imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Main Supply 3.0V to 3.6V
- Independent 2.5V to 3.6V Auxiliary Supply for Backup Section
- Internal State Machine for Startup
- 25 mA/1.8V-2.75V Linear Low Drop Out Regulator with High PSRR and Low Noise (LDO1)
- 30 mA/1.5V-1.8V Linear Low Drop Out Regulator with High PSRR and Low Noise (LDO2)
- 60 mA/1.23V-1.5V-1.8V Linear Low Drop Out Regulator with High PSRR (LDO3)
- 2 mA/1.2V-1.5V-1.8V Linear Low Drop Out Regulator with Very Low Quiescent Current (LDO4)
- HPBG Economic High Performance Voltage Reference for LDO Supply to RF Sections
- LPBG Low Power Voltage Reference to LDO4 During Backup Battery Operation
- Internal Oscillator Generates Internal Master Clock
- Internal Reset Generator for Main Supply
- Additional External Reset Input
- Two Wire Interface (TWI) for Independent Activation and Output Voltage Programming for Each LDO
- Available in 3 x 3 x 0.9 mm 16-pin QFN Package
- Applications: GPS Modules, WLAN Devices, Wireless Modules

1. Description

The AT73C239 is a four-channel Power Supply Power Management Unit (PMU) available in a QFN 3 x 3 mm package. It is a fully integrated, low cost, combined Power Management device for wireless modules, GPS and WLAN devices. It integrates four Linear Low Drop Out (LDO) Regulators, three of which provide high-accuracy RF performance and one (LDO4) with very low quiescent current that is supplied by an external backup battery. A Low Power Bandgap (LPBG) requiring no external capacitor for decoupling, is used as reference voltage for LDO4 and starts when VBAT is present. LDO4 regulates output voltage with extremely low quiescent current, maximizing the lifetime of the backup battery. An Internal State Machine manages the startup of the other LDOs in the order of LDO3 then LDO1 then LDO2. An economic High Power Bandgap (HPBG) provides highly accurate, low noise voltage reference to LDOs 1, 2, 3. HPBG operates in switching mode thereby decreasing its current consumption and becomes inactive when not directly supplied by VIN current. When the RF LDOs are in idle mode, quiescent current is decreased to a minimum.

The AT73C239 features a Two-wire Interface (TWI) to increase the efficiency of the system by disabling LDOs when not needed.

Power Management and Analog Companions (PMAAC)

