imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

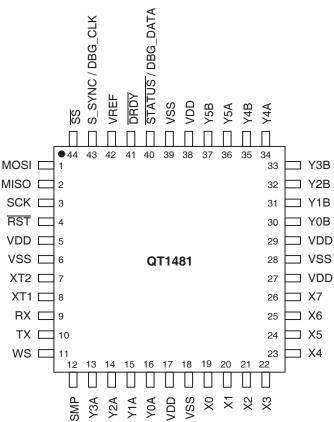
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Atmel

Atmel AT42QT1481

48-Key QMatrix FMEA IEC/EN60730 Touch Sensor IC

DATASHEET


Features

- Number of keys:
 - Up to 48
 - Technology:
 - Patented charge-transfer (transverse mode), with frequency hopping
- Key outline sizes:
 - 6 mm × 6 mm or larger (panel thickness dependent); widely different sizes and shapes possible
- Key spacings:
 - 8 mm or wider, center to center (panel thickness dependent)
- Electrode design:
 - Two-part electrode shapes (drive-receive); wide variety of possible layouts
- Layers required:
 - One layer (with jumpers), two layers (no jumpers)
- Electrode materials:
 - PCB, FPCB, silver or carbon on film, ITO on film
- Panel materials:
 - Plastic, glass, composites, painted surfaces (low particle density metallic paints possible)
- Adjacent Metal:
 - Compatible with grounded metal immediately next to keys
- Panel thickness:
 - Up to 50 mm glass, 20 mm plastic (key size dependent)
- Key sensitivity:
 - Individually settable via simple commands over serial interface
- Signal processing:
 - Self-calibration, auto drift compensation, noise filtering, Adjacent Key Suppression[®]
- Interfaces:
 - UART
 - SPI slave (4 MHz maximum clock rate)
 - STATUS indication pin
 - Debug output
- FMEA compliant design features
- IEC/EN/UL60730 compliant design features
 - UL approval
 - VDE compliance
 - For use in both class B and class C safety-critical products

- Detects and Reports Key Failure
- Power:
 - +4.75 to 5.25 V
- Package:
 - 44-pin 10 × 10 mm TQFP RoHS compliant

1. Pinout and Schematic

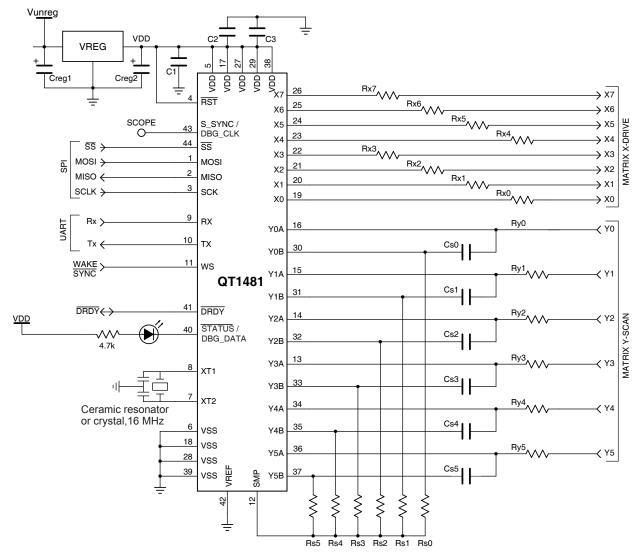
1.1 **Pinout Configuration**

1.2 Pin Descriptions

Table 1-1. Pin Listing

Pin	Name	Туре	Description	If Unused
1	MOSI	I	SPI data input	Leave open
2	MISO	0	SPI data output	Leave open
3	SCK	I	SPI clock input	Vdd
4	RST	I	Reset low; has internal 30 k Ω – 60 k Ω pull-up resistor. This pin should be controlled by the host.	Vdd
5	VDD	Р	Power	_
6	VSS	Р	Ground	_
7	XT2	0		-
8	XT1	I	Ceramic resonator or crystal,16 MHz	-
9	RX	I	UART receive data input	Vdd
10	ТХ	0	UART transmit data; has internal 20 k Ω – 50 k Ω pull-up resistor	Leave open
11	WS	I	Wake-up from sleep input and/or sync input	Vdd
12	SMP	I/O	Sample output	_
13	Y3A	I/O	Y line connection	Leave open
14	Y2A	I/O	Y line connection	Leave open
15	Y1A	I/O	Y line connection	Leave open
16	Y0A	I/O	Y line connection	Leave open
17	VDD	Р	Power	_
18	VSS	Р	Ground	-
19	X0	0	X matrix drive line	Leave open
20	X1	0	X matrix drive line	Leave open
21	X2	0	X matrix drive line	Leave open
22	X3	0	X matrix drive line	Leave open
23	X4	0	X matrix drive line	Leave open
24	X5	0	X matrix drive line	Leave open
25	X6	0	X matrix drive line	Leave open
26	X7	0	X matrix drive line/	Leave open
27	VDD	Р	Power	_
28	VSS	Р	Ground	-
29	VDD	Р	Power	-
30	Y0B	I/O	Y line connection	Leave open

Table 1-1. Pin Listing (Continued)


Pin	Name	Туре	Description	If Unused
31	Y1B	I/O	Y line connection	Leave open
32	Y2B	I/O	Y line connection	Leave open
33	Y3B	I/O	Y line connection	Leave open
34	Y4A	I/O	Y line connection	Leave open
35	Y4B	I/O	Y line connection	Leave open
36	Y5A	I/O	Y line connection	Leave open
37	Y5B	I/O	Y line connection	Leave open
38	VDD	Р	Power	-
39	VSS	Р	Ground	-
40	STATUS / DBG_DATA	0	Status output (active low) or Debug Data; has internal 20 k Ω – 50 k Ω pull-up resistor	Leave open
41	DRDY	I/O	This pin MUST be used. 1 = comms ready; needs a 100 μ s grace period before checking. Open-drain with internal 20 k Ω – 50 k Ω pull-up resistor	_
42	VREF	I	Connect to Vss	-
43	S_SYNC / DBG_CLK	0	Scope Synchronization output or Debug Clock	Leave open
44	SS	I	SPI slave select; has internal 20 k Ω – 50 k Ω pull-up resistor	Leave open

