

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- DC to DC Converter 1.9V / 2.5V (DCDC1)
- LDO Regulator 2.7V / 2.8V (LDO1)
- LDO Regulator 2.8V (LDO2)
- LDO Regulator 2.8V (LDO3)
- LDO Regulator 2.47V / 2.66 (LDO4) Backup Battery Supply
- LDO Regulator 1.72V / 2.66 (LDO5) RTC Supply
- Reset Generator

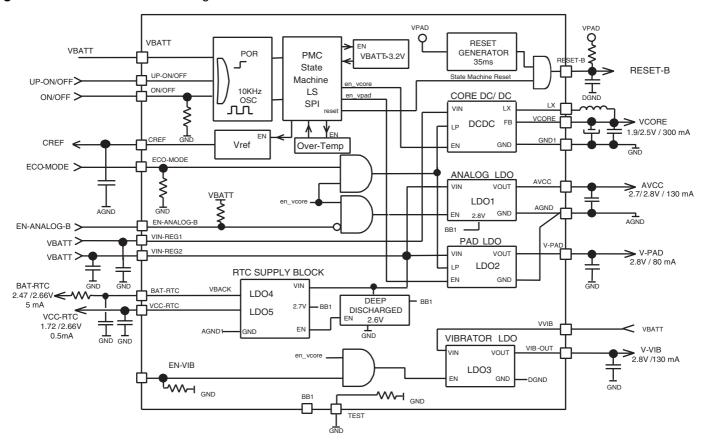
1. Description

The AT73C211 is a power management device for digital, analog, interface, and, in some cases, RF and backup sections of add-on modules used as accessories in popular handheld devices like mobile phones, digital still cameras, PDAs and a wide range of multimedia devices. The AT73C211 can also be used to supply the CPU with a high-efficiency DC-DC Converter, a radio frequency transceiver with high power supply rejection ratio (PSRR) and noise performance low-dropout (LDO) regulators, or memories and analog sections with independent LDO channels.

In addition, the AT73C211 integrates LDO regulators to recharge backup elements and convert its voltage to microcontroller RTC supply.

LDO regulators and DC-DC converters output voltage can be programmed by a mask change.

Power Management


AT73C211

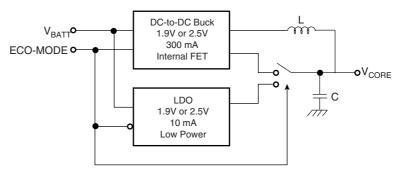
2. Functional Block Diagram

Figure 2-1. AT73C211 Block Diagram

3. Pin Description

Table 3-1.Pin Description

Signal	Pin	Туре	A/D	Description
VBATT	E1	VBATT1		Input supply
ON/OFF	D5	IPD	D	Key ON/OFF input, 1.5M Ohm pull-down
UP-ON/OFF	C6	I	D	Hold the Power ON from MCU
RESET-B	F6	OD	D	Reset open collector output. Need external pull-up to VBATT
VIN-REG1	G6	VBATT2		Input supply for DC/DC converter
LX	F7	0	Α	DC/DC converter output inductor
ECO-MODE	G5	IPD	D	Eco Mode, from MCU - sets VCORE, V-PAD in low power mode, 1.5M Ohm pull-down
VCORE	G4	0	Α	DC/DC converter output (MCU core supply)
GND1	G7	Ground		Ground of DC/DC converter
VIN-REG2	A5	VBATT3		Input supply
EN-ANALOG-B	B5	IPD	D	Enable the analog LDO, active at logic 0, 1.5M Ohm pull-down
AVCC	B4	0	Α	Analog LDO output (MCU chip analog supply)
AGND	A7	Ground		Ground of AVCC, V-PAD and RTC LDO
V-PAD	В6	0	Α	Digital LDO output (MCU chip digital PAD supply)
VCC-RTC	B7	0	Α	MCU RTC supply output
BAT-RTC	A6	I/O	Α	RTC backup battery charger - must be connected through a 2.2K Ohm resistor to the backup battery
VIN-RF	A3	VBATT4		Input supply
AGND2	A2	Ground		Ground
VIN-VIB	D7	VBATT5		Input supply for vibrator LDO
EN-VIB	E6	IPD	D	Vibrator driver input (from baseband chip), 1.5M Ohm pull-down
VVIB	E7	0	Α	Vibrator LDO output (Voltage regulator)
GND	D1	Ground		Ground
CREF	C7	0	Α	Bandgap decoupling - 100 nF capacitor must be connected from this pin to ground
BB1	D4	I	D	BB1 = 1 => VCORE = 2.5V, BB1= 0 => VCORE = 1.9V
TEST	E5	IPD	Α	Connect to AGND