AT73C239 4-channel Power Management for Wireless Modules

2. Block Diagram

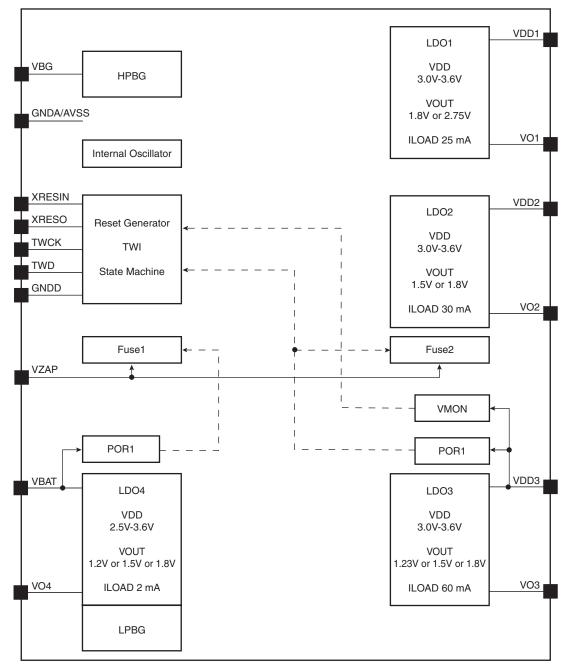


Figure 2-1. AT73C239 Functional Block Diagram

3. Pin Description

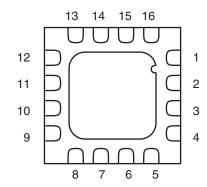
Table 3-1.Pin Description

Pin Name	I/O	Pin Number	Туре	Function	
XRESIN	Input	1	Digital	Reset in pin	
VO3	Output	2	Analog	LDO3 output voltage	
VDD3	Input	3	Power	LDO3 input voltage	
XRESO	Output	4	Digital	Reset out pin	
VO4	Output	5	Analog	LDO4 output voltage	
GNDD	GND	6	Power	Digital ground	
VBAT	Input	7	Power	LDO4 input voltage	
VZAP ⁽¹⁾	input	8	Digital	Reserved for manufacturing purposes.	
VDD2	Input	9	Power	LDO2 input voltage	
VO2	Output	10	Analog	LDO2 output voltage	
TWICK ⁽²⁾	Input	11	Digital	TWI input	
TWID ⁽³⁾	Input/Output	12	Digital	TWI input/output	
VDD1	Input	13	Power	LDO1 input voltage	
VO1	Output	14	Analog	LDO1 output voltage	
GNDA/AVSS	GND/Input	15	Analog	Analog ground and ESD ground	
VBG	Output	16	Analog	Voltage reference for analog cells	

Notes: 1. Connected to ground.

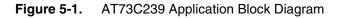
2. Connected to VDD1, 2, 3 if TWI is not used.

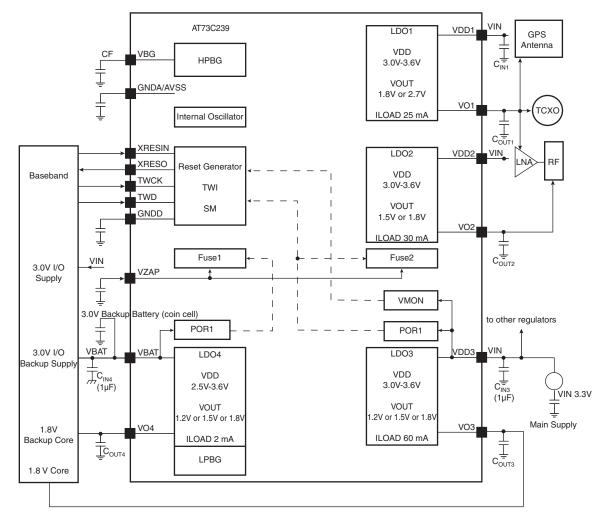
3. Connected to VDD1, 2, 3 if TWI is not used.



4. Package

4.1 16-pin QFN Package Outline


Figure 4-1 shows the orientation of the 16-pin QFN package.



AT73C239

5. Application Block Diagram

Table 5-1.	Application Schematic Reference and Pin Description
------------	---

Schematic Reference	Pin	Description	
C _{IN1}	VDD1		
C _{IN2}	VDD2		
C _{IN3}	VDD3		
C _{IN4}	VBAT		
C _{OUT1}	VO1	1 μF ± 20% Ceramic Capacitor, X5R	
C _{OUT2}	VO2		
C _{OUT3}	VO3		
C _{OUT4}	VO4		
CF	VBG	100 nF, ± 20% Ceramic Capacitor	

6. Functional Description

The AT73C239 integrates the power supply channels described in this section.

6.1 LDO1

LDO1 is a 25 mA/1.8V-2.75V linear low drop out regulator with RF performance. LDO1 operates with supply from 3.0V to 3.6V and requires at least 300 mV of minimum drop-out. LDO1 supplies the RF section of wireless devices, showing high PSRR up to 100 kHz, and very low noise on wide frequency bandwidth. LDO1 requires a 1 μ F output capacitor.