 I
 Input only
 O
 Output only, push-pull
 I/O
 Input/output

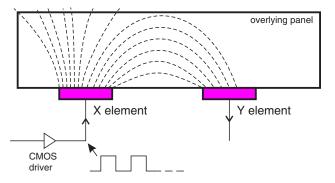
 OD
 Open drain output
 P
 Ground or power
 Input/output

1.3 Schematic

Figure 1-1. Typical Circuit

For component values in Figure 1-1 check the following sections:

- Section 2.7 on page 10: Cs capacitors (Cs0 Cs5)
- Section 2.8 on page 11: Sample resistors (Rs0 Rs5)
- Section 2.10 on page 12: Matrix resistors (Rx0 Rx7, Ry0 Ry5)
- Section 2.13 on page 14: Power Supply


2. Hardware and Functional

2.1 Introduction

The AT42QT1481 (QT1481) is a digital burst mode sensor, designed specifically for QMatrix layout touch controls; it includes all signal processing functions necessary to provide stable sensing under a wide variety of changing conditions. Only a few external parts are required for operation. The entire circuit can be built within a few square centimeters of single-sided PCB area. CEM-1 and FR1 punched, single-sided materials can be used for the lowest possible cost. The PCB's rear can be mounted flush on the back of a glass or plastic panel using a conventional adhesive, such as 3M VHB two-sided adhesive acrylic film.

The QT1481 employs transverse charge-transfer (QT[™]) sensing, a technology that senses changes in electrical charge forced across two electrode elements by a pulse edge (see Figure 2-1).

Figure 2-1. Field Flow Between X and Y Elements

The QT1481 allows a wide range of key sizes and shapes to be mixed together in a single touch panel. The QT1481 is designed for use with up to 48 keys.

The QT1481 uses both UART and SPI interfaces (only one at a time) to allow key data to be extracted and to permit individual key parameter setup. The interface protocol uses simple single byte commands and responds with single byte responses in most cases. The command structure is designed to minimize the amount of data traffic while maximizing the amount of information conveyed.

In addition to normal operating and setup functions the QT1481 can also report back actual signal strengths and error codes.

QmBtn software for the PC can be used to program the operation of the IC as well as read back key status and signal levels in real time.

A Debug output interface is also supported, which can be used to monitor many operating variables during product development.

The QT1481 incorporates many tests and checks to enable a product to achieve FMEA and EN60730 compliance. The results of some tests need to be checked by the host. To achieve a compliant design, the host must read back the test results and confirm their validity.

The QT1481 is able to scan the touch matrix twice as fast as previous generation devices; it can take twice the number of samples in a given time frame. This means the QT1481 is much better equipped to continue normal operation in the face of heavy noise.

See Appendix C. on page 68 for information on conducted noise immunity.

2.2 Key Numbers

The keys are numbered from 0 - 47. Table 2-1 shows the key numbering.

	X7	X6	X5	X4	X3	X2	X1	X0	
Y0	7	6	5	4	3	2	1	0	
Y1	15	14	13	12	11	10	9	8	
Y2	23	22	21	20	19	18	17	16	Key
Y3	31	30	29	28	27	26	25	24	numbers
Y4	39	38	37	36	35	34	33	32	
Y5	47	46	45	44	43	42	41	40	

Table 2-1. Key Numbers

2.3 Matrix Scan Sequence

Key scanning begins with location X = 0, Y = 0 (key 0). All keys on X0 are scanned first, then X1 and finishing with all keys on X7 (for example, the sequence X0Y0, X0Y1 – X0Y5, X1Y0, X1Y1...). Table 2-1 shows the key numbering.

All keys on the same X line are excited together in a burst of acquisition pulses whose length is determined by the Setups parameter BL (see Section 5.9 on page 43); this can be set to a different value for each key. A burst is completed entirely before the next X line is excited. At the end of each burst the resulting signals, one for each Y line, are converted to digital form and processed. The burst length directly impacts key gain. Each key can have a different burst length in order to allow tailoring of key sensitivity. Although all keys on an entire X line are excited simultaneously, the charge is selectively captured at each Y line according to the burst length selected.

2.4 Enabling/Disabling Keys – Burst Paring

Unused keys are always pared from the computation sequence in order to optimize speed. If all keys are disabled on any given X, the entire X line is also pared from the burst sequence. If only two X lines have enabled keys, only two timeslots are used for scanning.

The NDIL parameter is used to enable and disable keys in the matrix. Setting NDIL = 0 for a key disables it (Section 5.5 on page 41). Keys that are disabled are eliminated from the scan sequence to save scan time and thus power. If all keys on an X line are disabled, the burst for the entire X line is removed from the scan sequence, further saving time and power. This has the consequence of affecting the scan rate of the entire matrix as well as the time required for initial matrix calibration. It does not affect the time required to calibrate an individual key once the matrix is initially calibrated after power-up or reset.

It is very important that only those keys that physically exist are enabled. All non-existent keys must be disabled (NDIL = 0) otherwise other keys in the matrix can incorrectly report their signal as zero.

2.5 Response Time

The response time of the QT1481 depends on:

- the burst spacing
- the number of enabled X lines (Section 5.5 on page 41)
- the detect integrator settings (Section 5.5 on page 41)
- Mains Sync
- and the serial polling rate by the host microcontroller

Example, without mains sync:

- NXE = Number of X lines enabled = 8
- NDIL = Norm detect integrator limit = 2
- FDIL = Fast detect integrator limit = 5
- BS = Burst spacing = 1 ms
- FMEA = FMEA test slot = 1
- HPR = Host polling rate = 10 ms
- TMS = Time to perform one Matrix Scan

The worst case response time is computed as:

 $Tr = (TMS \times NDIL) + HPR$

 $TMS = ((NXE + FMEA + (FDIL - 1)) \times BS)$

 $Tr = (((NXE + FMEA + (FDIL - 1)) \times BS) \times NDIL) + HPR$

For the above example values:

 $Tr = (((8 + 1 + (5 - 1)) \times 1 ms) \times 2) + 10 ms = 36 ms$

The use of the STATUS pin to trigger host sampling can reduce this to approximately 26 ms by eliminating the majority of the host polling time (see Section 5.20 on page 47).

TMS varies with the configurations of Burst Length (see Section 5.9 on page 43) and Dwell (see Section 5.13 on page 45), and should be measured using an oscilloscope.

