imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Incorporates the ARM926EJ-S[™] ARM[®] Thumb[®] Processor
 - DSP instruction Extensions, ARM Jazelle® Technology for Java® Acceleration
 - 8 Kbytes Data Cache, 16 Kbytes Instruction Cache, Write Buffer
 - 200 MIPS at 180 MHz
 - Memory Management Unit
 - EmbeddedICE[™], Debug Communication Channel Support
- Additional Embedded Memories
 - One 32-Kbyte Internal ROM, Single-cycle Access at Maximum Matrix Speed
 - One 32-Kbyte (for AT91SAM9XE256 and AT91SAM9XE512) or 16-Kbyte (for AT91SAM9XE128) Internal SRAM, Single-cycle Access at Maximum Matrix Speed
 - 128, 256 or 512 Kbytes of Internal High-speed Flash for AT91SAM9XE128, AT91SAM9XE256 or AT91SAM9XE512 Respectively. Organized in 256, 512 or 1024 Pages of 512 Bytes Respectively.
 - 128-bit Wide Access
 - Fast Read Time: 45 ns
 - Page Programming Time: 4 ms, Including Page Auto-erase, Full Erase Time: 10 ms
 - 10,000 Write Cycles, 10 Years Data Retention, Page Lock Capabilities, Flash Security Bit
- Enhanced Embedded Flash Controller (EEFC)
 - Interface of the Flash Block with the 32-bit Internal Bus
 - Increases Performance in ARM and Thumb Mode with 128-bit Wide Memory Interface
- External Bus Interface (EBI)
 - Supports SDRAM, Static Memory, ECC-enabled NAND Flash and CompactFlash™
- USB 2.0 Full Speed (12 Mbits per second) Device Port
 - On-chip Transceiver, 2,688-byte Configurable Integrated DPRAM
- USB 2.0 Full Speed (12 Mbits per second) Host Single Port in the 208-pin PQFP Device and Double Port in 217-ball LFBGA Device
 - Single or Dual On-chip Transceivers
 - Integrated FIFOs and Dedicated DMA Channels
- Ethernet MAC 10/100 Base-T
 - Media Independent Interface or Reduced Media Independent Interface
 - 128-byte FIFOs and Dedicated DMA Channels for Receive and Transmit
- Image Sensor Interface
 - ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate
 - 12-bit Data Interface for Support of High Sensibility Sensors
 - SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format
- Bus Matrix
 - Six 32-bit-layer Matrix
 - Remap Command
- Fully-featured System Controller, including
 - Reset Controller, Shutdown Controller
 - Four 32-bit Battery Backup Registers for a Total of 16 Bytes
 - Clock Generator and Power Management Controller
 - Advanced Interrupt Controller and Debug Unit
 - Periodic Interval Timer, Watchdog Timer and Real-time Timer