4. Functional Description

4.1 DC to DC Converter 1.9V/2.5V - 300 mA for Coprocessor Core

The DC-to-DC converter is a synchronous mode DC-to-DC "buck"-switched regulator using fixed-frequency architecture (PWM) and capable of providing 300 mA of continuous current. It has two levels of voltage programming for the co-processor core (1.9V or 2.5V). The operating supply range is from 3.1V to 5.5V, making it suitable for Li-lon, Li-polymer or Ni-MH battery applications. The DC-to-DC converter is based on pulse width modulation architecture to control the noise perturbation for switching noise sensitive applications (Wireless). The operating frequency is set to 900 kHz using an internal clock, allowing the use of a small surface inductor and moderate output voltage ripple. The controller consists of a reference ramp generator, a feedback comparator, the logic driver used to drive the internal switches, the feedback circuits used to manage the different modes of operation and the over-current protection circuits. An economic mode has been defined to reduce quiescent current. A low-dropout voltage regulator in parallel to the DC-to-DC converter minimizes standby current consumption during standby mode.

Figure 4-1. Dual-power DC-to-DC Converter

Low undershoot voltage is expected when going from PWM to LDO mode and vice-versa. The circuit is designed in order to avoid any spikes when transition between two modes is enabled.

Figure 4-2. Low-power/Full-power DC-to-DC Converter Transition

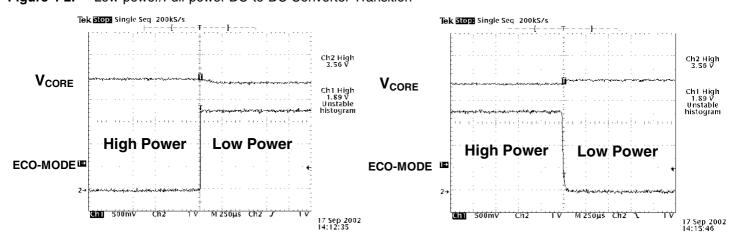
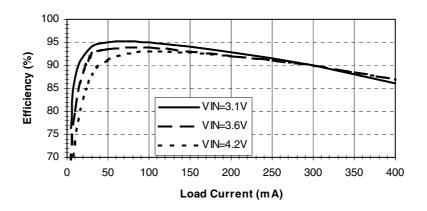



Figure 4-3 shows typical efficiency levels of the DC-to-DC converter for several input voltages.

Figure 4-3. DC-to-DC Converter with 1.9V Target Typical Case⁽¹⁾

Note: 1. L = 10 μ H, ESR = 0.2 Ohm, c = 22 μ F, @ESR = 0.1 Ohm

4.2 LDO1, LDO3 Regulators

The PSRR measures the degree of immunity against voltage fluctuations achieved by a regulator. An example of its importance is in the case of a GSM phone when the antenna switch activates the RF power amplifier (PA). This causes a current peak of up to 2A on the battery, with an important spike on the battery voltage. The voltage regulator must filter or attenuate this spike.