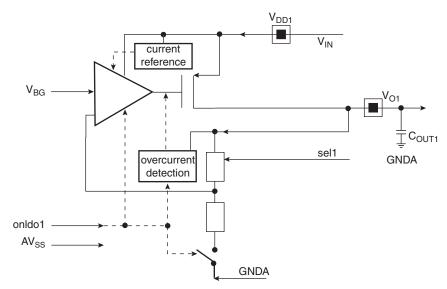


Figure 6-1. LDO1 Functional Diagram

6.2 LDO2

LDO2 is a 30 mA/1.5V-1.8V linear low drop out regulator with RF performance. LDO2 operates with supply from 3.0V to 3.6V and needs at least 300 mV of minimum drop-out. LDO2supplies the RF section of wireless devices, showing high PSRR up to 100 kHz and very low noise on wide frequency bandwidth. LDO2 requires a 1 μ F output capacitor.

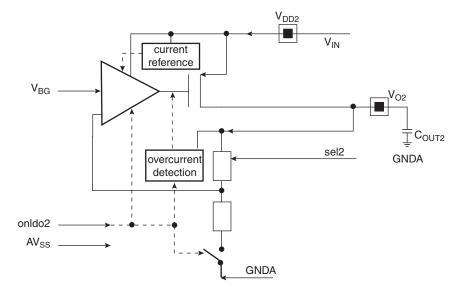
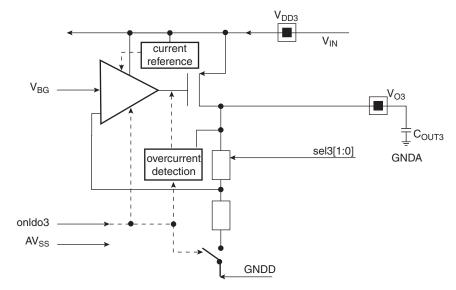
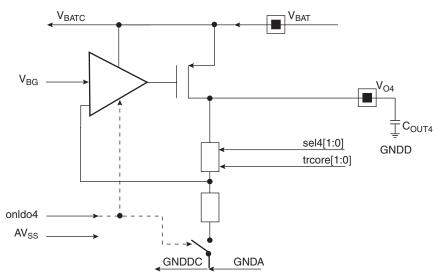


Figure 6-2. LDO2 Functional Diagram



6.3 LDO3

LDO3 is a 60 mA/1.2V or 1.5V or 1.8V linear low drop out regulator with RF performance. LDO3 operates with supply from 3.0V to 3.6V and needs at least 300 mV of minimum drop-out. LDO3 supplies the RF section of wireless devices, showing high PSRR up to 100 kHz and low noise on wide frequency bandwidth. LDO3 requires a 1 μ F output capacitor.



6.4 LD04

LDO4 is a 2 mA/1.2V or 1.5V or 1.8V low drop out voltage regulator with very low quiescent current. LDO4 operates with supply from 2.5V to 3.6V and needs at least 300 mV of minimum dropout. LDO4 supplies the very low power section of the wireless baseband. It is usually supplied by the external backup battery and regulates voltage with very low quiescent current, maximizing the lifetime of the backup battery. LDO4 requires a 1 μ F output capacitor or 470 nF if the load is less than 250 μ A. LDO4 is always on once the battery is plugged in. The regulator is activated when POR1 is released.

6.5 High Performance Bandgap (HPBG)

HPBG provides highly accurate, low noise voltage reference to LDOs that supply RF sections. HPBG operates in switching mode, thus decreasing its current consumption. The economic High Performance Bandgap is particularly efficient when RF LDOs are in idle mode (output voltage provided with very low output current e.g. < 1 mA), as the RF section is not active and quiescent current must be decreased as much as possible.

HPBG requires an external 100 nF ceramic capacitor to achieve very low noise high-accuracy voltage reference.

6.6 Low Power Bandgap (LPBG)

LPBG is used as reference voltage for LDO4. LPBG starts up as soon as the VBAT pin is active and does not require an external capacitor for decoupling.

6.7 Reset Generator

The reset generator produces output reset (XRSTOUT) at least 100 ms after input reset state is activated. Input reset state can be produced the following:

- External manual reset connected to the XRESIN pin
- Internal POR2 monitoring $V_{\rm IN}$ (on VDD3 pin). POR2 is designed with a maximum threshold at 1.81V.