Example, with mains sync:

The value calculated for TMS needs to be rounded up to the nearest multiple of the mains periods before proceeding with the rest of the calculation. Continuing with the above example, $TMS = ((8 + 1 + (5 - 1)) \times 1 \text{ ms}) = 13 \text{ ms}.$

Rounded up to a multiple of whole mains periods, this becomes 20 ms (assuming a mains frequency of 50 Hz).

The worst case response time is then computed as:

Tr = (20 ms × 2) + 10 ms = 50 ms

An X line is considered enabled if any key on that X line is enabled. An X line is disabled if all keys on that X line are disabled.

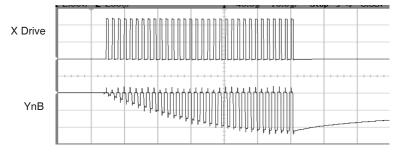
Note: TMS will be stretched by 15 ms if STS_DEBUG is enabled.

2.6 Oscillator

The oscillator can use either a quartz crystal or a ceramic resonator. In all cases, XT1 and XT2 must both be loaded with low-value capacitors to ground. These capacitors should be in the range 12 pF to 22 pF. Follow the manufacturer's recommendations for the appropriate value within this range. Resonators and crystals requiring loading capacitors outside this range are unsuitable for operation with the QT1481.

A resistor of value $1M\Omega$ is connected internally between XT1 and XT2.

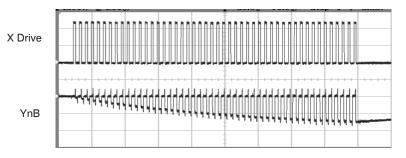
The frequency of oscillation should be 16 MHz ±1% for accurate UART transmission timing.


2.7 Sample Capacitor; Saturation Effects

The charge sampler capacitors on the Y pins (Cs0 – Cs5) should be NPO (preferred), X7R ceramics or PPS film; NPO offers the best stability. The value of these capacitors is not critical but 4.7 nF is recommended for most cases.

Cs voltage saturation is shown in Figure 2-2. This nonlinearity is caused by excessive voltage accumulation on Cs inducing conduction in the pin protection diodes. This badly saturated signal destroys key gain and introduces a strong thermal coefficient which can cause phantom detection.

Figure 2-2. VCs – Nonlinear During Burst

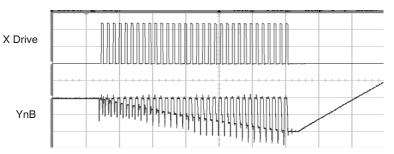

The cause of this is either from the burst length being too long, the Cs value being too small, or the X-Y transfer coupling being too large. Solutions include loosening up the interdigitation of key structures, greater separation of the X and Y lines on the PCB, increasing Cs, and decreasing the burst length.

Increasing Cs makes the part slower; decreasing burst length makes it less sensitive. A better PCB layout and a looser key structure (up to a point) have no negative effects.

Cs voltages should be observed on an oscilloscope with the matrix layer bonded to the panel material; if the Rs side of any Cs ramps is more negative than -0.25 V during any burst (not counting overshoot spikes which are probe artifacts), there is a potential saturation problem.

Figure 2-3 on page 11 shows a defective waveform similar to that of Figure 2-2, but in this case the distortion is caused by excessive stray capacitance coupling from the Y line to AC ground; for example, from running too near and too far alongside a ground trace, ground plane, or other traces. The excess coupling causes the charge-transfer effect to dissipate a significant portion of the received charge from a key into the stray capacitance.

Figure 2-3. VCs – Poor Gain, Nonlinear During Burst (Excess capacitance from Y line to Gnd)


This phenomenon is more subtle; it can be best detected by increasing BL to a high count and watching what the waveform does as it descends towards and below -0.25 V. The waveform appears deceptively straight, but it slowly starts to flatten even before the -0.25 V level is reached.

A correct waveform is shown in Figure 2-4. Note that the bottom edge of the bottom trace is substantially straight (ignoring the downward spikes).

Unlike other QT circuits, the Cs capacitor values on QT1481 have no effect on conversion gain. However, they do affect conversion time.

Unused Y lines should be left open.

Figure 2-4. VCs – Correct

2.8 Sample Resistors

The sample resistors (Rs0 – Rs5) are used to perform single-slope analog-to-digital (ADC) conversion of the acquired charge on each Cs capacitor. These resistors directly control acquisition gain; larger values of Rs proportionately increase signal gain. Values of Rs can range from 220 k Ω to 4.7 M Ω . 470 k Ω is a typical value for most purposes.

Larger values for Rs also increase conversion time and may reduce the fastest possible key sampling rate, which can impact response time especially with larger numbers of enabled keys.

Unused Y lines do not require an Rs resistor.

2.9 Signal Levels

Using Atmel QmBtn software it is easy to observe the absolute level of signal received by the sensor on each key. The signal values should normally be in the range of 250 to 750 counts with properly designed key shapes (see the *Touch Sensors Design Guide*, available on the Atmel website). However, long adjacent runs of X and Y lines can also artificially boost the signal values, and induce signal saturation: this is to be avoided. The X-to-Y coupling should come mostly from intra-key electrode coupling, not from stray X-to-Y trace coupling.

QmBtn software is available free of charge on the Atmel website.

The signal swing from the smallest finger touch should preferably exceed 10 counts, with 15 being a reasonable target. The signal threshold setting (NTHR) should be set to a value guaranteed to be less than the signal swing caused by the smallest touch.

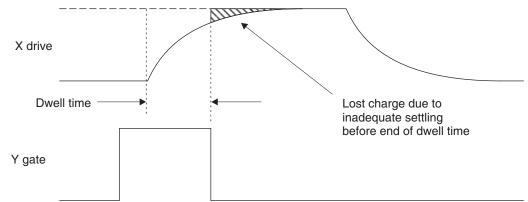
Increasing the burst length (BL) parameter increases the signal strengths as will increasing the sampling resistor (Rs) values.

2.10 Matrix Series Resistors

The X and Y matrix scan lines should use series resistors (Rx0 – Rx7 and Ry0 – Ry5 respectively) for improved EMC performance (Figure 1-1 on page 6).

X drive lines require Rx in most cases to reduce edge rates and thus reduce RF emissions. Values range from 1 k Ω to 100 k Ω , typically 1 k Ω .