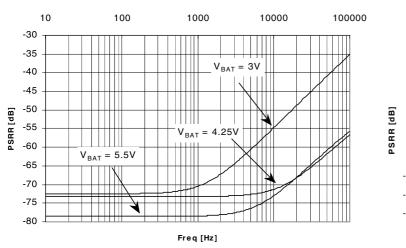


Figure 4-4. Functional Diagram of LDO Single Mode

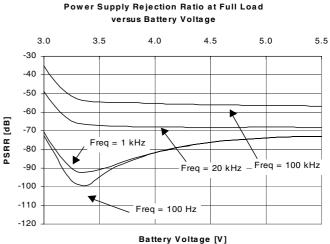
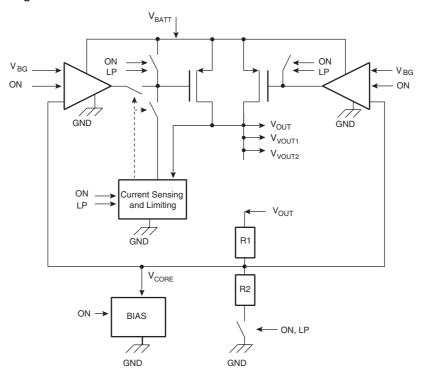


Figure 4-5 shows the Power Supply Rejection Ratio as functions of frequency and battery voltage. If a noise signal occurs at 1 kHz when the battery voltage is at 3V, the noise will be attenuated by 70 dB (divided by more than 3000) at the output of the regulator. Consequently, a 2V spike on the battery is attenuated to less than 1 mV, which is low enough to avoid any risk of malfunction by a device supplied by the regulator.

Figure 4-5. Power Supply Rejection Ratio in Function of Frequency and Battery Voltage


Power Supply Rejection Ratio at Full Load

4.3 LDO2 Regulator

The first approach to reducing standby current is to decrease the standby current inside the regulators themselves. Atmel achieves this by implementing a dual mode architecture where two output transistors are used in parallel as switches in the regulation loop. Figure 4-6 illustrates this architecture.

Figure 4-6. Functional Diagram of LDO Dual Mode

In Figure 4-6, the left-hand output transistor is sized large enough for the required output current under full load, for example, 100 mA. In order to achieve a sufficient margin of stability, the current sensing block uses a bias cell where the current consumption is linked to the required output current. The higher the output current, the higher the bias current needed to stabilize the loop.

The right-hand output transistor delivers a very small output current, typically less than 1 mA, sufficient only to maintain the output voltage with enough current to cover the leakage current of the supplied device. This requires a much smaller bias current and, consequently, a smaller standby current inside the regulator.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

*NOTICE: Stresses beyond those listed under "Absolute
Maximum Ratings" may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or other
conditions beyond those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.

5.2 DC to DC Converter

Table 5-1. DC to DC Converter Electrical Characteristics ($t_{AMB} = -20^{\circ}$ C to 85° C, VIN = 3.2V to 4.2V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Outrot Valtage	BB1 = 0		1.9		V
V _{OUT}	Output Voltage	BB1 = 1		2.5		٧
	0.4.4.0	PWM Mode (ECO-MODE = 0)		150	300	mA
I _{OUT}	Output Current	LDO Mode (ECO-MODE = 1)			5	mA
I _{OFF}	Standby Current			0.1	1	μΑ
E _{FF}	Efficiency	I _{OUT} = 10 mA to 200 mA @ 1.9V		90		%
ΔV_{DCLD}	Static Load Regulation	10% to 90% of I _{OUT(MAX)}		7		mV
ΔV_{TRLD}	Transient Load Regulation	10% to 90% of $I_{OUT(MAX)}$, $T_R = T_F = 5\mu s$		30		mV
ΔV_{DCLE}	Static Line Regulation	10% to 90% of I _{OUT(MAX)} , VIN = 3.2V to 4.2V		20		mV
ΔV_{TRLE}	Transient Line Regulation	10% to 90% of I _{OUT(MAX)} , VIN = 3.2V to 4.2V		35		mV
PSRR	Ripple Rejection	LDO Mode up to 1 KHz	40	45		dB
ΔV_LPFP	Overshoot Voltage	Voltage drop from LDO (ECO- MODE = 1) to PWM (ECO- MODE = 0)		0	10	mV
ΔV_{FPLP}	Undershoot Voltage	Voltage drop from PWM (ECO- MODE = 0) to LDO (ECO-MODE = 1)	-15	0		mV