XRESO pin can be generated only if V_{IN} is present.

6.8 Internal State Machine

The internal state machine manages the start up of the regulators connected to VDD1, VDD2 and VDD3 pins. The startup configuration is in the following order:

- 1. LDO3
- 2. LDO1
- 3. LDO2

6.9 Power on Reset on VBAT (POR1)

POR1 monitors the VBAT pin and generates an internal signal (VPOR1) to enable a fuse read operation for LDO4 output voltage programming and LDO4 startup. VPOR1 is released when VBAT is higher than $1.5V \pm 300$ mV.

6.10 Power on Reset on VDD3 (POR2)

POR2 monitors the VDD3 pin and generates an internal signal (VPOR2) to reset the internal State Machine and startup the Two-wire Interface (TWI). VPOR2 also enables the fuse read operation for LDO1, LDO2, LDO3 output voltage programming, reference voltage and internal oscillator trimming. VPOR2 is released when V_{IN} is higher than 1.5V ± 300 mV.

6.11 Internal Oscillator

The internal oscillator generates the internal master clock to synchronize the state machine that monitors start up of the LDOs and controls HPBG.

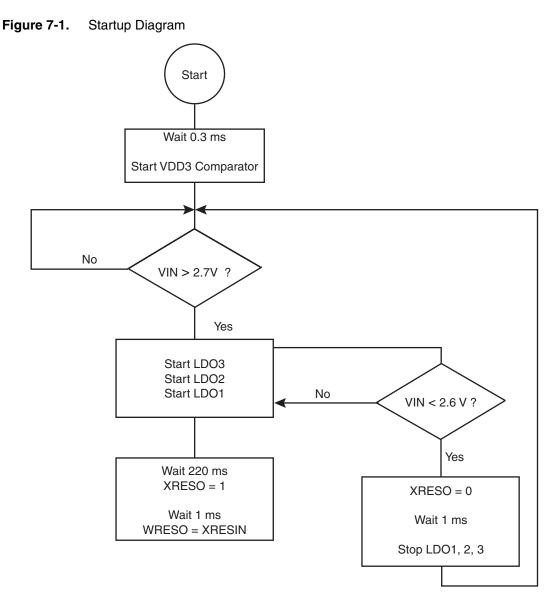
6.12 Voltage Supply Monitor on VDD3 (VMON)

VMON monitors the VDD3 pin and generates an internal signal to enable the state machine to start up the LDOs and to generate the XRESO signal. Threshold is set to 2.7V at rising and 2.6V at shut down.

6.13 Two-wire Interface (TWI)

The TWI can be used to activate, disable and set the output voltage of the LDO1, 2, 3, 4 regulators. (V_{DD3} must be present in order for TWI to be used with LDO4.)

7. Startup Procedure


At VBAT Rising:

- LPBG automatically starts up.
- POR1 starts up LDO4.
- At VDD3 Rising:
- POR2 enables the following:
 - Supply Monitor with shutdown threshold setup at 2.7V in order to prevent corruption in the baseband chip, when the core is still supplied
 - Internal State machine that enables the other circuits according to the diagram shown in Figure 7-1 on page 12.
 - Two Wire Interface
- At VDD3 Falling:
 - The Supply Monitor generates a shut-down control signal when V_{DD3} reaches 2.6V.
 - The State Machine, upon receiving the shut-down control signal, generates the XRESO signal to set the baseband chip in reset mode.
 - The State Machine switches off LDO1, LDO2 and LDO3. HPBG is kept on in order to provide a fast startup of the LDOs in case of glitches on V_{DD3} .

7.1 Startup Diagram

POR2, supplied by V_{DD3} , resets the startup state machine. After 0.3 ms, the V_{DD3} comparator is started. If V_{DD3} is greater than 2.7V, LDO regulators are started in the following order: LDO3, LDO2, LDO1. During LDO regulator V_{DD} startup, voltage is not checked.

