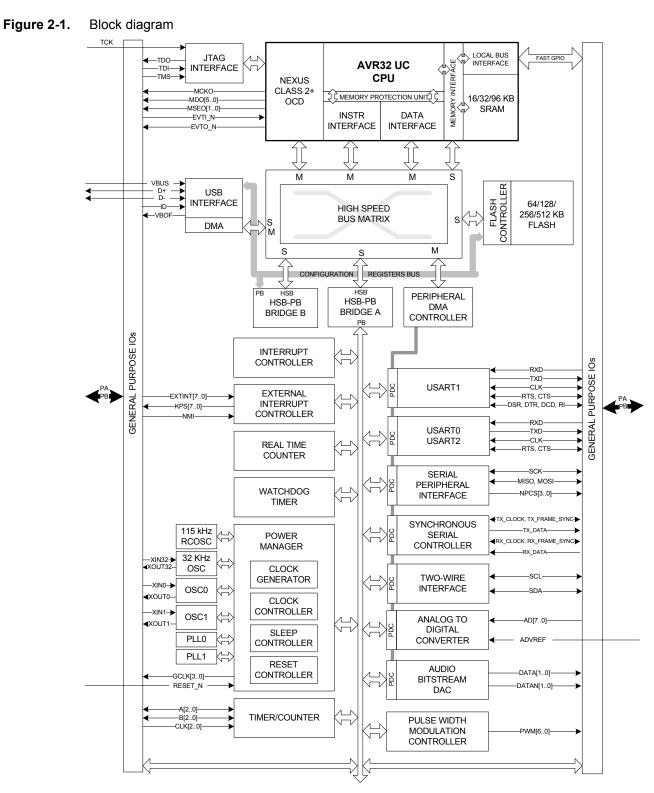
The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be independently programmed to perform frequency measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation.

The PWM modules provides seven independent channels with many configuration options including polarity, edge alignment and waveform non overlap control. One PWM channel can trigger ADC conversions for more accurate close loop control implementations.

The AT32UC3B also features many communication interfaces for communication intensive applications. In addition to standard serial interfaces like USART, SPI or TWI, other interfaces like flexible Synchronous Serial Controller and USB are available. The USART supports different communication modes, like SPI mode.

The Synchronous Serial Controller provides easy access to serial communication protocols and audio standards like I<sup>2</sup>S, UART or SPI.

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time thanks to the rich End-Point configuration. The Embedded Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor.


Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key Suppression<sup>®</sup> (AKS<sup>®</sup>) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3B integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control. The Nanotrace interface enables trace feature for JTAG-based debuggers.



# 2. Overview

## 2.1 Blockdiagram





# 3. Configuration Summary

The table below lists all AT32UC3B memory and package configurations:

| Feature                          | AT32UC3B0512                                                                                                                                                                        | AT32UC3B0256/128/64 | AT32UC3B1512 | AT32UC3B1256/128/64 |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|---------------------|--|
| Flash                            | 512 KB                                                                                                                                                                              | 256/128/64 KB       | 512 KB       | 256/128/64 KB       |  |
| SRAM                             | 96KB                                                                                                                                                                                | 32/32/16KB          | 96KB         | 32/16/16KB          |  |
| GPIO                             |                                                                                                                                                                                     | 44                  |              | 28                  |  |
| External Interrupts              |                                                                                                                                                                                     | 8                   |              | 6                   |  |
| TWI                              |                                                                                                                                                                                     | 1                   |              |                     |  |
| USART                            |                                                                                                                                                                                     | 3                   |              |                     |  |
| Peripheral DMA Channels          |                                                                                                                                                                                     | 7                   |              |                     |  |
| SPI                              |                                                                                                                                                                                     | 1                   |              |                     |  |
| Full Speed USB                   | Mini-Ho                                                                                                                                                                             | st + Device         | D            | evice               |  |
| SSC                              |                                                                                                                                                                                     | 1                   | 0            |                     |  |
| Audio Bitstream DAC              | 1                                                                                                                                                                                   | 0                   | 1            | 0                   |  |
| Timer/Counter Channels           |                                                                                                                                                                                     | 3                   |              |                     |  |
| PWM Channels                     |                                                                                                                                                                                     | 7                   |              |                     |  |
| Watchdog Timer                   |                                                                                                                                                                                     | 1                   |              |                     |  |
| Real-Time Clock Timer            |                                                                                                                                                                                     | 1                   |              |                     |  |
| Power Manager                    |                                                                                                                                                                                     | 1                   |              |                     |  |
| Oscillators                      | PLL 80-240 MHz (PLL0/PLL1)<br>Crystal Oscillators 0.4-20 MHz (OSC0)<br>Crystal Oscillator 32 KHz (OSC32K)<br>RC Oscillator 115 kHz (RCSYS)<br>Crystal Oscillators 0.4-20 MHz (OSC1) |                     |              |                     |  |
| 10-bit ADC<br>number of channels | 8 6                                                                                                                                                                                 |                     |              | 6                   |  |
| JTAG                             |                                                                                                                                                                                     | 1                   |              |                     |  |
| Max Frequency                    | 60 MHz                                                                                                                                                                              |                     |              |                     |  |
| Package                          | TQFP6                                                                                                                                                                               | 64, QFN64           | TQFP4        | 48, QFN48           |  |

