imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Description

The AT43USB380 is a straightforward upgrade of the AT43USB370 Host/Function Processor to support the USB 2.0 On-The-Go (OTG) specification. It can operate either as a single-chip Host/Function Processor or if used in conjunction with an external Atmel Charge Pump, as a full OTG solution.

The AT43USB380 is functionally equivalent to the AT43USB370 as a Host/Function Processor and can be used in place of the AT43USB370 in the existing AT43USB370 design with minor hardware modifications. The pinout differences between the AT43USB370 and the AT43USB380 are due to the inclusion of the on-chip OTG interface in the AT43USB380.

To support OTG functionality, an external Charge Pump has to be connected to the OTG interface of the AT43USB380, as shown in Figure 1 on page 7. The external Charge Pump serves in the following two capacities:

- 1. As a power source to the downstream USB devices.
- 2. As a signaling interface during the OTG session negotiation upon connection.

From the hardware standpoint, the AT43USB380 is equivalent to the AT43USB370 with the following exceptions:

- On-chip OTG Interface. This hardware block is added to the AT43USB380 to support the OTG functionality. Signals in the OTG interface include ID, DISCHARGE, PUMP, CONTROL, EN, SESS_VLD, SESS_END, SESS_HIGH and SESS_LOW. This interface is used during an OTG session to determine the roles of the AT43USB380 and the connected OTG-enabled USB device either as a host or a function.
- 8/16/32 Bit Generic Host Processor Interface. The AT43USB380 has a variable width, generic host processor interface whereas the AT43USB370 supports only 32-bit host interface. The width of the host interface on the AT43USB380 is determined by firmware configuration.
- Simplified System Interface. The GPIOs required in AT43USB370 for handshaking are no longer required in AT43USB380. The system processor can write directly to the AT43USB380 registers thus eliminates the need for PROG, SEL, READY, DONE, MORE, INTR_IN signals. The WAIT_N signal is not needed either. It is only there for precaution for SYS_CLK synchronization.
- **Up to 16 GPIO Pins.** GPIO pins are multiplexed with the host processor interface. When the interface to the host processor is 8 or 16 bits, up to 16 of the unused pins in the host processor interface can be used as GPIO pins. High level APIs are provided to access these GPIO pins.

From the standpoint of the firmware development environment, the AT43USB380 shares the same high level APIs and low level firmware libraries with the AT43USB370. Additions to the AT43USB380 firmware suite include:

- High level APIs specific to the OTG support. The number of additional APIs is less than 10.
- Low level OTG firmware embedded in the AT43USB380 hardware that support Host Negotiation Protocol (HNP) and Session Request Protocol (SRP).

The AT43USB380 share the same debugging tools with the AT43USB370 as well. During development, the AT43USB380 should be treated as a black box in terms of

On-The-Go Upgrade of the AT43USB370 USB 2.0 Full-Speed Host/Function Processor

AT43USB380

Upgrade Map Summary

3420AS-USB-03/04

Note: This is a summary document. A complete document is not available at this time. For more information, please contact your local Atmel sales office.

USB functionality. Communication with the AT43USB380 is achieved through a small set (less than 25) of high level, ANSI C-compliant APIs. The actual USB protocol including HNP and SRP is transparent to the host processor.

AT43USB380 OTG Processor Pin Description

Table 1 gives the description of the pins.

Table 1. F	Pin Description	of the AT43USB380
------------	-----------------	-------------------

Signal Name	Dir.	Polarity	Width	Description
System Interface				
SYS_CLK	I		1	Host system clock input for synchronization of WAIT_N and DREQ_N. (Synchronization requirement can be enable/disable through internal register settings)
A[7:0]	Ι		8	System Address Bus
CS_N	I	LO	1	CHIP_SELECT signal from System (ARM [®])
D[15:0]	В		16	System Data Bus [15:0]
D[31:16]/ GPIO[15:0]	В		16	BWIDTH[1:0]=1x : System Data Bus [31:16] BWIDTH[1:0]=0x : GPIO[15:0]
DACK_N	Ι	LO	1	DMA Acknowledge from System (ARM)
DREQ_N	0	LO	1	DMA Request to System (ARM)
INTR_OUT	0	HI	1	Interrupt to System (ARM)
OE_N	Ι	LO	1	OUTPUT_ENABLE from System (ARM)
WAIT_N	0	LO	1	WAIT to System (ARM)
WE_N	Ι	LO	1	WRITE_ENABLE from System (ARM)
BWIDTH[1:0]	I		2	System Data Bus Size: 00 : 8 Bit Interface D[7:0] 01 : 16 Bit Interface D[15:0] 1x : 32 Bit Interface D[31:0]
WAKEUP_N	I	LO	1	Wakeup Request from System
USB Interface				
DM	В		1	USB Line (D-)
DP	В		1	USB Line (D+)
ID	I		1	OTG device type identification; used to differentiate a Mini-A and Mini-B plug
RPU_EN	0		1	Enable resistive pull-up to the D+ line
RPD_EN	0		1	Enable resistive pull-down to the D+/D- lines
Charge Pump Interface				
CPClk	0		1	Charge Pump clock output
EN	0		1	Charge Pump; Enable for Charge Pump
PUMP_EN	0		1	Charge Pump; Enable for Charge Pump