Then XRESO is kept grounded for 220 ms, tied high for 1 ms, before following XRESIN. During that state, V_{DD3} voltage is monitored and if it is lower than 2.6V, LDO regulators 1, 2 and 3 are stopped and XRESO is grounded.

Both XRESIN and V_{DD3} comparator output are debounced at rising and falling edges for two 10 kHz clock cycles. Debounce time is typically between 100 µs and 200 µs. Timings are defined ± 40%.

8. Normal Procedure

The State Machine monitors the XRESIN pin and provides the proper XRESO pin signal when reset occurs.

Through the Two-wire Interface (TWI), the user can control and change the output voltage delivered by LDO1, LDO2, LDO3 and LDO4.

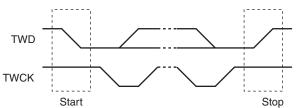
9. Two-wire Interface (TWI) Protocol

The two-wire interface interconnects components on a unique two-wire bus, made up of one clock line and one data line with speeds up to 400 Kbits per second, based on a byte oriented transfer format. The TWI is slave only and has single byte access.

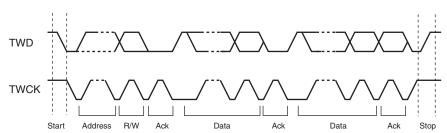
The TWI adds flexibility to the power supply solution, enabling LDO regulators to be controlled depending on the instantaneous application requirements.

The AT73C239 has the following 7-bit address: 1001000.

Attempting to read data from register addresses not listed in this section results in 0xFF being read out.

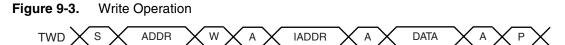

- TWCK is an input pin for the clock
- TWD is an open-drain pin driving or receiving the serial data

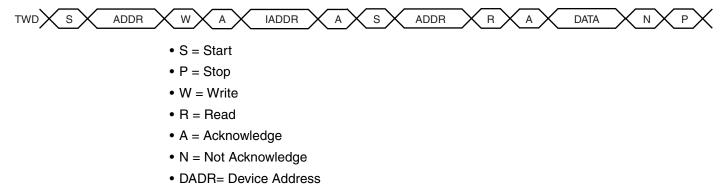
The data put on TWD line must be 8 bits long. Data is transferred MSB first. Each byte must be followed by an acknowledgement.


Each transfer begins with a START condition and terminates with a STOP condition.

- A high-to-low transition on TWD while TWCK is high defines a START condition.
- A low-to-high transition on TWD while TWCK is high defines a STOP condition.

Figure 9-1. START and STOP Conditions


After the host initiates a START condition, it sends the 7-bit slave address defined above to notify the slave device. A read/write bit follows (read = 1, write = 0).



The device acknowledges each received byte. The first byte sent after the device address and the R/W bit, is the address of the device register the host wants to read or write.

For a write operation the data follows the internal address. For a read operation a repeated START condition needs to be generated followed by a read on the device.

• IADR = Internal Address

10. Normal Modes and Quiescent Current

		Quiesce	ent [µA]
Modes Conditions		typ	max
Backup Battery	V _{BAT} present, V _{DD3} not present LDO4 on	10	30
Normal	V _{BAT} present, V _{DD3} present LDO4 on LDO1 on LDO2 on LDO3 on	800	

 Table 10-1.
 Normal Modes and Quiescent Current

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

Table 11-1. Absolute Maximum Ratings

Operating Temperature (Industrial)40° C to +85° C	*NOTICE: Stresses beyond those listed under "Abs Ratings" may cause permanent damage	
Storage Temperature55°C to +150°C	This is a stress rating only and functionate the device at these or other conditions be	
Power Supply Input on V _{BAT}	indicated in the operational sections of t	his specification
Power Supply Input on V_{DD1} , V_{DD2} , V_{DD3} 0.3V to + 3.6V	is not implied. Exposure to absolute mat conditions for extended periods may affe	•
Digital IO Input Voltage0.3V to + 3.6V	ability.	
TWI IO Input Voltage0.3V to + 5.5V		
All Other Pins0.3V to + 3.6V		