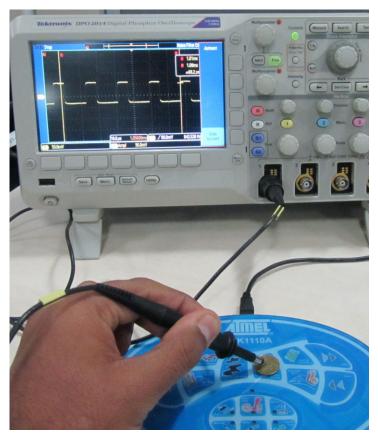
Y lines need Ry to reduce EMC susceptibility problems and in some extreme cases, ESD. Values range from 1 k Ω to 100 k Ω , typically 1 k Ω . Y resistors act to reduce noise susceptibility problems by forming a natural low-pass filter with the Cs capacitors.


It is essential that the Rx and Ry resistors and Cs capacitors be placed very close to the chip. Placing these parts more than a few millimeters away opens the circuit up to high frequency interference problems (above 20 MHz) as the trace lengths between the components and the chip start to act as RF antennas.

The upper limits of Rx and Ry are reached when the signal level and hence key sensitivity are clearly reduced. The limits of Rx and Ry depend on key geometry and stray capacitance, and thus an oscilloscope is required to determine optimum values of both.

Dwell time is the duration in which charge coupled from X to Y is captured (Figure 2-5 on page 12). Increasing the dwell time increases the signal levels lost to higher values of Rx and Ry, as shown in Figure 2-5. Too short a dwell time causes charge to be 'lost', if there is too much rising edge roll-off. Lengthening the dwell time causes this lost charge to be recaptured, thereby restoring key sensitivity. In the QT1481 dwell time is adjustable (see Section 5.13 on page 45).

Dwell time problems can also be solved by either reducing the stray capacitance on the X line(s) (by a layout change – for example, by reducing X line exposure to nearby ground planes or traces) or the Rx resistor needs to be reduced in value (or a combination of both approaches).



Note: The Dwell time is a minimum of approximately 125 ns - see Section 5.13 on page 45

One way to determine X-line settling time is to monitor the fields using a patch of metal foil or a small coin over the key (see Figure 2-6). Only one key along a particular X line needs to be observed, as each of the keys along a particular X line are identical. The dwell time should exceed the observed 95% settling of the X-pulse by 25% or more.

Figure 2-6. Probing X-Drive Waveforms With a Coin

2.11 Key Design

For information about key design refer to the Touch Sensors Design Guide on the Atmel website.

2.12 PCB Layout, Construction

2.12.1 Overview

It is best to place the chip near the touch keys on the same PCB so as to reduce X and Y trace lengths, thereby reducing the chances for EMC problems. Long connection traces act as RF antennas. The Y (receive) lines are much more susceptible to noise pickup than the X (drive) lines.

Even more importantly, all signal related discrete parts (resistors and capacitors) should be very close to the body of the chip. Wiring between the chip and the various resistors and capacitors should be as short and direct as possible to suppress noise pickup.

Ground planes and traces should NOT be used around the keys and the Y lines from the keys. Ground areas, traces, and other adjacent signal conductors that act as AC ground (such as Vdd) absorb the received key signals and reduce signal-to-noise ratio (SNR) and thus are counterproductive. Ground planes around keys also make water film effects worse.

Ground planes, if used, should be placed under or around the QT1481 chip itself and the associated resistors and capacitors in the circuit, under or around the power supply, and back to a connector, but nowhere else.

2.12.2 LED Traces and Other Switching Signals

Digital switching signals near the Y lines induce transients into the acquired signals, deteriorating the SNR performance of the QT1481. Such signals should be routed away from the Y lines, or the design should be such that these lines are not switched during the course of signal acquisition (bursts).

LED terminals which are multiplexed or switched into a floating state and which are within or physically very near a key structure (even if on another nearby PCB) should be bypassed to either Vss or Vdd with at least a 10 nF capacitor of any type, to suppress capacitive coupling effects which can induce false signal shifts. LED terminals which are constantly connected to Vss or Vdd do not need further bypassing.

2.12.3 PCB Cleanliness

Modern no-clean flux is generally compatible with capacitive sensing circuits.

CAUTION: If a PCB is reworked in any way, it is highly likely that the behavior of the no-clean flux will change. This can mean that the flux changes from an inert material to one that can absorb moisture and dramatically affect capacitive measurements due to additional leakage currents. If so, the circuit can become erratic and exhibit poor environmental stability.

If a PCB is reworked in any way, clean it thoroughly to remove all traces of the flux residue around the capacitive sensor components. Dry it thoroughly before any further testing is conducted.

2.13 Power Supply Considerations

For Vdd information see Section 6.1 and Section 6.2 on page 58.

As the QT1481 uses the power supply as an analog reference, the power should be very clean and come from a separate regulator. A standard inexpensive Low Dropout (LDO) type regulator should be used; it should not also be used to power other loads such as relays or other high current devices. Load shifts on the output of the LDO can cause Vdd to fluctuate enough to cause false detection or sensitivity shifts.

Ceramic 0.1 μ F bypass capacitors should be placed very close and routed with short traces to all power pins of the IC. There should be at least three such capacitors around the part.

2.14 Startup/Calibration Times

The QT1481 employs a rigorous initialization and self-check sequence for EN60730 compliance. If the self-tests are passed, the last step in this sequence enables the serial communication interfaces. The communication interfaces are not enabled if a safety critical fault is detected during the startup sequence. The QT1481 requires initialization times as follows:

- 1. Normal reset to ability to communicate: 110 ms.
- 2. From very first power-up to ability to communicate:

2,200 ms (one time event to initialize all of EEPROM, or to recover EEPROM copy from Flash in the event of EEPROM corruption).

3. From power-up to ability to communicate:

140 ms in the event the setups have been changed and the part needs to back up the EEPROM to Flash.

The QT1481 determines a reference level for each key by calibrating all the keys immediately after initialization. Each key is calibrated independently and in parallel with all other enabled keys. Calibration takes between 11 and 62 keyscan cycles; each cycle being made up of one sample from each enabled key. The QT1481 ends calibration for a key if its reference has converged with the signal DC level. The calibration time is shortest when the keys signals are stable, typically increasing with increasing noise levels to the maximum of 62 keyscan cycles.