Table 3-1.Configuration Summary



# 4. Package and Pinout

### 4.1 Package

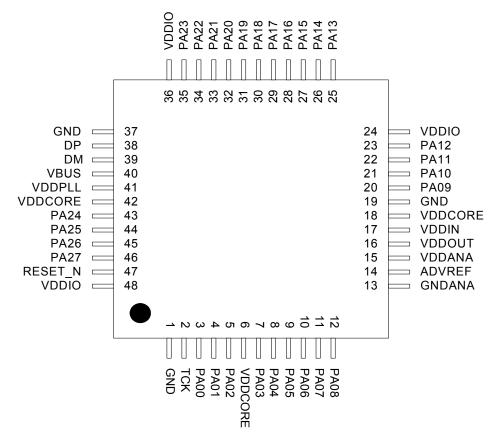

The device pins are multiplexed with peripheral functions as described in the Peripheral Multiplexing on I/O Line section.







Figure 4-2. TQFP48 / QFN48 Pinout



Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

# 4.2 Peripheral Multiplexing on I/O lines

### 4.2.1 Multiplexed signals

Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C or D (D is only available for UC3Bx512 parts). The following table define how the I/O lines on the peripherals A, B,C or D are multiplexed by the GPIO.

| 48-pin | 64-pin | PIN  | GPIO Pin | Function A      | Function B   | Function C      | Function D<br>(only for UC3Bx512) |
|--------|--------|------|----------|-----------------|--------------|-----------------|-----------------------------------|
| 3      | 3      | PA00 | GPIO 0   |                 |              |                 |                                   |
| 4      | 4      | PA01 | GPIO 1   |                 |              |                 |                                   |
| 5      | 5      | PA02 | GPIO 2   |                 |              |                 |                                   |
| 7      | 9      | PA03 | GPIO 3   | ADC - AD[0]     | PM - GCLK[0] | USBB - USB_ID   | ABDAC - DATA[0]                   |
| 8      | 10     | PA04 | GPIO 4   | ADC - AD[1]     | PM - GCLK[1] | USBB - USB_VBOF | ABDAC - DATAN[0]                  |
| 9      | 11     | PA05 | GPIO 5   | EIC - EXTINT[0] | ADC - AD[2]  | USART1 - DCD    | ABDAC - DATA[1]                   |