AT91 ARM Thumb Microcontrollers

AT91SAM9XE128 AT91SAM9XE256 AT91SAM9XE512

Preliminary

- Reset Controller (RSTC)
 - Based on a Power-on Reset Cell, Reset Source Identification and Reset Output Control
- Clock Generator (CKGR)
 - Selectable 32,768 Hz Low-power Oscillator or Internal Low Power RC Oscillator on Battery Backup Power Supply, Providing a Permanent Slow Clock
 - 3 to 20 MHz On-chip Oscillator, One Up to 240 MHz PLL and One Up to 100 MHz PLL
- Power Management Controller (PMC)
 - Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities
 - Two Programmable External Clock Signals
- Advanced Interrupt Controller (AIC)
 - Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
 - Three External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected
- Debug Unit (DBGU)
 - 2-wire UART and support for Debug Communication Channel, Programmable ICE Access Prevention
 - Mode for General Purpose Two-wire UART Serial Communication
- Periodic Interval Timer (PIT)
 - 20-bit Interval Timer Plus 12-bit Interval Counter
- Watchdog Timer (WDT)
 - Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock
- Real-Time Timer (RTT)
 - 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler
- One 4-channel 10-bit Analog to Digital Converter
- Three 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC,)
 - 96 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os
 - Input Change Interrupt Capability on Each I/O Line
 - Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output
- Peripheral DMA Controller Channels (PDC)
- Two-slot Multimedia Card Interface (MCI)
 - SDCard/SDIO and MultiMediaCard[™] Compliant
 - Automatic Protocol Control and Fast Automatic Data Transfers with PDC
- One Synchronous Serial Controllers (SSC)
 - Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
 - I²S Analog Interface Support, Time Division Multiplex Support
 - High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
- Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)
 - Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding
 - Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
 - Full Modem Signal Control on USART0
- One 2-wire UART
- Two Master/Slave Serial Peripheral Interface (SPI)
 - 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
 - Synchronous Communications
- Two Three-channel 16-bit Timer/Counters (TC)
 - Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
 - Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
 - High-Drive Capability on Outputs TIOA0, TIOA1, TIOA2
- Two Two-wire Interfaces (TWI)
 - Master, Multi-master and Slave Mode Operation
 - General Call Supported in Slave Mode
 - Connection to PDC Channel to Optimize Data Transfers in Master Mode Only

- IEEE[®] 1149.1 JTAG Boundary Scan on All Digital Pins
- Required Power Supplies:
 - 1.65V to 1.95V for VDDBU, VDDCORE and VDDPLL
 - 1.65V to 3.6V for VDDIOP1 (Peripheral I/Os)
 - 3.0V to 3.6V for VDDIOP0 and VDDANA (Analog-to-digital Converter)
 - Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOM (Memory I/Os)
- Available in a 208-pin PQFP Green and a 217-ball LFBGA Green Package

1. AT91SAM9XE128/256/512 Description

The AT91SAM9XE128/256/512 is based on the integration of an ARM926EJ-S processor with fast ROM and RAM, 128, 256 or 512 Kbytes of Flash and a wide range of peripherals.

The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via a parallel interface on a production programmer prior to mounting. Built-in lock bits a security bit and MMU protect the firmware from accidental overwrite and preserve its confidentiality.

The AT91SAM9XE128/256/512 embeds an Ethernet MAC, one USB Device Port, and a USB Host Controller. It also integrates several standard peripherals, like six UARTs, SPI, TWI, Timer Counters, Synchronous Serial Controller, ADC and a MultiMedia/SD Card Interface.

The AT91SAM9XE128/256/512 system controller includes a reset controller capable of managing the power-on sequence of the microcontroller and the complete system. Correct device operation can be monitored by a built-in brownout detector and a watchdog running off an integrated RC oscillator.

The AT91SAM9XE128/256/512 is architectured on a 6-layer matrix, allowing a maximum internal bandwidth of six 32-bit buses. It also features an External Bus Interface capable of interfacing with a wide range of memory devices.

The pinout and ball-out are fully compatible with the AT91SAM9260 with the exception that the pin BMS is replaced by the pin ERASE.

2. AT91SAM9XE128/256/512 Block Diagram

The block diagram shows all the features for the 217-LFBGA package. Some functions are not accessible in the 208-PQFP package and the unavailable pins are highlighted in "Multiplexing on PIO Controller A" on page 36, "Multiplexing on PIO Controller B" on page 37, "Multiplexing on PIO Controller C" on page 38. The USB Host Port B is also not available. Table 2-1 on page 4 defines all the multiplexed and not multiplexed pins not available in the 208-PQFP package.

PIO	Peripheral A	Peripheral B
-	HDPB	-
-	HDMB	-
PA30	SCK2	RXD4
PA31	SCK0	TXD4
PB12	TWD1	ISI_D10
PB13	TWCK1	ISI_D11
PC2	AD2	PCK1
PC3	AD3	SPI1_NPCS3
PC12	IRQ0	NCS7

 Table 2-1.
 Unavailable Signals in 208-pin PQFP Device

Figure 2-1. AT91SAM9XE128/256/512 Block Diagram

3. Signal Description

Table 3-1 gives details on the signal name classified by peripheral.