An error is reported for each key where calibration continues for the maximum number of keyscan cycles and the key's reference does not appear to have converged with the signals DC level. Noise levels can vary from key to key such that some keys may take longer to calibrate than others. However, the QT1481 can report during this interval that the key(s) affected are still in calibration via the QT1481 status bits. Table 2-2 shows keyscan cycle times and calibration times per key versus dwell time and burst length for all 48 keys enabled. The values given assume that MSYNC = off, SDC = 0 and STS_DEBUG = 0.

Setups	Keyscan Cycle Time	Calibration Time (min)	Calibration Time (max)
BL = 0 (16 pulses) DWELL = 0 (125 ns) FREQ0 = 0 Signal level = 200 counts	6 ms	66 ms (11 × 6)	372 ms (62 × 6)
BL = 3 (64 pulses) DWELL = 15 (9.9 μs) Signal level = 400 counts	17 ms	187 ms (11 × 17)	1054 ms (62 × 17)

Table 2-2. Keyscan Cycle and Calibration Times

2.15 Reset Input

Should communications with the QT1481 be lost the \overline{RST} pin can be used to reset the QT1481 to simulate a powerdown cycle, in order to then bring the QT1481 up into a known state. The pin is active low, and a low pulse lasting at least 10 µs must be applied to this pin to cause a reset.

To provide for proper operation during power transitions the QT1481 has an internal brownout detector set to 4 V.

The reset pin has an internal $30 \text{ k}\Omega - 60 \text{ k}\Omega$ resistor. A 2.2 µF capacitor plus a diode to Vdd can be connected to this pin as a traditional reset circuit, but this is not necessary.

A Force Reset command, $0 \ge 04$, also generates an equivalent hardware reset where the device is still in communication with the host. Where the QT1481 has detected a failure of one of the internal EN60730 checks and has subsequently locked up in an infinite loop, only a power cycle or an external hardware reset can restore normal operation. It is strongly recommended that the host has control over the RST pin.

If an external hardware reset is not used, this pin may be connected to Vdd or left floating.

2.16 Detection Integrators

See also Section 5.5 on page 41.

The QT1481 features a detection integration mechanism, which acts to confirm a detection in a robust fashion. A per-key counter is incremented each time the key has exceeded its threshold and stayed there for a number of acquisitions. When this counter reaches a preset limit the key is finally declared to be touched.

For example, if the limit value is 10, then the QT1481 has to exceed its threshold and stay there for a minimum of 10 acquisitions before the key is declared to be touched.

The QT1481 uses a two-tier confirmation mechanism having two such counters for each key. These can be thought of as inner loop and outer loop confirmation counters.

The inner counter is referred to as the fast-DI. This acts to attempt to confirm a detection via rapid successive acquisition bursts, at the expense of delaying the sampling of the next key. Each key has its own fast-DI counter and limit value. These limits can be changed via the Setups block on a per-key basis.

The outer counter is referred to as the normal-DI. This DI counter increments whenever the fast-DI counter has reached its limit value. The normal-DI counter also has a limit value which is settable on a per-key basis.

If a normal-DI counter reaches its terminal count, the corresponding key is declared to be touched and becomes active. Note that the normal-DI can only be incremented once per complete keyscan cycle (more slowly), whereas the fast-DI is incremented on the spot without interruption (at the same burst spacing timing).

The net effect of this mechanism is a multiplication of the inner and outer counters and hence a highly noise-resistant sensing method. If the inner limit is set to 5, and the outer to 3, the net effect is a minimum of $5 \times 3 = 15$ threshold crossings to declare a key as active.

2.17 Sleep

The QT1481 can be configured for automatic sleep using the Sleep Drift Compensation (SDC) setup, and woken with a low pulse applied to the WS pin.

If the sleep feature is enabled using SDC (see Section 5.16 on page 46), and the sleep command (0x16) has been issued, the QT1481 sleeps whenever possible to conserve power. Periodically, it should be woken by the host using the WS pin. Upon being woken, the matrix is scanned and the QT1481 returns to sleep unless there is activity which demands further attention. The QT1481 returns to sleep automatically after a period of inactivity, the duration of which is defined by the AWAKE feature.

At least one full matrix scan is always performed after waking up and before returning to sleep. At the end of each matrix scan, the part returns to sleep unless recent activity, such as a touch event, demands further attention. If there has been recent activity, the part performs another complete matrix scan before attempting to sleep once again. This process is repeated indefinitely until the activity stops and the part returns to sleep.

Key touch activity forces the matrix scanning into free run whereby each matrix scan is not interleaved with sleep. The part will not sleep while any key is calibrating or if any touch events are detected at any key in the most recent scan of the key matrix. If the sleep feature is disabled in the setups, the QT1481 never sleeps.

Sleep should be used with caution if the QT1481 is being used in an FMEA or EN60730 compliant design because all operations are stopped within the QT1481 while the part is asleep and the host might have difficulty distinguishing between the EN60730 counters appearing to run slow because the part is intermittently sleeping, and faulty operation. However, in the knowledge it has configured the QT1481 for sleep, the host can take this into account. For example, the host could wake the QT1481 at suitable intervals, check for correct operation and then return the QT1481 to sleep.

Also see "Mains Sync – MSYNC", Section 5.14 on page 45.

2.18 FMEA Tests

Failure Modes and Effects Analysis (FMEA) is a tool used to determine critical failure problems in control systems. FMEA analysis is being applied increasingly to a wide variety of applications including domestic appliances. To survive FMEA testing the control board must survive any single problem in a way that the overall product can either continue to operate in a safe way, or shut down.

The most common FMEA requirements regard opens and shorts analysis of adjacent pins on components and connectors. However, other criteria must usually be taken into account, for example complete QT1481 failure.

The QT1481 incorporates a number of special self-test features which allow products to pass such FMEA tests easily, and enable key failure to be detected. These tests are performed in an extra burst slot after the last enabled key.

The sequence of tests are performed repeatedly during normal running once all initialization is complete. During initialization, all FMEA error flags are cleared. Any FMEA errors are reported as the tests are performed for the first time.

The FMEA testing is done on all enabled keys in the matrix, and results are reported via the serial interface. Disabled keys are not tested.

Assuming the part does not sleep, the real time that elapses from the start of one sequence of FMEA tests to the start of the next, or the FMEA sequence time, never exceeds 2 s.