AT43USB380 Upgrade Map Summary

Signal Name	Dir.	Polarity	Width	Description
SESS_VLD		rolanty	1	Charge Pump; Active high when VBUS > VSESS VLD otherwise "0"
SESS_END	I		1	Charge Pump; Active high when VBUS > VSESS_END otherwise "0"
SESS_LOW	I		1	Charge Pump; Active high when VBUS > VSESS_LOW otherwise "0"
SESS_HIGH	I		1	Charge Pump; Active high when VBUS > VSESS_HIGH otherwise "0"
LOW_CUR	0		1	Limits the current output of the Charge Pump. Used during VBUS pulsing when configured as B-device
DISCHARGE	0		1	Charge Pump; Connect VBUS to ground
Oscillator, Clock	s		1	
XTAL1	I		1	Oscillator input
XTAL2	0		1	Oscillator output
LFT	I		1	PLL loop filter
CLK_SEL	I		1	Clock Source selection between crystal and external oscillator
RESET_N	I	LO	1	RESET for USB Processor
Jtag Interface	1		1	
TCK/SI	I		1	TP3=0: JTAG Clock - from JTAG controller; TP3=1: SI-EEPROM
TDI/SCK	I		1	TP3=0: JTAG Serial Data IN - from JTAG controller; TP3=1: SCK-EEPROM
TDO/SO	0		1	TP3=0: JTAG Serial Data OUT - from JTAG controller; TP3=1: SO-EEPROM
TMS/CS	I		1	TP3=0: JTAG Mode Select - from JTAG controller; TP3=1: CS-EEPROM
TRST_N	I	LO	1	JTAG Reset - from JTAG controller
Test Pins	1		1	
TP0	Ι		1	Test pin 0
TP1	Ι		1	Test Pin 1
TP2	Ι		1	Test pin 2
TP3	I		1	Test pin 3
TP4/SCAN_EN	Ι		1	Test pin 4/SCAN_EN
TP_CLK /D_CLK	ο		1	Clock test output/SIE DPLL extracted clock
TP_RCV_DATA /RCV_DATA	0		1	Extracted serial data test output

Table 1. Pin Description of the AT43USB380 (Continued)

 Table 1. Pin Description of the AT43USB380 (Continued)

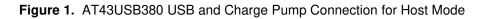
Signal Name	Dir.	Polarity	Width	Description
Power/Ground Pins				
VEXT18	0		3	1.8V regulated output
VDD	Ι		5	3.3V input
VSS			10	Ground