Table 3-1.Signal Description List

Signal Name	Function	Туре	Active Level	Reference Voltage	Comments
		Power Supp	lies		
VDDIOM	EBI I/O Lines Power Supply	Power			1.65V to 1.95V or 3.0V to 3.6V
VDDIOP0	Peripherals I/O Lines Power Supply	Power			3.0V to 3.6V
VDDIOP1	Peripherals I/O Lines Power Supply	Power			1.65V to 3.6V
VDDBU	Backup I/O Lines Power Supply	Power			1.65V to 1.95V
VDDANA	Analog Power Supply	Power			3.0V to 3.6V
VDDPLL	PLL Power Supply	Power			1.65V to 1.95V
VDDCORE	Core Chip and Embedded Memories Power Supply	Power			1.65V to 1.95V
GND	Ground	Ground			
GNDPLL	PLL Ground	Ground			
GNDANA	Analog Ground	Ground			
GNDBU	Backup Ground	Ground			
	Clock	s, Oscillators	and PLLs		
XIN	Main Oscillator Input	Input			
XOUT	Main Oscillator Output	Output			
XIN32	Slow Clock Oscillator Input	Input			
XOUT32	Slow Clock Oscillator Output	Output			
OSCSEL	Slow Clock Oscillator Selection	Input		VDDBU	Accepts between 0V and VDDBU.
PLLRCA	PLL A Filter	Input			
PCK0 - PCK1	Programmable Clock Output	Output		(2)	
	Shu	Itdown, Wake	up Logic		
SHDN	Shutdown Control	Output	Low	VDDBU	Driven at 0V only.
WKUP	Wake-Up Input	Input		VDDBU	Accepts between 0V and VDDBU.
		ICE and JT/	AG		
NTRST	Test Reset Signal	Input	Low	VDDIOP0	Pull-Up resistor (100 k Ω)
тск	Test Clock	Input		VDDIOP0	No pull-up resistor, Schmitt trigger
трі	Test Data In	Input		VDDIOP0	No pull-up resistor, Schmitt trigger
TDO	Test Data Out	Output		VDDIOP0	
TMS	Test Mode Select	Input		VDDIOP0	No pull-up resistor, Schmitt trigger
JTAGSEL	JTAG Selection	Input		VDDBU	Pull-down resistor (15 k Ω).
RTCK	Return Test Clock	Output		VDDIOP0	

AT91SAM9XE128/256/512 Preliminary

Signal Name	Function	Туре	Active Level	Reference Voltage	Comments			
-		Flash Memo	ory					
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIOP0	Pull-down resistor (15 k Ω)			
		Reset/Tes	t					
NRST	IRST Microcontroller Reset I/O Low		VDDIOP0	Open-drain output, Pull-Up resistor (100 k Ω). Inserted in the Boundary Scan.				
TST	Test Mode Select	Input		VDDBU	Pull-down resistor (15 k Ω)			
	C)ebug Unit - D	BGU					
DRXD	Debug Receive Data	Input		(2)				
DTXD	Debug Transmit Data	Output		(2)				
Advanced Interrupt Controller - AIC								
IRQ0 - IRQ2	External Interrupt Inputs	Input		(2)				
FIQ	Fast Interrupt Input	Input		(2)				
	PIO Cont	roller - PIOA	PIOB - PIOC	;				
PA0 - PA31	Parallel IO Controller A	I/O		VDDIOP0	Pulled-up input at reset $(100 k\Omega)^{(1)}$			
PB0 - PB31	Parallel IO Controller B	I/O		VDDIOP0	Pulled-up input at reset $(100k\Omega)^{(1)}$			
PC0 - PC31	Parallel IO Controller C	I/O		(2)	Pulled-up input at reset $(100k\Omega)^{(1)}$			
	Exter	nal Bus Inter	face - EBI					
D0 - D31	Data Bus	I/O		VDDIOM	Pulled-up input at reset			
A0 - A25	Address Bus	Output		VDDIOM	0 at reset			
NWAIT	External Wait Signal	Input	Low	VDDIOM				
	Static	lemory Cont	roller - SMC					
NCS0 - NCS7	Chip Select Lines	Output	Low	VDDIOM				
NWR0 - NWR3	Write Signal	Output	Low	VDDIOM				
NRD	Read Signal	Output	Low	VDDIOM				
NWE	Write Enable	Output	Low	VDDIOM				
NBS0 - NBS3	Byte Mask Signal	Output	Low	VDDIOM				