11.2 Recommended Operating Conditions

Table 11-2. Recommended Operating Conditions

Parameter	Condition	Min	Мах	Unit
Operating Temperature		-40	85	°C
Deven Oversky land	$V_{DD1}, V_{DD2}, V_{DD3}$	3.0	3.6	V
Power Supply Input	V _{BAT}	2.5	3.6	

12. Timing Diagram

At V_{DD3} startup XRESIN is taken into account only if it occurs after $t_{\text{DELAY}}.$

Table 12-1.Timing Parameters

Parameter	Signal	Constraint	Min	Max	Unit
t _{START1}	V _{O4}	LDO4 Startup time	10	100	µsec
t _{START2}	V ₀₁ ,V ₀₂ , V ₀₃	LDO1,2,3 Startup time	10	100	µsec
t _{STARTHPBG}	V _{BG}	HPBG startup time		2	ms
t _{RESGEN}	XRESOUT	Delay to XRESOUT active	100	500	ms
t _{DELAY}				1	ms

13. Electrical Specification

13.1 LD01

Symbol	Parameter	Comments	Min	Тур	Max	Units
V _{DD1}	Operating supply voltage	Switching Regulated	3.0	3.3	3.6	V
	Output valta sa	Factory programmed	2.70	2.75	2.80	V
V _{O1}	Output voltage	Programmable	1.75	1.8	1.85	V
l ₁	Load current				25	mA
l _{QC}	Quiescent current				300	μA
I _{SC}	Shutdown current	HiZ output			1	μA
I _{SH}	Short circuit current			200		mA
t _R	Startup time				100	μs
ΔV_{DC}	Line regulation static	From 3.0V to 3.6V		2		mV
A) /		From 10% to 100% I ₁		2		
ΔV_{DC}	Load regulation static	From 0 to 100% I ₁		7		mV
ΔV_{TRAN}	Line regulation dynamic	From 3.1V to 3.6V $t_R = t_F = 5 \ \mu s, \ l_1 = 5 \ mA$		2		mV
ΔV_{TRAN}	Load regulation dynamic	From 10% to 100% I_1 , $t_R = t_F = 5 \ \mu s$,		2.5		mV
		Sine Wave, 100 kHz frequency, 3.3V mean 200 m v _{PP}		48		dB
PSRR	Power Supply Rejection Ratio	Sine Wave, 10 kHz frequency, 3.3V mean, 200 m V _{PP}		55		dB
		Sine Wave, 1 kHz frequency, 3.3V mean 200 m V _{PP}		60		dB
ΔV_{OUT}	StartUp Overshoot			40		mV
V _N	Output Noise	10 Hz - 100 kHz		45		μV_{RMS}
V _{NT}	Total Output Noise	10 Hz - 100 kHz		55		μV_{RMS}