 Table 4-1.
 GPIO Controller Function Multiplexing



| Table 4-1. | GPIO Controller Function Multiplexing |      |         |                        |                |                            |                        |
|------------|---------------------------------------|------|---------|------------------------|----------------|----------------------------|------------------------|
| 10         | 12                                    | PA06 | GPIO 6  | EIC - EXTINT[1]        | ADC - AD[3]    | USART1 - DSR               | ABDAC - DATAN[1]       |
| 11         | 13                                    | PA07 | GPIO 7  | PWM - PWM[0]           | ADC - AD[4]    | USART1 - DTR               | SSC -<br>RX_FRAME_SYNC |
| 12         | 14                                    | PA08 | GPIO 8  | PWM - PWM[1]           | ADC - AD[5]    | USART1 - RI                | SSC - RX_CLOCK         |
| 20         | 28                                    | PA09 | GPIO 9  | TWI - SCL              | SPI0 - NPCS[2] | USART1 - CTS               |                        |
| 21         | 29                                    | PA10 | GPIO 10 | TWI - SDA              | SPI0 - NPCS[3] | USART1 - RTS               |                        |
| 22         | 30                                    | PA11 | GPIO 11 | USART0 - RTS           | TC - A2        | PWM - PWM[0]               | SSC - RX_DATA          |
| 23         | 31                                    | PA12 | GPIO 12 | USART0 - CTS           | TC - B2        | PWM - PWM[1]               | USART1 - TXD           |
| 25         | 33                                    | PA13 | GPIO 13 | EIC - NMI              | PWM - PWM[2]   | USART0 - CLK               | SSC - RX_CLOCK         |
| 26         | 34                                    | PA14 | GPIO 14 | SPI0 - MOSI            | PWM - PWM[3]   | EIC - EXTINT[2]            | PM - GCLK[2]           |
| 27         | 35                                    | PA15 | GPIO 15 | SPI0 - SCK             | PWM - PWM[4]   | USART2 - CLK               |                        |
| 28         | 36                                    | PA16 | GPIO 16 | SPI0 - NPCS[0]         | TC - CLK1      | PWM - PWM[4]               |                        |
| 29         | 37                                    | PA17 | GPIO 17 | SPI0 - NPCS[1]         | TC - CLK2      | SPI0 - SCK                 | USART1 - RXD           |
| 30         | 39                                    | PA18 | GPIO 18 | USART0 - RXD           | PWM - PWM[5]   | SPI0 - MISO                | SSC -<br>RX_FRAME_SYNC |
| 31         | 40                                    | PA19 | GPIO 19 | USART0 - TXD           | PWM - PWM[6]   | SPI0 - MOSI                | SSC - TX_CLOCK         |
| 32         | 44                                    | PA20 | GPIO 20 | USART1 - CLK           | TC - CLK0      | USART2 - RXD               | SSC - TX_DATA          |
| 33         | 45                                    | PA21 | GPIO 21 | PWM - PWM[2]           | TC - A1        | USART2 - TXD               | SSC -<br>TX_FRAME_SYNC |
| 34         | 46                                    | PA22 | GPIO 22 | PWM - PWM[6]           | TC - B1        | ADC - TRIGGER              | ABDAC - DATA[0]        |
| 35         | 47                                    | PA23 | GPIO 23 | USART1 - TXD           | SPI0 - NPCS[1] | EIC - EXTINT[3]            | PWM - PWM[0]           |
| 43         | 59                                    | PA24 | GPIO 24 | USART1 - RXD           | SPI0 - NPCS[0] | EIC - EXTINT[4]            | PWM - PWM[1]           |
| 44         | 60                                    | PA25 | GPIO 25 | SPI0 - MISO            | PWM - PWM[3]   | EIC - EXTINT[5]            |                        |
| 45         | 61                                    | PA26 | GPIO 26 | USBB - USB_ID          | USART2 - TXD   | TC - A0                    | ABDAC - DATA[1]        |
| 46         | 62                                    | PA27 | GPIO 27 | USBB - USB_VBOF        | USART2 - RXD   | TC - B0                    | ABDAC - DATAN[1]       |
|            | 41                                    | PA28 | GPIO 28 | USART0 - CLK           | PWM - PWM[4]   | SPI0 - MISO                | ABDAC - DATAN[0]       |
|            | 42                                    | PA29 | GPIO 29 | TC - CLK0              | TC - CLK1      | SPI0 - MOSI                |                        |
|            | 15                                    | PA30 | GPIO 30 | ADC - AD[6]            | EIC - SCAN[0]  | PM - GCLK[2]               |                        |
|            | 16                                    | PA31 | GPIO 31 | ADC - AD[7]            | EIC - SCAN[1]  | PWM - PWM[6]               |                        |
|            | 6                                     | PB00 | GPIO 32 | TC - A0                | EIC - SCAN[2]  | USART2 - CTS               |                        |
|            | 7                                     | PB01 | GPIO 33 | TC - B0                | EIC - SCAN[3]  | USART2 - RTS               |                        |
|            | 24                                    | PB02 | GPIO 34 | EIC - EXTINT[6]        | TC - A1        | USART1 - TXD               |                        |
|            | 25                                    | PB03 | GPIO 35 | EIC - EXTINT[7]        | TC - B1        | USART1 - RXD               |                        |
|            | 26                                    | PB04 | GPIO 36 | USART1 - CTS           | SPI0 - NPCS[3] | TC - CLK2                  |                        |
|            | 27                                    | PB05 | GPIO 37 | USART1 - RTS           | SPI0 - NPCS[2] | PWM - PWM[5]               |                        |
|            | 38                                    | PB06 | GPIO 38 | SSC - RX_CLOCK         | USART1 - DCD   | EIC - SCAN[4]              | ABDAC - DATA[0]        |
|            | 43                                    | PB07 | GPIO 39 | SSC - RX_DATA          | USART1 - DSR   | EIC - SCAN[5]              | ABDAC - DATAN[0]       |
|            | 54                                    | PB08 | GPIO 40 | SSC -<br>RX_FRAME_SYNC | USART1 - DTR   | EIC - SCAN[6] ABDAC - DATA |                        |

 Table 4-1.
 GPIO Controller Function Multiplexing



 Table 4-1.
 GPIO Controller Function Multiplexing

| 55 | PB09 | GPIO 41 | SSC - TX_CLOCK         | USART1 - RI | EIC - SCAN[7] | ABDAC - DATAN[1] |
|----|------|---------|------------------------|-------------|---------------|------------------|
| 57 | PB10 | GPIO 42 | SSC - TX_DATA          | TC - A2     | USART0 - RXD  |                  |
| 58 | PB11 | GPIO 43 | SSC -<br>TX_FRAME_SYNC | TC - B2     | USART0 - TXD  |                  |

### 4.2.2 JTAG Port Connections

If the JTAG is enabled, the JTAG will take control over a number of pins, irrespective of the I/O Controller configuration.

| Table 4-2. | JTAG PINOUL |          |          |
|------------|-------------|----------|----------|
| 64QFP/QFN  | 48QFP/QFN   | Pin name | JTAG pin |
| 2          | 2           | тск      | ТСК      |
| 3          | 3           | PA00     | TDI      |
| 4          | 4           | PA01     | TDO      |
| 5          | 5           | PA02     | TMS      |

### Table 4-2.JTAG Pinout

### 4.2.3 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the PIO configuration. Two different OCD trace pin mappings are possible, depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Technical Reference Manual.

| Table 4-3. | Nexus OCD AUX port connections |       |  |  |
|------------|--------------------------------|-------|--|--|
| Pin        | AXS=0                          | AXS=1 |  |  |
| EVTI_N     | PB05                           | PA14  |  |  |
| MDO[5]     | PB04                           | PA08  |  |  |
| MDO[4]     | PB03                           | PA07  |  |  |
| MDO[3]     | PB02                           | PA06  |  |  |
| MDO[2]     | PB01                           | PA05  |  |  |
| MDO[1]     | PB00                           | PA04  |  |  |
| MDO[0]     | PA31                           | PA03  |  |  |
| EVTO_N     | PA15                           | PA15  |  |  |
| MCKO       | PA30                           | PA13  |  |  |
| MSEO[1]    | PB06                           | PA09  |  |  |
| MSEO[0]    | PB07                           | PA10  |  |  |

### Table 4-3. Nexus OCD AUX port connections

### 4.2.4 Oscillator Pinout

The oscillators are not mapped to the normal A, B or C functions and their muxings are controlled by registers in the Power Manager (PM). Please refer to the power manager chapter for more information about this.