Also, since the QT1481 only communicates in slave mode, the host can determine immediately if the QT1481 has suffered a catastrophic failure. The QT1481 can also participate in cross-checking the integrity of the host controller, and even reset the host if no communications have been heard from it in a short while (via the STATUS pin output).

The FMEA tests performed are:

- X drive line shorts to Vdd and Vss
- X drive line shorts to other pins
- X drive signal deviation
- Y line shorts to Vdd and Vss
- Y line shorts to other pins
- X to Y line shorts
- Cs capacitor checks including shorts and opens
- Vref test
- Key gain (see Section 5.19 on page 47)

Other tests incorporated into the QT1481 include:

- A test for signal levels against a preset minimum value (Lower Signal Limit (LSL) setup, see Section 5.18 on page 47). If any signal level falls below this level, an error flag is generated.
- 16-bit CRC communications checks on all data returns.
- Last-command command to verify that an instruction was properly received.
- Loss of communications reset of the host controller.

2.19 EN60730 Compliance

The QT1481 also incorporates special test features which, together with the FMEA tests, allow products to achieve IEC/EN/UL60730 compliance with ease. IEC/EN60730 compliance demands dynamic verification of all safety related components and sub-components within a product. The QT1481 is able to verify some sub-components internally, but others require verification by a separate, independent processing unit with another timing source.

To this end the QT1481 exposes a number of internal operating parameters through its serial communications interface and requires the cooperation of a host to check and verify these parameters regularly. It is also necessary for the host to verify the communications by checking and validating the CRC, which the QT1481 appends to data returns. If a CRC check should fail, the host should not rely on the data but retry the transmission.

Occasional CRC failures might be anticipated as a result of noise spikes. Repeated CRC failures might indicate a safety-critical failure. Where the QT1481 is able to verify sub-components internally, but any such verification fails, the QT1481 disables serial communication and locks up in an infinite loop. The host can detect this condition if repeated CRC failures are observed.

During normal operation the host must perform regular reads of the IEC/EN60730 counters (see Section 4.7 on page 28) to verify correct operation of the QT1481. The host must also perform regular reads of the QT1481 status (see Section 4.7 on page 28) and verify there are no errors reported. The FMEA error flag, LSL error flag and Setups CRC error flag must all be considered as part of an IEC/EN60730 compliant design.

The host can try to recover from any safety critical failure by resetting the QT1481 using its RST pin. The host should allow a grace period in consideration of the start-up and initialisation time the QT1481 requires after reset to ability to communicate (see Section 2.14 on page 14).

The sub-components that the QT1481 is able to verify internally are tested repeatedly during the normal running of the device, and the various tests run in parallel. As each test ends the result is recorded and the test is restarted. The real time that elapses from the start of each test to the start of the next iteration of the same test is called the failure detect time, or hazard time, the maximum time for which an error could be undetected.

Each test is broken down into a number of smaller parts, each of which is processed in turn during each matrix scan. Each test is therefore completed either after a number of matrix scans, as shown in Table 2-3.

Test	Required Matrix Scans to complete test
FMEA	8
Other	18
Variable Memory	2304
Firmware CRC	2000
Setups CRC	44

Table 2-3. Test run times (measured in matrix scans)

Table 2-4 shows matrix scan times for Setups that yield the shortest matrix scan time and a much longer scan time resulting from the use of long dwell and low frequency settings.

Setups Conditions	Matrix Scan Time (ms)
BL = 0 (16 pulses), DWELL = 0 (0.13 μ s), FREQ0 = 1, All keys enabled, FHM = 0, MSYNC = 0 (off), SDC = 0 (sleep disabled), DEBUG=0 (off).	7.5
BL = 3 (64 pulses), DWELL = 13 (5.1 μ s), FREQ0 = 25, All keys enabled, FHM = 0, MSYNC = 0 (off), SDC = 0 (sleep disabled), DEBUG = 0 (off).	17

Table 2-4. Matrix Scan Times

Longer matrix scan times are possible than those shown in Table 2-4 by using even longer dwell times and higher values for FREQ0 (lower burst frequencies), but these are considered extreme settings.

Table 2-5 shows the failure detect times for the internal tests assuming a matrix scan time of 9ms.

Test	Failure Detect Time (ms)	
FMEA	72	
Other	162	
Variable Memory	20736	
Firmware CRC	18000	
Setups CRC 396		
Conditions: Matrix scan time = 9 ms. QT1481 does not sleep for duration of tests.		

Table 2-5. Failure Detect Time

Longer failure detect times are possible than those shown in Table 2-5 where the matrix scan time is longer. The failure detect times are proportional to the matrix scan time. The failure detect time for other setups can therefore be determined by observing the matrix scan time using an oscilloscope and scaling the times given in Table 2-5 accordingly. Alternatively, the failure detect times can be calculated by taking the numbers from Table 2-3 and multiplying them by the matrix scan time.

Unnecessarily long settings of dwell and low burst frequencies should be avoided because these will also result in undesirably long failure detect times.

2.19.1 UL approval / VDE compliance

The QT1481 has been given a compliance test report by VDE and is approved by UL as a component suitable for use in both class B and class C safety critical products. By using this device and following the safety critical information throughout this datasheet, manufacturers can easily add a touch sense interface to their product, and be confident it can also readily pass UL or VDE testing.

2.20 Frequency Hopping

This QT1481 supports frequency hopping, which tries to select a sampling frequency that does not clash with noise at specific frequencies elsewhere in products or product operating environments. It tries to hop away from the noise.

During the acquisition bursts, a sequence of pulses are emitted with a particular spacing, which equates to a particular sampling frequency. If the latter should coincide with significant noise generated elsewhere, touch sensing may be seriously impaired or false detections may occur. To help combat such noise, the burst frequency can either be preset to one specific frequency (with frequency hopping disabled), away from the noisy frequency, or frequency hopping can be enabled and set to switch dynamically between three specific configured frequencies or even set to sweep a configured range of frequencies.

3. Serial Communications

3.1 Introduction

The QT1481 uses either SPI or UART communications modes; it cannot use both at the same time. The QT1481 responds on whichever interface it receives a command. The QT1481 also includes a Debug output interface, which can be used to monitor many operating variables during product development.