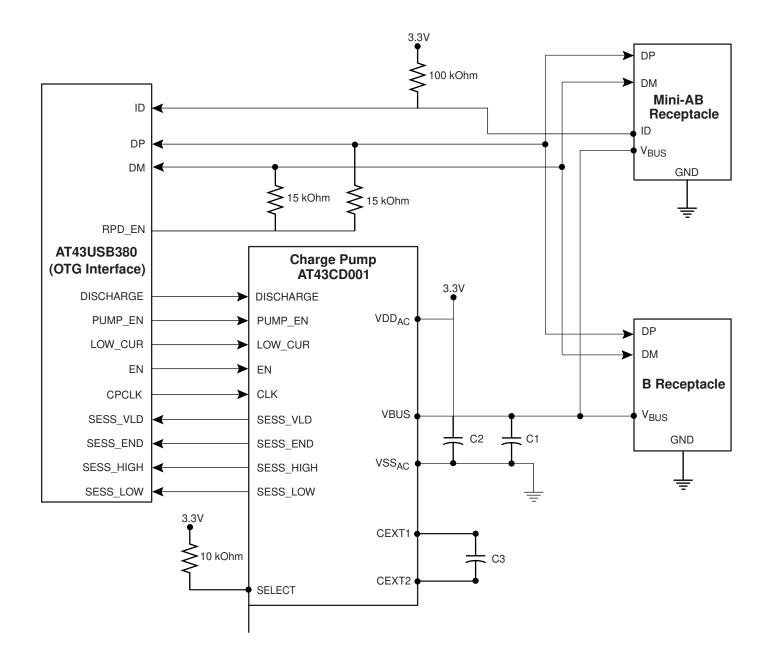
AT43USB380 OTG Processor Pin Assignment

Pin #	Signal	Туре
1	A7	Input
2	A6	Input
3	A5	Input
4	A4	Input
5	A3	Input
6	A2	Input
7	A1	Input
8	A0	Input
9	CS_N	Input
10	OE_N	Input
11	WE_N	Input
12	INTR_OUT	Output
13	VSS	Power Supply/Ground
14	VDD18	Power Supply/Ground
15	VDD	Power Supply/Ground
16	SYS_CLK	Input
17	WAIT_N	Output
18	DREQ_N	Output
19	DACK_N	Input
20	CPClk	Output
21	DISCHARGE	Output
22	EN	Output
23	LOW_CUR	Output
24	PUMP_EN	Output
25	SESS_LOW	Input
26	VSS	Power Supply/Ground
27	SESS_VLD	Input
28	SESS_HIGH	Input
29	SESS_END	Input

4 AT43USB380 Upgrade Map Summary

AT43USB380 Upgrade Map Summary


Pin #	Signal	Туре
30	ID	Input
31	TP0	Input
32	TP1	Input
33	CLK_SEL	Input
34	VSS	Power Supply/Ground
35	XTAL1	Input
36	XTAL2	Output
37	LFT	Input
38	VDD18	Power Supply/Ground
39	VDD	Power Supply/Ground
40	VSS	Power Supply/Ground
41	DM	Bi-directional
42	DP	Bi-directional
43	TP2	Input
44	TP3	Input
45	RPD_EN	Output
46	RPU_EN	Output
47	RESET_N	Input
48	TCK/SI	Input
49	TMS/CS	Input
50	VDD	Power Supply/Ground
51	VSS	Power Supply/Ground
52	TDI/SCK	Input
53	TDO/SO	Output
54	TRST_N	Input
55	TP_CLK/D_CLK	Output
56	TP_RCV_DATA/RCV_DATA	Output
57	TP4/scan_en	Input
58	BWIDTH[0]	Input
59	WAKEUP_N	Input
60	D31/GPIO[15]	Bi-directional
61	D30/GPIO[14]	Bi-directional
62	D29/GPIO[13]	Bi-directional
63	D28/GPIO[12]	Bi-directional
64	VSS	Power Supply/Ground
65	VDD18	Power Supply/Ground
66	VDD	Power Supply/Ground



Pin #	Signal	Туре
67	D27/GPIO[11]	Bi-directional
68	D26/GPIO]10]	Bi-directional
69	D25/GPIO[9]	Bi-directional
70	D24/GPIO[8]	Bi-directional
71	D23/GPIO[7]	Bi-directional
72	D22/GPIO[6]	Bi-directional
73	D21/GPIO[5]	Bi-directional
74	D20/GPIO[4]	Bi-directional
75	VDD	Power Supply/Ground
76	VSS	Power Supply/Ground
77	D19/GPIO[3]	Bi-directional
78	D18/GPIO[2]	Bi-directional
79	D17/GPIO[1]	Bi-directional
80	D16/GPIO[0]	Bi-directional
81	BWIDTH[1]	Input
82	D15	Bi-directional
83	D14	Bi-directional
84	D13	Bi-directional
85	D12	Bi-directional
86	D11	Bi-directional
87	VDD	Power Supply/Ground
88	VSS	Power Supply/Ground
89	D10	Bi-directional
90	D9	Bi-directional
91	D8	Bi-directional
92	D7	Bi-directional
93	D6	Bi-directional
94	D5	Bi-directional
95	VSS	Power Supply/Ground
96	D4	Bi-directional
97	D3	Bi-directional
98	D2	Bi-directional
99	D1	Bi-directional
100	D0	Bi-directional

USB-OTG Interface Connections for Host Mode

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

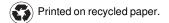
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] and combinations thereof, are the registered trademarks of Atmel Corporation or its subsidiaries. ARM[®] is the registered trademark of ARM Limited. Other terms and product names may be the trademarks of others.