Table 4-4.Oscillator pinout

| QFP48 pin | QFP64 pin | Pad  | Oscillator pin |
|-----------|-----------|------|----------------|
| 30        | 39        | PA18 | XIN0           |
|           | 41        | PA28 | XIN1           |
| 22        | 30        | PA11 | XIN32          |
| 31        | 40        | PA19 | XOUT0          |
|           | 42        | PA29 | XOUT1          |
| 23        | 31        | PA12 | XOUT32         |

### 4.3 High Drive Current GPIO

Ones of GPIOs can be used to drive twice current than other GPIO capability (see Electrical Characteristics section).

**Table 4-5.**High Drive Current GPIO

| GPIO Name |
|-----------|
| PA20      |
| PA21      |
| PA22      |
| PA23      |

# 5. Signals Description

The following table gives details on the signal name classified by peripheral.

Table 5-1.Signal Description List

| Signal Name | Function                       | Туре           | Active<br>Level | Comments        |  |  |
|-------------|--------------------------------|----------------|-----------------|-----------------|--|--|
| Power       |                                |                |                 |                 |  |  |
| VDDPLL      | PLL Power Supply               | Power<br>Input |                 | 1.65V to 1.95 V |  |  |
| VDDCORE     | Core Power Supply              | Power<br>Input |                 | 1.65V to 1.95 V |  |  |
| VDDIO       | I/O Power Supply               | Power<br>Input |                 | 3.0V to 3.6V    |  |  |
| VDDANA      | Analog Power Supply            | Power<br>Input |                 | 3.0V to 3.6V    |  |  |
| VDDIN       | Voltage Regulator Input Supply | Power<br>Input |                 | 3.0V to 3.6V    |  |  |



## Table 5-1. Signal Description List (Continued)

| Signal Name             | Function                      | Туре            | Active<br>Level | Comments        |
|-------------------------|-------------------------------|-----------------|-----------------|-----------------|
| VDDOUT                  | Voltage Regulator Output      | Power<br>Output |                 | 1.65V to 1.95 V |
| GNDANA                  | Analog Ground                 | Ground          |                 |                 |
| GND                     | Ground                        | Ground          |                 |                 |
|                         | Clocks, Oscillators,          | and PLL's       |                 |                 |
| XIN0, XIN1, XIN32       | Crystal 0, 1, 32 Input        | Analog          |                 |                 |
| XOUT0, XOUT1,<br>XOUT32 | Crystal 0, 1, 32 Output       | Analog          |                 |                 |
|                         | JTAG                          |                 | •               |                 |
| тск                     | Test Clock                    | Input           |                 |                 |
| TDI                     | Test Data In                  | Input           |                 |                 |
| TDO                     | Test Data Out                 | Output          |                 |                 |
| TMS                     | Test Mode Select              | Input           |                 |                 |
|                         | Auxiliary Port -              | AUX             |                 |                 |
| МСКО                    | Trace Data Output Clock       | Output          |                 |                 |
| MDO0 - MDO5             | Trace Data Output             | Output          |                 |                 |
| MSEO0 - MSEO1           | Trace Frame Control           | Output          |                 |                 |
| EVTI_N                  | Event In                      | Output          | Low             |                 |
| EVTO_N                  | Event Out                     | Output          | Low             |                 |
|                         | Power Manager                 | - PM            |                 |                 |
| GCLK0 - GCLK2           | Generic Clock Pins            | Output          |                 |                 |
| RESET_N                 | Reset Pin                     | Input           | Low             |                 |
|                         | External Interrupt Con        | troller - EIC   |                 |                 |
| EXTINT0 - EXTINT7       | External Interrupt Pins       | Input           |                 |                 |
| KPS0 - KPS7             | Keypad Scan Pins              | Output          |                 |                 |
| NMI                     | Non-Maskable Interrupt Pin    | Input           | Low             |                 |
|                         | General Purpose I/O pin-      | GPIOA, GPI      | ОВ              |                 |
| PA0 - PA31              | Parallel I/O Controller GPIOA | I/O             |                 |                 |
| PB0 - PB11              | Parallel I/O Controller GPIOB | I/O             |                 |                 |
|                         | •                             |                 | ·               |                 |