 Table 5-2.
 DC to DC Converter External Components

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{OUT}	Output Capacitor Value		17	22	26	μF
C _{ESR}	Output Capacitor ESR				100	mOhm
L _{OUT}	Output Inductor Value		8	10	12	μH
L _{ESR}	Output Inductor ESR	At 100 kHz			1.1	Ohm

5.3 LDO1 Regulator Electrical Characteristics

Table 5-3. LDO1 Electrical Characteristics ($t_{AMB} = -20$ °C to 85°C, VIN = 3.2V to 4.2V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Output Voltage	BB1 = 0		2.7		V
V _{OUT}	Output Voltage	BB1 = 1		2.8		V
I _{OUT}	Output Current			80	130	mA
I _{QC}	Quiescent Current			195		μA
ΔV_{OUT}	Line Regulation	V _{IN} : 3V to 3.4V, I _{OUT} = 130 mA		1	2	mV
ΔV_{PEAK}	Line Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$		1.5	2.85	mV
ΔV_{OUT}	Load Regulation	10% - 90% I _{OUT}			3	mV
ΔV_{PEAK}	Load Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$		1.2	2.4	mV
PSRR	Ripple rejection	F = 217 Hz; VIN = 3.6V	70	73		dB
V _N	Output Noise	BW: 10 Hz to 100 kHz		29	37	μV_{RMS}
T _R	Rise Time	100% I _{OUT} , 10% - 90% V _{OUT}			50	μs
I _{SD}	Shut Down Current				1	μΑ

 Table 5-4.
 LDO1 External Components

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{OUT}	Output Capacitor Value		1.98	2.2	2.42	μF
C _{ESR}	Output Capacitor ESR	100 kHz			50	mOhm

5.4 LDO2 Regulator Electrical Characteristics

Table 5-5. LDO2 Electrical Characteristics ($t_{AMB} = -20$ °C to 85°C, VIN = 3.2V to 4.2V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OUT}	Output Voltage			2.8		V
	Output Current	PWM Mode (ECO-MODE = 0)			80	mA
I _{OUT}	Output Current	LDO Mode (ECO-MODE = 1)			5	mA
	Quincant Current	PWM Mode (ECO-MODE = 0)		100		μΑ
I _{QC}	Quiescent Current	LDO Mode (ECO-MODE = 1)			10	μΑ
ΔV_{OUT}	Line Regulation	V _{IN} : 3V to 3.4V, I _{OUT} = 80 mA		1	2	mV
ΔV_{PEAK}	Line Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$		1.5	2.85	mV
ΔV_{OUT}	Load Regulation	10% - 90% I _{OUT,} VIN = 3V			3	mV
ΔV_{PEAK}	Load Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$		1.2	2.4	mV
PSRR	Ripple rejection	F = 217 Hz; VIN = 3.6V	70	73		dB
V _N	Output Noise	BW: 10 Hz to 100 kHz		29	37	μV_{RMS}
T _R	Rise Time	100% I _{ОИТ} , 10% - 90% V _{ОИТ}			50	μs
I _{SD}	Shut Down Current				1	μA

Table 5-6.LDO2 External Components

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{OUT}	Output Capacitor Value		1.98	2.2	2.42	μF
C _{ESR}	Output Capacitor ESR	100 kHz			50	mOhm

5.5 LDO3 Regulator Electrical Characteristics

Table 5-7. LDO3 Electrical Characteristics (t_{AMB} = -20°C to 85°C, VIN = 3.2V to 4.2V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OUT}	Output Voltage			2.8		V
I _{OUT}	Output Current			80	130	mA
I _{QC}	Quiescent Current			195		μΑ
ΔV_{OUT}	Line Regulation	V _{IN} : 3V to 3.4V, I _{OUT} = 130 mA		1	2	mV
ΔV_{PEAK}	Line Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$		1.5	2.85	mV
ΔV_{OUT}	Load Regulation	10% - 90% I _{OUT,} VIN = 3V			3	mV
ΔV_{PEAK}	Load Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$		1.2	2.4	mV
PSRR	Ripple rejection	F = 217 Hz; VIN = 3.6V	70	73		dB
V _N	Output Noise	BW: 10 Hz to 100 kHz		29	37	μV_{RMS}
T _R	Rise Time	100% I _{OUT} , 10% - 90% V _{OUT}			50	μs
I _{SD}	Shut Down Current				1	μΑ