 Table 13-1.
 LDO1 Parametric Table

Table 13-2. LDO1 External Components

Schematic Reference	Description
C _{OUT1}	X5R 1 μ F ± 20% ceramic capacitor

Table 13-3. Control Modes

onldo1	sel1	V01
0	0	HiZ
1	0	2.75V
1	1	1.8V

13.2 LDO2

Symbol	Parameter	Comments	Min	Тур	Max	Units
V _{DD2}	Operating supply voltage	Switching Regulated	3.0	3.3	3.6	V
.,	.	Factory programmed	1.75	1.8	1.85	V
V ₀₂	Output voltage	Programmable	1.45	1.5	1.55	V
l ₂	Load current				30	mA
I _{QC}	Quiescent current				300	μA
I _{SC}	Shutdown current	HiZ output			1	μA
I _{SH}	Short circuit current			200		mA
t _R	Startup time				100	μs
ΔV_{DC}	Line regulation static	From 3.0V to 3.6V		2		mV
		From 10% to 100% I ₂		2		
ΔV_{DC}	Load regulation static	From 0 to 100% l ₂		3		– mV
ΔV_{TRAN}	Line regulation dynamic	From 3.1V to 3.6V $t_R = t_F = 5 \ \mu s, \ l_2 = 30 \ mA$		2		mV
ΔV_{TRAN}	Load regulation dynamic	From 10% to 100% I_1 , $t_R = t_F = 5 \ \mu s$,		3		mV
		Sine Wave, 100 kHz frequency, 3.3V mean 200 m V _{PP}		40		dB
PSRR Po	Power Supply Rejection Ratio	Sine Wave, 10 kHz frequency, 3.3V mean, 200 m V _{PP}		50		dB
		Sine Wave, 1 kHz frequency, 3.3V mean 200 m V _{PP}		70		dB
ΔV _{OUT}	Startup Overshoot			30		mV
V _N	Output Noise	10 Hz - 100 kHz		35		μV _{RMS}
V _{NT}	Total Output Noise	10 Hz - 100 kHz		45		μV _{RMS}

Table 13-5.External Components

Schematic Reference	Description
C _{OUT2}	X5R 1 μ F ± 20% ceramic capacitor

Table 13-6. Control Modes

on2ldo	sel2	V02
0	Х	HiZ
1	0	1.8V
1	1	1.5V

13.3 LDO3

Table 13-7.	LDO3 Parametric Table

Symbol	Parameter	Comments	Min	Тур	Max	Units
V _{DD3}	Operating supply voltage	Switching Regulated	3.0	3.3	3.6	V
		Factory programmed	1.75	1.8	1.85	V
V _{O3} Output voltage	Programmable	1.45	1.5	1.55	V	
	Programmable	1.18	1.23	1.28	V	
l ₃	Load current				60	mA
I _{QC}	Quiescent current				300	μA
I _{SC}	Shutdown current	HiZ output			1	μA
I _{SH}	Short circuit current			200		mA
t _R	Startup time				100	μs
ΔV_{DC}	Line regulation static	From 3.0V to 3.6V		2		mV
ΔV _{DC} Load regulation static	Lood regulation static	From 10% to 100% I ₃		2		mV
		From 0 to 100% I ₃		3		
ΔV_{TRAN}	Line regulation dynamic	From 3.1V to 3.6V $t_R = t_F = 5 \ \mu s, \ I_3 = 60 \ mA$		2		mV
ΔV_{TRAN}	Load regulation dynamic	From 10% to 100% I_1 , $t_R = t_F = 5 \ \mu s$,		3		mV
		Sine Wave, 100 kHz frequency, 3.3V mean 200 m V _{PP}		40		dB
PSRR	Power Supply Rejection Ratio	Sine Wave, 10 kHz frequency, 3.3V mean, 200 m V _{PP}		50		dB
	Sine Wave, 1 kHz frequency, 3.3V mean 200 m V _{PP}		70		dB	
ΔV_{OUT}	Startup Overshoot			30		mV
V _N	Output Noise	10 Hz - 100 kHz, without V _{BG}		35		μV _{RMS}
V _{NT}	Total Output Noise	10 Hz - 100 kHz		45		μV _{RMS}

Table 13-8.External Components

Schematic Reference	Description
C _{OUT3}	X5R 1 μ F ± 20% ceramic capacitor

Table 13-9. Control Modes

onldo3	sel3[0]	sel3[1]	VO3
0	X	Х	HiZ
1	0	0	1.8V
1	1	0	1.5V
1	0	1	1.23V

13.4 LDO4

LDO4 generates 1.2V, 1.5V or 1.8V voltage from VBAT supply. Max DC load is 2 mA. The regulator is activated when POR1 is released.