## Table 5-1. Signal Description List (Continued)

| Signal Name   | Function                               | Туре             | Active<br>Level | Comments      |
|---------------|----------------------------------------|------------------|-----------------|---------------|
|               | Serial Peripheral                      | Interface - SPI0 |                 | •             |
| MISO          | Master In Slave Out                    | I/O              |                 |               |
| MOSI          | Master Out Slave In                    | I/O              |                 |               |
| NPCS0 - NPCS3 | SPI Peripheral Chip Select             | I/O              | Low             |               |
| SCK           | Clock                                  | Output           |                 |               |
|               | Synchronous Serial                     | Controller - SS  | С               |               |
| RX_CLOCK      | SSC Receive Clock                      | I/O              |                 |               |
| RX_DATA       | SSC Receive Data                       | Input            |                 |               |
| RX_FRAME_SYNC | SSC Receive Frame Sync                 | I/O              |                 |               |
| TX_CLOCK      | SSC Transmit Clock                     | I/O              |                 |               |
| TX_DATA       | SSC Transmit Data                      | Output           |                 |               |
| TX_FRAME_SYNC | SSC Transmit Frame Sync                | I/O              |                 |               |
|               | Timer/Count                            | er - TIMER       |                 |               |
| A0            | Channel 0 Line A                       | I/O              |                 |               |
| A1            | Channel 1 Line A                       | I/O              |                 |               |
| A2            | Channel 2 Line A                       | I/O              |                 |               |
| В0            | Channel 0 Line B                       | I/O              |                 |               |
| B1            | Channel 1 Line B                       | I/O              |                 |               |
| B2            | Channel 2 Line B                       | I/O              |                 |               |
| CLK0          | Channel 0 External Clock Input         | Input            |                 |               |
| CLK1          | Channel 1 External Clock Input         | Input            |                 |               |
| CLK2          | Channel 2 External Clock Input         | Input            |                 |               |
|               | Two-wire Inte                          | rface - TWI      | •               |               |
| SCL           | Serial Clock                           | I/O              |                 |               |
| SDA           | Serial Data                            | I/O              |                 |               |
| Uni           | versal Synchronous Asynchronous Receiv | er Transmitter - | USART0, U       | SART1, USART2 |
| CLK           | Clock                                  | I/O              |                 |               |
| CTS           | Clear To Send                          | Input            |                 |               |
|               |                                        |                  |                 |               |



### Table 5-1. Signal Description List (Continued)

| Signal Name     | Function                                       | Туре            | Active<br>Level | Comments    |
|-----------------|------------------------------------------------|-----------------|-----------------|-------------|
| DCD             | Data Carrier Detect                            |                 |                 | Only USART1 |
| DSR             | Data Set Ready                                 |                 |                 | Only USART1 |
| DTR             | Data Terminal Ready                            |                 |                 | Only USART1 |
| RI              | Ring Indicator                                 |                 |                 | Only USART1 |
| RTS             | Request To Send                                | Output          |                 |             |
| RXD             | Receive Data                                   | Input           |                 |             |
| TXD             | Transmit Data                                  | Output          |                 |             |
|                 | Analog to Digital Con                          | verter - ADC    | I               |             |
| AD0 - AD7       | Analog input pins                              | Analog<br>input |                 |             |
| ADVREF          | Analog positive reference voltage input        | Analog<br>input |                 | 2.6 to 3.6V |
|                 | Audio Bitstream DA                             | C - ABDAC       | I               |             |
| DATA0 - DATA1   | D/A Data out                                   | Output          |                 |             |
| DATAN0 - DATAN1 | D/A Data inverted out                          | Output          |                 |             |
|                 | Pulse Width Modula                             | ator - PWM      |                 |             |
| PWM0 - PWM6     | PWM Output Pins                                | Output          |                 |             |
|                 | Universal Serial Bus D                         | evice - USBE    | 3               |             |
| DDM             | USB Device Port Data -                         | Analog          |                 |             |
| DDP             | USB Device Port Data +                         | Analog          |                 |             |
| VBUS            | USB VBUS Monitor and Embedded Host Negociation | Analog<br>Input |                 |             |
| USBID           | ID Pin of the USB Bus                          | Input           |                 |             |
| USB_VBOF        | USB VBUS On/off: bus power control port        | output          |                 |             |

# 5.1 JTAG pins

TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has no pull-up resistor. These 3 pins can be used as GPIO-pins. At reset state, these pins are in GPIO mode.

TCK pin cannot be used as GPIO pin. JTAG interface is enabled when TCK pin is tied low.



### 5.2 RESET\_N pin

The RESET\_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As the product integrates a power-on reset cell, the RESET\_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

### 5.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as GPIO pins.

### 5.4 GPIO pins

All the I/O lines integrate a pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the GPIO Controllers. After reset, I/O lines default as inputs with pull-up resistors disabled, except when indicated otherwise in the column "Reset Value" of the GPIO Controller user interface table.

### 5.5 High drive pins

The four pins PA20, PA21, PA22, PA23 have high drive output capabilities.

### 5.6 **Power Considerations**

### 5.6.1 Power Supplies

The AT32UC3B has several types of power supply pins:

- VDDIO: Powers I/O lines. Voltage is 3.3V nominal.
- VDDANA: Powers the ADC Voltage is 3.3V nominal.
- VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.
- VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
- VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO and VDDPLL. The ground pin for VDDANA is GNDANA.

Refer to Electrical Characteristics section for power consumption on the various supply pins.

The main requirement for power supplies connection is to respect a star topology for all electrical connection.