 Table 5-8.
 LDO3 External Components

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{OUT}	Output Capacitor Value		1.98	2.2	2.42	μF
C _{ESR}	Output Capacitor ESR	100 kHz			50	mOhm

5.6 LDO4 Regulator Electrical Characteristics

Table 5-9. LDO4 Electrical Characteristics ($t_{AMB} = -20$ °C to 85°C, VIN = 3.2V to 4.2V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Output Valtage	BB1 = 0		2.47		V
V _{OUT}	Output Voltage	BB1 = 1		2.66		V
I _{OUT}	Output Current				2	mA
I _{QC}	Quiescent Current				10	μΑ
ΔV_{OUT}	Line Regulation	V _{IN} : 3V to 3.4V, I _{OUT} = 2 mA			15	mV
ΔV_{PEAK}	Line Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$			30	mV
ΔV_{OUT}	Load Regulation	10% - 90% I _{OUT,} VIN = 3V			15	mV
ΔV_{PEAK}	Load Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$			20	mV
PSRR	Ripple rejection	F = 217 Hz; VIN = 3.6V		50		dB
I _{SD}	Shut Down Current				1	μΑ

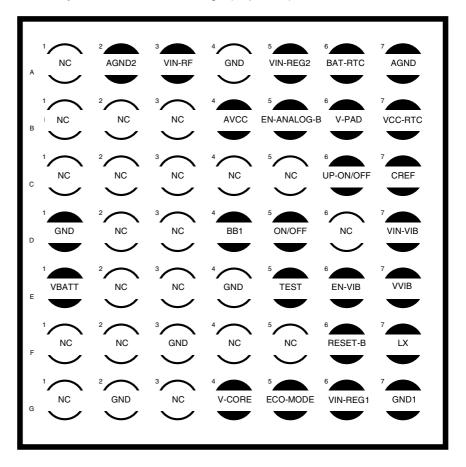
Table 5-10. LDO4 External Components

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{OUT}	Output Capacitor Value		1.98	2.2	2.42	μF
C _{ESR}	Output Capacitor ESR	100 kHz			100	mOhm

5.7 LDO5 Regulator Electrical Characteristics

Table 5-11. LDO5 Electrical Characteristics ($t_{AMB} = -20^{\circ}\text{C}$ to 85°C, VIN = 3.2V to 4.2V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OUT}	Output Voltage	BB1 = 0		1.72		V
		BB1 = 1		2.66		V
I _{OUT}	Output Current				0.5	mA
I _{QC}	Quiescent Current				5	μΑ
ΔV_{OUT}	Line Regulation	V _{IN} : 3V to 3.4V, I _{OUT} = 0.5 mA			15	mV
ΔV_{PEAK}	Line Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$			30	mV
ΔV_{OUT}	Load Regulation	10% - 90% I _{OUT,} VIN = 3V			15	mV
ΔV_{PEAK}	Load Regulation Transient	Same as above, $T_R = T_F = 5 \mu s$			20	mV
PSRR	Ripple rejection	F = 217 Hz; VIN = 3.6V		50		dB
I _{SD}	Shut Down Current				1	μΑ


Table 5-12. LDO4 External Components

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{OUT}	Output Capacitor Value		65	100	135	nF
C _{ESR}	Output Capacitor ESR	100 kHz	20		100	mOhm

5.8 Package Outline (Top view)

Figure 5-1. Forty-nine Ball FBGA Package (Top View)

6. Revision History

Table 6-1.Revision History

Doc. Rev.	Comments	Change Request Ref.
6199A	First issue.	

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

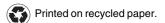
Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123


38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