Table 3-1. Signal Description List (Continued)

Table 3-1. Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Reference Voltage	Comments
	C	ompactFlash S	Support	1	
CFCE1 - CFCE2	CompactFlash Chip Enable	Output	Low	VDDIOM	
CFOE	CompactFlash Output Enable	Output	Low	VDDIOM	
CFWE	CompactFlash Write Enable	Output	Low	VDDIOM	
CFIOR	CompactFlash IO Read	Output	Low	VDDIOM	
CFIOW	CompactFlash IO Write	Output	Low	VDDIOM	
CFRNW	CompactFlash Read Not Write	Output		VDDIOM	
CFCS0 - CFCS1	CompactFlash Chip Select Lines	Output	Low	VDDIOM	
	1	AND Flash Su	upport		
NANDCS	NAND Flash Chip Select	Output	Low	VDDIOM	
NANDOE	NAND Flash Output Enable	Output	Low	VDDIOM	
NANDWE	NAND Flash Write Enable	Output	Low	VDDIOM	
		SDRAM Cont	roller		
SDCK	SDRAM Clock	Output		VDDIOM	
SDCKE	SDRAM Clock Enable	Output	High	VDDIOM	
SDCS	SDRAM Controller Chip Select	Output	Low	VDDIOM	
BA0 - BA1	Bank Select	Output		VDDIOM	
SDWE	SDRAM Write Enable	Output	Low	VDDIOM	
RAS - CAS	Row and Column Signal	Output	Low	VDDIOM	
SDA10	SDRAM Address 10 Line	Output		VDDIOM	
	Multi	nedia Card Int	terface MCI		
MCCK	Multimedia Card Clock	Output		VDDIOP0	
MCCDA	Multimedia Card Slot A Command	I/O		VDDIOP0	
MCDA0 - MCDA3	Multimedia Card Slot A Data	I/O		VDDIOP0	
MCCDB	Multimedia Card Slot B Command	I/O		VDDIOP0	
MCDB0 - MCDB3	Multimedia Card Slot B Data	I/O		VDDIOP0	
	Universal Synchronous A	synchronous	Receiver Tra	ansmitter USA	RTx
SCKx	USARTx Serial Clock	I/O		(2)	
TXDx	USARTx Transmit Data	I/O		(2)	
RXDx	USARTx Receive Data	Input		(2)	
RTSx	USARTx Request To Send	Output		(2)	
CTSx	USARTx Clear To Send	Input		(2)	
DTR0	USART0 Data Terminal Ready	Output		(2)	
DSR0	USART0 Data Set Ready	Input		(2)	
DCD0	USART0 Data Carrier Detect	Input		(2)	
RI0	USART0 Ring Indicator	Input		(2)	