# AT32UC3B

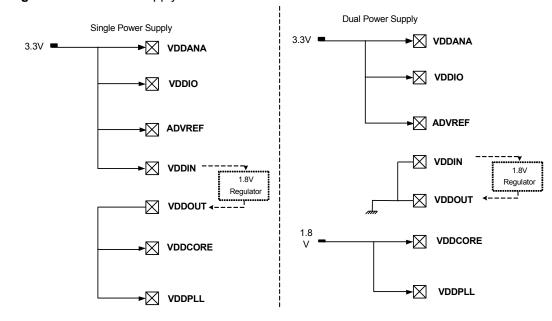



Figure 5-1. Power Supply

### 5.6.2 Voltage Regulator

### 5.6.2.1 Single Power Supply

The AT32UC3B embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be externally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. Two input decoupling capacitors must be placed close to the chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and GND as close to the chip as possible

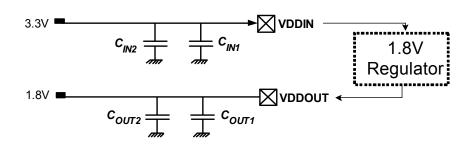



Figure 5-2. Supply Decoupling



Refer to Section 9.3 on page 38 for decoupling capacitors values and regulator characteristics.

For decoupling recommendations for VDDIO, VDDANA, VDDCORE and VDDPLL, please refer to the Schematic checklist.

#### 5.6.2.2 Dual Power Supply

In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent from leakage current.

To avoid over consumption during the power up sequence, VDDIO and VDDCORE voltage difference needs to stay in the range given Figure 5-3.

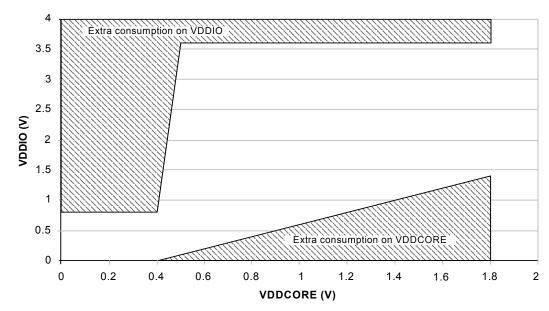
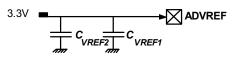




Figure 5-3. VDDIO versus VDDCORE during power up sequence

### 5.6.3 Analog-to-Digital Converter (ADC) reference.

The ADC reference (ADVREF) must be provided from an external source. Two decoupling capacitors must be used to insure proper decoupling.

Figure 5-4. ADVREF Decoupling



Refer to Section 9.4 on page 38 for decoupling capacitors values and electrical characteristics.

In case ADC is not used, the ADVREF pin should be connected to GND to avoid extra consumption.



# 6. Processor and Architecture

Rev: 1.0.0.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the AVR32 architecture. A summary of the programming model, instruction set, and MPU is presented. For further details, see the *AVR32 Architecture Manual* and the *AVR32UC Technical Reference Manual*.

### 6.1 Features

- 32-bit load/store AVR32A RISC architecture
  - 15 general-purpose 32-bit registers
  - 32-bit Stack Pointer, Program Counter and Link Register reside in register file
  - Fully orthogonal instruction set
  - Privileged and unprivileged modes enabling efficient and secure Operating Systems
  - Innovative instruction set together with variable instruction length ensuring industry leading code density
  - DSP extention with saturating arithmetic, and a wide variety of multiply instructions
- · 3-stage pipeline allows one instruction per clock cycle for most instructions
  - Byte, halfword, word and double word memory access
  - Multiple interrupt priority levels
- MPU allows for operating systems with memory protection

### 6.2 AVR32 Architecture

AVR32 is a high-performance 32-bit RISC microprocessor architecture, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. In addition, the instruction set architecture has been tuned to allow a variety of microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been compiled and analyzed to achieve the best code density in its class. In addition to lowering the memory requirements, a compact code size also contributes to the core's low power characteristics. The processor supports byte and halfword data types without penalty in code size and performance.

Memory load and store operations are provided for byte, halfword, word, and double word data with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely linked to the architecture and is able to exploit code optimization features, both for size and speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes. As an example, instructions with immediates often have a compact format with a smaller immediate, and an extended format with a larger immediate. In this way, the compiler is able to use the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a compact format with two operands as well as an extended format with three operands. The larger format increases performance, allowing an addition and a data move in the same instruction in a single cycle. Load and store instructions have several different formats in order to reduce code size and speed up execution.



The register file is organized as sixteen 32-bit registers and includes the Program Counter, the Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values from function calls and is used implicitly by some instructions.

### 6.3 The AVR32UC CPU

The AVR32UC CPU targets low- and medium-performance applications, and provides an advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch, one High Speed Bus master for data access, and one High Speed Bus slave interface allowing other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing. Also, power consumption is reduced by not needing a full High Speed Bus access for memory accesses. A dedicated data RAM interface is provided for communicating with the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems, such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory range allocated to it, and data transfers are performed using regular load and store instructions. Details on which devices that are mapped into the local bus space is given in the Memories chapter of this data sheet.

Figure 6-1 on page 19 displays the contents of AVR32UC.