The host device always initiates communications sequences; the QT1481 is incapable of chattering data back to the host. This is intentional for FMEA and IEC/EN60730 purposes so that the host always has total control over the communications with the QT1481.

- In SPI mode the QT1481 is a slave, so that even return data following a command is controlled by the host.
- In UART mode, the QT1481 still only responds to the host after a command, but the responses are not controlled by the host.

A command from the host always ends in a response of some kind from the QT1481. Some transmission types from the host or the QT1481 employ a CRC check byte to provide for robust communications.

A $\overline{\text{DRDY}}$ line that handshakes transmissions is provided. This is needed by the host from the QT1481 to ensure that transmissions are not sent when the QT1481 is busy or has not yet processed a prior command. In UART mode this line is bidirectional, and the QT1481 can use it to suspend transmissions back to the host if the host is busy.

If the host does not observe the correct DRDY timing, random communication errors may result.

Initiating or Resetting Communications:

After a reset, or should communications be lost due to noise or out-of-sequence reception, the host should repeatedly wait for a period not less than the QT1481 communications time-out (110 ms \pm 5 ms), and send a 0×0 F (return last command) command until the complement of 0×0 F, which is $0 \times F0$, is received. Then, the host can resume normal run mode communications from a clean start.

Poll rate:

The typical poll rate in normal run operation should be no faster than once per 10 ms. Even 50 ms is more than fast enough to extract status data using the 0×06 command overview (see Section 4.7 on page 28) in most situations. Streaming commands like the $0 \times 0D$ command (dump setups (see Section 4.10 on page 31)) or multi-byte response commands like 0×07 can and should pace at the maximum possible rate.

Run Poll Sequence:

In normal run mode the host should limit traffic with a minimalist control structure (see Section 4.19 on page 32). The host should just send a 0×06 command until something requires a deeper state inspection. If there is more than one key in detect, the host should use 0×07 to find which additional keys are in detect. If there isan error, the host should ascertain the error type based on command $0 \times 0B$ and take appropriate action.

3.2 DRDY Pin

DRDY is an open-drain output (in SPI mode) or bidirectional pin (in UART mode) with an internal 20 k Ω – 50 k Ω pullup resistor.

Most communications failures are the result of failure to properly observe the DRDY timing.

Serial communications pacing is controlled by this pin. Use of DRDY is critical to successful communications with the QT1481. In either UART or SPI mode, the host is permitted to perform a data transfer only when DRDY has returned high. Additionally, in UART mode, the QT1481 delays responses to the host if DRDY is being held low by the host.

After each byte transfer, DRDY goes low after a short delay and remains low until the QT1481 is ready for another transfer. A short delay occurs before DRDY is driven low because the QT1481 may otherwise be busy and requires a finite time to respond.

DRDY may go low for a microsecond only. During the period from the end of one transfer until DRDY goes low and back high again, the host should not perform another transfer. Therefore, before each byte transmission the host should first check that DRDY is high again.

If the host wants to perform a byte transfer with the QT1481 it should behave as follows:

- 1. Wait at least 100 μs after the previous transfer (time S5 in Figure 3-2 on page 23: DRDY is guaranteed to go low before this 100 μs expires).
- 2. Wait until DRDY is high (it may already be high).
- 3. Perform the next transfer with the QT1481.

In most cases it takes up to 3 ms for DRDY to return high again. However, this time is longer with some commands or if the STS_DEBUG setup is enabled, as follows:

0x01 (Setups load): <20 ms
0x02 (Low Level Cal and Offset): <20 ms
Add 15 ms to the above times if the STS DEBUG setup is enabled.</pre>

Other DRDY specifications:

Min time \overline{DRDY} is low: 1 µs Max time \overline{DRDY} is low after reset: 100 ms

3.3 SPI Communications

No special configuration is required to make the QT1481 operate in SPI mode. The QT1481 responds on the interface which is used to command it. SPI and UART interfaces cannot be used simultaneously.

SPI communications operate in slave mode only, and obey DRDY control signaling. The clocking is as follows:

Clock idle:	High
Clock shift out edge:	Falling
Clock data in edge:	Rising
Max clock rate:	4 MHz

SPI mode requires five signals to operate (see Figure 3-1 on page 22):

MOSI – Master out / Slave in data pin:

Used as an input for data from the host (master). This pin should be connected to the MOSI (DO) pin of the host device.

MISO - Master in / Slave out data pin:

Used as an output for data to the host. This pin should be connected to the MISO (DI) pin of the host. MISO floats in three-state mode between bytes when \overline{SS} is high to facilitate multiple devices on one SPI bus.

SCK – SPI clock:

Input only clock from host. The host must shift out data on the falling SCK edge, the QT1481 clocks data in on the rising edge. The QT1481 likewise shifts data out on the falling edge of SCK back to the host so that the host can shift the data in on the rising edge.

Note: Important: SCK must idle high; it should never float.

SS – Slave select:

input only; acts as a framing signal to the sensor from the host. SSmust be low before and during reception of data from the host. It must not go high again until the SCK line has returned high; SS must idle high. This pin includes an internal pull-up resistor of 20 k Ω – 50 k Ω . When SS is high, MISO floats.

DRDY - Data Ready:

When high – indicates to the host that the QT1481 is ready to send or receive data. This pin idles high. This pin includes an internal pull-up resistor of 20 k Ω – 50 k Ω . In SPI mode this pin is an output only (that is, open drain with internal pull-up resistor).

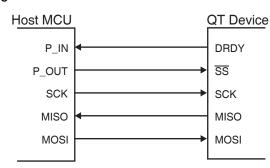
Null Bytes:

When the QT1481 responds to a command with one or more response bytes, the host should issue null commands (0×00) to get the response bytes back. The host should not send new commands until all the responses are accepted back from the QT1481 from the prior command via nulls.

New commands attempted during intermediate byte transfers are ignored.