AT91SAM9XE128/256/512 Preliminary

Signal Name	Function	Туре	Active Level	Reference Voltage	Comments
	Synchro	nous Serial Co	ontroller - SS	SC	
TD	SSC Transmit Data	Output		(2)	
RD	SSC Receive Data	Input		(2)	
тк	SSC Transmit Clock	I/O		(2)	
RK	SSC Receive Clock	I/O		(2)	
TF	SSC Transmit Frame Sync	I/O		(2)	
RF	SSC Receive Frame Sync	I/O		(2)	
	-	Timer/Counter	- TCx		
TCLKx	TC Channel x External Clock Input	Input		(2)	
TIOAx	TC Channel x I/O Line A	I/O		(2)	
TIOBx	TC Channel x I/O Line B	I/O		(2)	
	Serial F	Peripheral Inte	rface - SPIx	_	
SPIx_MISO	Master In Slave Out	I/O		(2)	
SPIx_MOSI	Master Out Slave In	I/O		(2)	
SPIx_SPCK	SPI Serial Clock	I/O		(2)	
SPIx_NPCS0	SPI Peripheral Chip Select 0	I/O	Low	(2)	
SPIx_NPCS1- SPIx_NPCS3	SPI Peripheral Chip Select	Output	Low	(2)	
		Two-Wire Inte	rface		
TWDx	Two-wire Serial Data	I/O		(2)	
TWCKx	Two-wire Serial Clock	I/O		(2)	
		USB Host P	ort	-	•
HDPA	USB Host Port A Data +	Analog		VDDIOP0	
HDMA	USB Host Port A Data -	Analog		VDDIOP0	
HDPB	USB Host Port B Data +	Analog		VDDIOP0	
HDMB	USB Host Port B Data +	Analog		VDDIOP0	
		USB Device	Port		
DDM	USB Device Port Data -	Analog		VDDIOP0	
DDP	USB Device Port Data +	Analog		VDDIOP0	

Table 3-1. Signal Description List (Continued)

Table 3-1. Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Reference Voltage	Comments
ETXCK	Transmit Clock or Reference Clock	Input		VDDIOP0	MII only, REFCK in RMII
ERXCK	Receive Clock	Input		VDDIOP0	MII only
ETXEN	Transmit Enable	Output		VDDIOP0	
ETX0-ETX3	Transmit Data	Output		VDDIOP0	ETX0-ETX1 only in RMII
ETXER	Transmit Coding Error	Output		VDDIOP0	MII only
ERXDV	Receive Data Valid	Input		VDDIOP0	RXDV in MII, CRSDV in RMII
ERX0-ERX3	Receive Data	Input		VDDIOP0	ERX0-ERX1 only in RMII
ERXER	Receive Error	Input		VDDIOP0	
ECRS	Carrier Sense and Data Valid	Input		VDDIOP0	MII only
ECOL	Collision Detect	Input		VDDIOP0	MII only
EMDC	Management Data Clock	Output		VDDIOP0	
EMDIO	Management Data Input/Output	I/O		VDDIOP0	
EF100	Force 100Mbit/sec.	Output	High	VDDIOP0	
	In	nage Sensor Ir	iterface		
ISI_D0-ISI_D11	Image Sensor Data	Input		VDDIOP1	
ISI_MCK	Image sensor Reference clock	output		VDDIOP1	
ISI_HSYNC	Image Sensor Horizontal Synchro	input		VDDIOP1	
ISI_VSYNC	Image Sensor Vertical Synchro	input		VDDIOP1	
ISI_PCK	Image Sensor Data clock	input		VDDIOP1	
	Ana	log to Digital (Converter		
AD0-AD3	Analog Inputs	Analog		VDDANA	Digital pulled-up inputs at reset
ADVREF	Analog Positive Reference	Analog		VDDANA	
ADTRG	ADC Trigger	Input		VDDANA	
	Fast Fla	ash Programm	ing Interface)	
PGMEN[3:0]	Programming Enabling	Input		VDDIOP0	
PGMNCMD	Programming Command	Input	Low	VDDIOP0	
PGMRDY	Programming Ready	Output	High	VDDIOP0	
PGMNOE	Programming Read	Input	Low	VDDIOP0	
PGMNVALID	Data Direction	Output	Low	VDDIOP0	
PGMM[3:0]	Programming Mode	Input		VDDIOP0	
PGMD[15:0]	Programming Data	I/O		VDDIOP0	

Notes: 1. Programming of this pull-up resistor is performed independently for each I/O line through the PIO Controllers. After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which are multiplexed with the External Bus Interface signals that require to be enabled as Peripheral at reset. This is explicitly indicated in the column "Reset State" of the peripheral multiplexing tables.