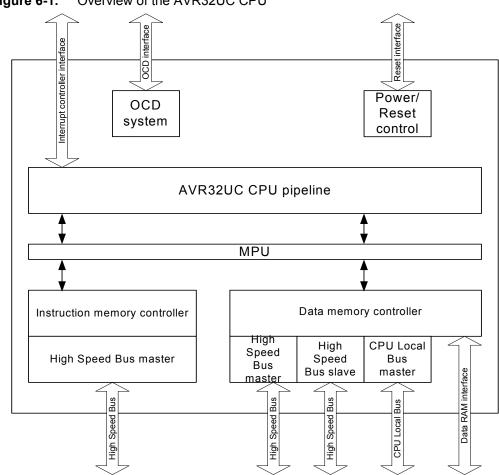
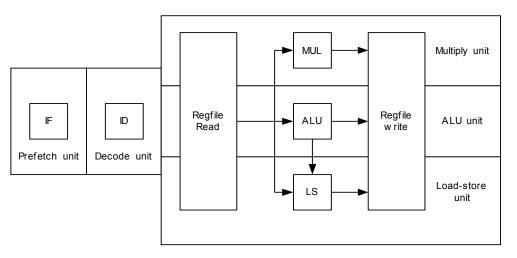



Figure 6-1. Overview of the AVR32UC CPU

#### 6.3.1 Pipeline Overview


AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruction Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to complete, and in this case, the instruction resides in the ID and EX stages for the required number of clock cycles. Since there is only three pipeline stages, no internal data forwarding is required, and no data dependencies can arise in the pipeline.

Figure 6-2 on page 20 shows an overview of the AVR32UC pipeline stages.



### Figure 6-2. The AVR32UC Pipeline



### 6.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

### 6.3.3 Java Support

AVR32UC does not provide Java hardware acceleration.

### 6.3.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

### 6.3.5 Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.



The following table shows the instructions with support for unaligned addresses. All other instructions require aligned addresses.

**Table 6-1.** Instructions with Unaligned Reference Support

| Instruction | Supported alignment |
|-------------|---------------------|
| ld.d        | Word                |
| st.d        | Word                |

### 6.3.6 Unimplemented Instructions

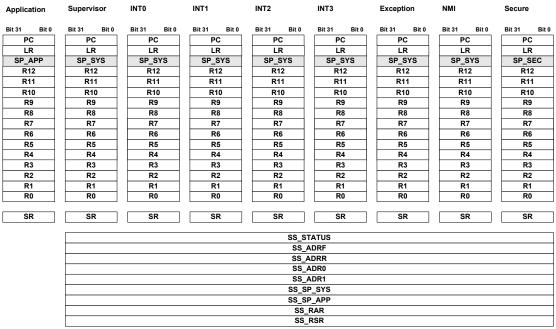
The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented Instruction Exception if executed:

- All SIMD instructions
- · All coprocessor instructions if no coprocessors are present
- retj, incjosp, popjc, pushjc
- tlbr, tlbs, tlbw
- cache

#### 6.3.7 CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist.

The Architecture Revision field in the CONFIG0 system register identifies which architecture revision is implemented in a specific device.


AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled for revision 1 or 2 is binary-compatible with revision 3 CPUs.



# 6.4 Programming Model

### 6.4.1 Register File Configuration

The AVR32UC register file is shown below.



### Figure 6-3. The AVR32UC Register File

### 6.4.2 Status Register Configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 6-4 on page 22 and Figure 6-5 on page 23. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T, and L bits, while the upper halfword contains information about the mode and state the processor executes in. Refer to the *AVR32 Architecture Manual* for details.

Figure 6-4. The Status Register High Halfword

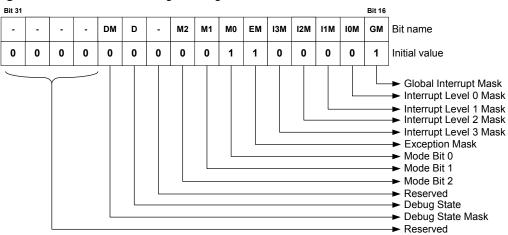







Figure 6-5. The Status Register Low Halfword

### 6.4.3 Processor States

### 6.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 6-2 on page 23.

| Priority | Mode                   | Security     | Description                               |
|----------|------------------------|--------------|-------------------------------------------|
| 1        | Non Maskable Interrupt | Privileged   | Non Maskable high priority interrupt mode |
| 2        | Exception              | Privileged   | Execute exceptions                        |
| 3        | Interrupt 3            | Privileged   | General purpose interrupt mode            |
| 4        | Interrupt 2            | Privileged   | General purpose interrupt mode            |
| 5        | Interrupt 1            | Privileged   | General purpose interrupt mode            |
| 6        | Interrupt 0            | Privileged   | General purpose interrupt mode            |
| N/A      | Supervisor             | Privileged   | Runs supervisor calls                     |
| N/A      | Application            | Unprivileged | Normal program execution mode             |

 Table 6-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

### 6.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.



All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the *retd* instruction.