Table 13-10. LDO4	Parametric Table
-------------------	------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BAT}	Operating supply voltage	Backup Battery or Supercap	2.5		3.6	V
	Factory programmed	1.7	1.8	1.9	V	
V _{O4}	Output voltage	Programmable	1.4	1.5	1.6	V
	Programmable	1.1	1.2	1.3	V	
I ₄	Load current	DC load current			2	mA
I _{QC}	Quiescent current			3	5	μA
I _{SC}	Shutdown current				0.5	μA
t _S	Startup time				200	μs
ΔV_{DC}	Line regulation static	2.5V < V _{BAT} < 3.6V			100	mV
ΔV_{DC}	Load regulation static	0 < l ₄ < 2 mA			100	mV

Table 13-11. LDO4 External Components

Schematic Reference	Description
C _{OUT4}	X5R 1 μ F ± 20% capacitor

Table 13-12. onIdo4 sel4[1:0] Control Modes

onldo4	sel4<1>	sel4<0>	VO4
0	Х	Х	HiZ
1	0	0	1.8V
1	0	1	1.5V
1	1	0	1.2V

Table 13-13. trcore[1:0] Control Modes

trcore<1>	trcore<0>	VO4
0	0	typ
0	1	+ 8 0mV
1	0	- 80 mV
1	1	

13.5 High Performance Bandgap (HPBG)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{BG}	Output voltage	Factory trimmed		1.231		V
I _{SC}	Shutdown current	encore = en = 0, dcrun = 0 (1)		1	6	μA
I _{QC}	Quiescent current				30	μA
t _S	Startup time	C _F = 100 nF		1	2	ms
V _N	Output noise	BW 10 Hz to 100 kHz		7		μV_{RMS}
PSRR	Power Supply Rejection Ratio	F = 100 Hz		65		dB

Table 13-14. HPBG Parametric Table

Table 13-15. External Components

Schematic Reference	Description
C _F	X5R 100 nF ± 20% ceramic capacitor minimum

13.6 Low Power Bandgap (LPBG)

Table 13-16. LPBG Parametric Table

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BAT}	Operating supply voltage	Backup Battery or Supercap	2.5		3.6	V
I _{QC}	Quiescent current			4	7.5	μA
t _S	Startup time				100	μs
V _{LPBG}	Bandgap Voltage		1.15	1.2	1.25	V

13.7 Power On Reset on VBAT (POR1)

Table 13-17. POR1 Parametric Table

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BAT}	Operating supply voltage	Backup Battery or Supercap	2.5		3.6	V
I _{QC}	Quiescent current			3		μA
V _{PON}	POR1 on threshold			1.45		V
V _{POFF}	POR1 off threshold			1.5		V

13.8 Power On Reset on VDD3 (POR2)

Table 13-18. POR2 Parametric Table

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD3}	Operating supply voltage	Switching regulated	0		3.6	V
I _{QC}	Quiescent current			3		μA
V _{PON}	POR2 on threshold			1.45		V
V _{POFF}	POR1 off threshold			1.5		V

13.9 Voltage Monitor

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{QC}	Quiescent current				20	μΑ
V _{PON}	POR2 on threshold	on V _{DD3}	2.7		2.72	V
V _{POFF}	POR1 off threshold	on V _{DD3}	2.6		2.60	V

Table 13-19. Voltage Monitor Parametric Table

13.10 XRESIN

Table 13-20. XRESIN Parametric Table

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	V _I Input supply voltage range	driven by CPU GPIO	1.8		3.3	V
VI		driven by CPU open drain output	Hiz		V	
		connected to V_{DD3} when not used	V _{DD3}		V	

13.11 XRESO

Table 13-21. XRESO Parametric Table

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
VI	Input supply voltage range		1.8		3.3	V

13.12 TWICK

Table 13-22. TWICK Parametric Table

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V ₁	Input supply voltage range		1.8		5.5	V

13.13 TWID

Table 13-23. TWID Parametric Table

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
VI	Input supply voltage range		1.8		5.5	V

14. AT73C239 User Interface

Table 14-1.	AT73C239 Register Mapping
-------------	---------------------------

Offset	Register	Register Description	Access	Reset Value
0×00	LDO_CTRL	LDO Control	Read/Write	0x0F
0×08	LDO_TRIM1	LDO 1,2,3 Trim	Read/Write	0x00
0×0A	LDO_TRIM4	LDO4 Trim	Read/Write	0x00