2. Refer to PIO Multiplexing (see Section 10.3 "Peripheral Signals Multiplexing on I/O Lines").

4. Package and Pinout

The AT91SAM9XE128/256/512 is available in a 208-pin PQFP Green package (0.5mm pitch) or in a 217-ball LFBGA Green package (0.8 mm ball pitch).

4.1 208-pin PQFP Package Outline

Figure 4-1 shows the orientation of the 208-pin PQFP package.

A detailed mechanical description is given in the section "AT91SAM9XE Mechanical Characteristics" of the product datasheet.

Figure 4-1. 208-pin PQFP Package Outline (Top View)

4.2 208-pin PQFP Package Pinout

 Table 4-1.
 Pinout for 208-pin PQFP Package

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
1	PA24	53	GND	105	RAS	157	ADVREF
2	PA25	54	DDM	106	D0	158	PC0
3	PA26	55	DDP	107	D1	159	PC1
4	PA27	56	PC13	108	D2	160	VDDANA
5	VDDIOP0	57	PC11	109	D3	161	PB10
6	GND	58	PC10	110	D4	162	PB11
7	PA28	59	PC14	111	D5	163	PB20
8	PA29	60	PC9	112	D6	164	PB21
9	PB0	61	PC8	113	GND	165	PB22
10	PB1	62	PC4	114	VDDIOM	166	PB23
11	PB2	63	PC6	115	SDCK	167	PB24
12	PB3	64	PC7	116	SDWE	168	PB25
13	VDDIOP0	65	VDDIOM	117	SDCKE	169	VDDIOP1
14	GND	66	GND	118	D7	170	GND
15	PB4	67	PC5	119	D8	171	PB26
16	PB5	68	NCS0	120	D9	172	PB27
17	PB6	69	CFOE/NRD	121	D10	173	GND
18	PB7	70	CFWE/NWE/NWR0	122	D11	174	VDDCORE
19	PB8	71	NANDOE	123	D12	175	PB28
20	PB9	72	NANDWE	124	D13	176	PB29
21	PB14	73	A22	125	D14	177	PB30
22	PB15	74	A21	126	D15	178	PB31
23	PB16	75	A20	127	PC15	179	PAO
20		75	Δ19	127	PC16	180	PA1
24		70		120	PC17	181	PA2
25	DB17	78	GND	129	PC18	182	DA3
20	PB18	70	A18	131	PC10	183	PA4
28	PB10	80	RA1/A17	132		184	DA5
20		00		132		195	DAG
29		01	A15	133		196	PA0
21		02	A13	134	PC20	100	
00		03	A14	135	P021	107	
32		84	A13	130	P022	188	GND
33		85	A12	137	PC23	189	PA8
34	IUK	86		138	PC24	190	PA9
35	NIRSI	87	A10	139	PU25	191	PAIU
30	NRSI	88	A9	140	PC26	192	PATT
37	RICK	89	A8	141	PC27	193	PAIZ
38	VDDCORE	90	VDDIOM	142	PC28	194	PA13
39	GND	91	GND	143	PC29	195	PA14
40	ERASE	92	A/	144	PC30	196	PA15
41	USCSEL	93	A6	145	PC31	197	PA16
42		94	A5	146	GND	198	PA17
43	JIAGSEL	95	A4	147	VDDCORE	199	VDDIOP0
44	GNDBU	96	A3	148	VDDPLL	200	GND
45	XOUT32	97	A2	149	XIN	201	PA18
46	XIN32	98	NWR2/NBS2/A1	150	XOUT	202	PA19
47	VDDBU	99	NBS0/A0	151	GNDPLL	203	VDDCORE
48	WKUP	100	SDA10	152	NC	204	GND
49	SHDN	101	CFIOW/NBS3/NWR3	153	GNDPLL	205	PA20
50	HDMA	102	CFIOR/NBS1/NWR1	154	PLLRCA	206	PA21
51	HDPA	103	SDCS/NCS1	155	VDDPLL	207	PA22
52	VDDIOP0	104	CAS	156	GNDANA	208	PA23

4.3 217-ball LFBGA Package Outline

Figure 4-2 shows the orientation of the 217-ball LFBGA package.