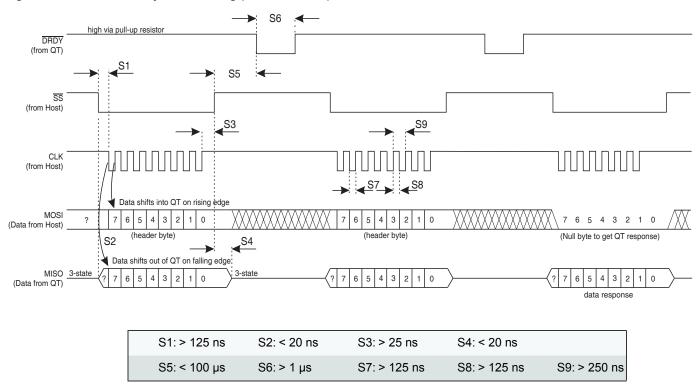
Wake operation:

The QT1481 can be configured to automatically sleep. The host must awaken the QT1481, when required, with a 8.5 μ s minimum low level on the WS pin. With the SSIine tied to WS, the host can simply toggle SSIow for 8.5 μ s minimum to wake the QT1481. The host should not send an actual SPI byte to prevent the QT1481 from seeing a byte it cannot properly interpret due to timing errors during wake-up. Alternatively, SS can be driven low 8.5 μ s before the first SCK of each transfer.


There is an interval of approximately 1.5 ms from the pulse on WS before the QT1481 is able to resume processing. Transmissions to the QT1481 within this interval are discarded.

The recommended method to re-establish communications after Wake from Sleep is to send the QT1481 a $0 \times 0F$ ("Get Last Command" command) repeatedly until the correct response comes back (the command's own complement, that is, $0 \times F0$).

SPI Line Noise:


In some designs it is necessary to run SPI lines over ribbon cable across a lengthy distance on a PCB. This can introduce ringing, ground bounce, and other noise problems which can introduce false SPI clocking or false data. Simple RC networks and slower data rates are helpful to resolve these issues.

A CRC is appended to responses in order to detect transmission errors to a high level of certainty.

Figure 3-1. Communications Signals – SPI

Figure 3-2. SPI Slave-only Mode Timing (Fosc = 16 MHz)

3.4 UART Communications

See also Section 5.17 on page 46.

UART mode is selected as soon as the QT1481 receives any data on the UART Rx pin. There is no other configuration required to make the QT1481 operate in UART mode.

UART mode communications function in the same basic way as SPI communications. The baud rate is adjusted by means of setup parameter SR (Section 5.17 on page 46). Once a new baud rate has been set, the QT1481 must be reset for the new rate to take effect.

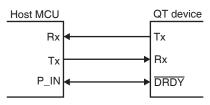
The major difference with SPI mode is that the UART mode is asynchronous and so the host does not clock the QT1481. No framing \overline{SS} or clock signal is required, simplifying the interface greatly. Return data is sent from the QT1481 back to the host when the data is ready.

Multidrop capability:

Tx floats within 10 μ s after each transmitted byte. This line can be shared with other UART based peripherals. Tx includes an internal 20 k Ω – 50 k Ω pull-up resistor to Vdd to prevent the line from floating down.

Wake operation:

The QT1481 can be configured to automatically sleep. The host must awaken the QT1481, when required, with a 8.5 μ s (minimum) low level on the WS pin. With the Rx line tied to WS the QT1481 can be awaked with a dummy byte from the host. The first received UART byte from the host after a wake should be a 0xFF; any other byte value could create a framing error. The start bit of the 0xFF forms a convenient narrow wake pulse without being long enough to be interpreted as a byte during the wake operation.


There is an interval of approximately 1.5 ms from the pulse on WS before the QT1481 is able to resume processing. Transmissions to the QT1481 within this interval are discarded.

The recommended method to re-establish communications after Wake from Sleep is to send a $0 \times 0F$ ("Get Last Command" command) repeatedly until the correct response comes back (the command's own complement, that is, $0 \times F0$).

Rx – Receive async data. This pin is an input only.

Tx – **Transmit async data.** Drives out when transmitting but floats within 10 µs of the end of the stop bit, to allow bussing with several similar devices. Tx should idle high, and it includes an internal $20 \text{ k}\Omega - 50 \text{ k}\Omega$ resistor to Vdd. Tx is push-pull when transmitting data for good drive characteristics.

Figure 3-3. Communications Signals – UART

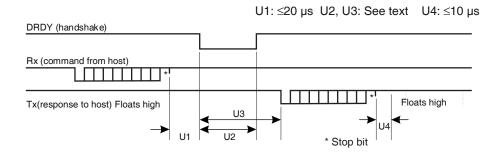
UART transmission parameters are:

Baud rate:	9600 - 115,200
Start bits:	1
Data bits:	8
Parity:	None
Stop bits:	1

DRDY in UART mode: Section 3.2 on page 20 applies.

DRDY is bidirectional in UART mode and can be pulled down by either the QT1481 or the host (wire-AND), so that either device can be inhibited from sending data until the other is ready. The host should obey this control line or transmission errors can occur. The host should grant a 10 µs grace period after clamping DRDY low in which it can still accept the start bit of a transmission from the QT1481.

As explained in Section 3.2 on page 20, DRDY is not clamped low immediately after the QT1481 receives a byte; there can be up to a 100 µs delay from the end of the stop bit before DRDY goes low. Sampling of DRDY by the host should occur 100 µs after the byte has been fully sent. If DRDY is already high at this point, or becomes high, then it is clear to send.


Due to the asynchronous nature of UART timing, reception of a byte is considered complete when the receiver detects the stop bit, which is typically some considerable time before the transmitter actually terminates the stop bit. Depending on the baud rate, it is therefore possible for the QT1481 to assert the DRDY pulse and start transmitting a response during the stop bit of the command from the host.

If the host needs to slow the pace of the QT1481 return data, it can assert DRDY before transmitting the stop bit of the command byte.

Null Bytes: Unlike SPI mode, there is no reason to send null bytes to the QT1481 in UART mode. The QT1481 responds to commands with data when ready, subject to the \overline{DRDY} line being high.

UART Noise: In some designs it is necessary to run Tx and Rx over a lengthy distance. This can introduce ringing, ground bounce, and other noise problems which can corrupt data. Simple RC networks and slower data rates are helpful to resolve these issues. A CRC is appended to responses in order to detect transmission errors to a high level of certainty.

UART Timing Parameters: UART timings are as shown in Figure 3-4 on page 25. Delay timings for parameters U2 and U3 are dependent on the specific command. See Section 3.5.

3.5 Debug Output Interface

The QT1481 includes a debug interface which may be used for observing many internal operating variables, in real time, even while the part is actively communicating with a host over either the SPI or UART serial interfaces. The Debug interface provides a useful aid during product development (see Appendix B. on page 64).