### 6.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible using the privileged *mfsr* and *mtsr* instructions. The table below lists the system registers specified in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is responsible for maintaining correct sequencing of any instructions following a *mtsr* instruction. For detail on the system registers, refer to the *AVR32UC Technical Reference Manual*.

| Table 6-3. | System Registers |          |                                        |
|------------|------------------|----------|----------------------------------------|
| Reg #      | Address          | Name     | Function                               |
| 0          | 0                | SR       | Status Register                        |
| 1          | 4                | EVBA     | Exception Vector Base Address          |
| 2          | 8                | ACBA     | Application Call Base Address          |
| 3          | 12               | CPUCR    | CPU Control Register                   |
| 4          | 16               | ECR      | Exception Cause Register               |
| 5          | 20               | RSR_SUP  | Unused in AVR32UC                      |
| 6          | 24               | RSR_INT0 | Unused in AVR32UC                      |
| 7          | 28               | RSR_INT1 | Unused in AVR32UC                      |
| 8          | 32               | RSR_INT2 | Unused in AVR32UC                      |
| 9          | 36               | RSR_INT3 | Unused in AVR32UC                      |
| 10         | 40               | RSR_EX   | Unused in AVR32UC                      |
| 11         | 44               | RSR_NMI  | Unused in AVR32UC                      |
| 12         | 48               | RSR_DBG  | Return Status Register for Debug mode  |
| 13         | 52               | RAR_SUP  | Unused in AVR32UC                      |
| 14         | 56               | RAR_INT0 | Unused in AVR32UC                      |
| 15         | 60               | RAR_INT1 | Unused in AVR32UC                      |
| 16         | 64               | RAR_INT2 | Unused in AVR32UC                      |
| 17         | 68               | RAR_INT3 | Unused in AVR32UC                      |
| 18         | 72               | RAR_EX   | Unused in AVR32UC                      |
| 19         | 76               | RAR_NMI  | Unused in AVR32UC                      |
| 20         | 80               | RAR_DBG  | Return Address Register for Debug mode |
| 21         | 84               | JECR     | Unused in AVR32UC                      |
| 22         | 88               | JOSP     | Unused in AVR32UC                      |
| 23         | 92               | JAVA_LV0 | Unused in AVR32UC                      |
| 24         | 96               | JAVA_LV1 | Unused in AVR32UC                      |
| 25         | 100              | JAVA_LV2 | Unused in AVR32UC                      |

Table 6-3.System Registers



| Table 6-3. | System Registers (Continued) |          |                                        |
|------------|------------------------------|----------|----------------------------------------|
| Reg #      | Address                      | Name     | Function                               |
| 26         | 104                          | JAVA_LV3 | Unused in AVR32UC                      |
| 27         | 108                          | JAVA_LV4 | Unused in AVR32UC                      |
| 28         | 112                          | JAVA_LV5 | Unused in AVR32UC                      |
| 29         | 116                          | JAVA_LV6 | Unused in AVR32UC                      |
| 30         | 120                          | JAVA_LV7 | Unused in AVR32UC                      |
| 31         | 124                          | JTBA     | Unused in AVR32UC                      |
| 32         | 128                          | JBCR     | Unused in AVR32UC                      |
| 33-63      | 132-252                      | Reserved | Reserved for future use                |
| 64         | 256                          | CONFIG0  | Configuration register 0               |
| 65         | 260                          | CONFIG1  | Configuration register 1               |
| 66         | 264                          | COUNT    | Cycle Counter register                 |
| 67         | 268                          | COMPARE  | Compare register                       |
| 68         | 272                          | TLBEHI   | Unused in AVR32UC                      |
| 69         | 276                          | TLBELO   | Unused in AVR32UC                      |
| 70         | 280                          | PTBR     | Unused in AVR32UC                      |
| 71         | 284                          | TLBEAR   | Unused in AVR32UC                      |
| 72         | 288                          | MMUCR    | Unused in AVR32UC                      |
| 73         | 292                          | TLBARLO  | Unused in AVR32UC                      |
| 74         | 296                          | TLBARHI  | Unused in AVR32UC                      |
| 75         | 300                          | PCCNT    | Unused in AVR32UC                      |
| 76         | 304                          | PCNT0    | Unused in AVR32UC                      |
| 77         | 308                          | PCNT1    | Unused in AVR32UC                      |
| 78         | 312                          | PCCR     | Unused in AVR32UC                      |
| 79         | 316                          | BEAR     | Bus Error Address Register             |
| 80         | 320                          | MPUAR0   | MPU Address Register region 0          |
| 81         | 324                          | MPUAR1   | MPU Address Register region 1          |
| 82         | 328                          | MPUAR2   | MPU Address Register region 2          |
| 83         | 332                          | MPUAR3   | MPU Address Register region 3          |
| 84         | 336                          | MPUAR4   | MPU Address Register region 4          |
| 85         | 340                          | MPUAR5   | MPU Address Register region 5          |
| 86         | 344                          | MPUAR6   | MPU Address Register region 6          |
| 87         | 348                          | MPUAR7   | MPU Address Register region 7          |
| 88         | 352                          | MPUPSR0  | MPU Privilege Select Register region 0 |
| 89         | 356                          | MPUPSR1  | MPU Privilege Select Register region 1 |
| 90         | 360                          | MPUPSR2  | MPU Privilege Select Register region 2 |
| 91         | 364                          | MPUPSR3  | MPU Privilege Select Register region 3 |

~ .1\