A detailed mechanical description is given in the section "AT91SAM9XE Mechanical Characteristics" of the product datasheet.

17	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	οс	0										0	0	0	0
12	0	οс	0										0	0	0	0
11	0	οс	0										0	0	0	0
10	0	οс	0				0	0	0				0	0	0	0
9	0	οс	0				0	0	0				0	0	0	0
8	0	οс	0				0	0	0				0	0	0	0
7	0	οс	0										0	0	0	0
6	0	οс	0										0	0	0	0
5	0	οс	0										0	0	0	0
4	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	οс	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	o															
7		3 C		F	F	G	н		ĸ	Ē	м	N	P	R	т	
Ball A1		, 0	0	-		u		5		-	1.41		'		1	0

Figure 4-2. 217-ball LFBGA Package Outline (Top View)

4.4 217-ball LFBGA Package Pinout

 Table 4-2.
 Pinout for 217-ball LFBGA Package

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
A1	CFIOW/NBS3/NWR3	D5	A5	J14	TDO	P17	PB5
A2	NBS0/A0	D6	GND	J15	PB19	R1	NC
A3	NWR2/NBS2/A1	D7	A10	J16	TDI	R2	GNDANA
A4	A6	D8	GND	J17	PB16	R3	PC29
A5	A8	D9	VDDCORE	K1	PC24	R4	VDDANA
A6	A11	D10	GND	K2	PC20	R5	PB12
A7	A13	D11	VDDIOM	K3	D15	R6	PB23
A8	BA0/A16	D12	GND	K4	PC21	R7	GND
A9	A18	D13	DDM	K8	GND	R8	PB26
A10	A21	D14	HDPB	K9	GND	R9	PB28
A11	A22	D15	NC	K10	GND	R10	PA0
A12	CFWE/NWE/NWR0	D16	VDDBU	K14	PB4	R11	PA4
A13	CFOE/NRD	D17	XIN32	K15	PB17	R12	PA5
A14	NCS0	E1	D10	K16	GND	R13	PA10
A15	PC5	E2	D5	K17	PB15	R14	PA21
A16	PC6	E3	D3	L1	GND	R15	PA23
A17	PC4	E4	D4	L2	PC26	R16	PA24
B1	SDCK	E14	HDPA	L3	PC25	R17	PA29
B2	CFIOR/NBS1/NWR1	E15	HDMA	L4	VDDIOP0	T1	PLLRCA
B3	SDCS/NCS1	E16	GNDBU	L14	PA28	T2	GNDPLL
B4	SDA10	E17	XOUT32	L15	PB9	Т3	PC0
B5	A3	F1	D13	L16	PB8	Τ4	PC1
B6	A7	F2	SDWE	L17	PB14	Т5	PB10
B7	A12	F3	D6	M1	VDDCORE	Т6	PB22
B8	A15	F4	GND	M2	PC31	T7	GND
B9	A20	F14	OSCSEL	M3	GND	Т8	PB29
B10	NANDWE	F15	ERASE	M4	PC22	Т9	PA2
B11	PC7	F16	JTAGSEL	M14	PB1	T10	PA6
B12	PC10	F17	TST	M15	PB2	T11	PA8
B13	PC13	G1	PC15	M16	PB3	T12	PA11
B14	PC11	G2	D7	M17	PB7	T13	VDDCORE
B15	PC14	G3	SDCKE	N1	XIN	T14	PA20
B16	PC8	G4	VDDIOM	N2	VDDPLL	T15	GND
B17	WKUP	G14	GND	N3	PC23	T16	PA22
C1	D8	G15	NRST	N4	PC27	T17	PA27
C2	D1	G16	RTCK	N14	N14 PA31		GNDPLL
C3	CAS	G17	TMS	N15	PA30	U2	ADVREF
C4	A2	H1	PC18	N16	PB0	U3	PC2
C5	A4	H2	D14	N17	PB6	04	PC3
C6	A9	H3	D12	P1	XOUT	05	PB20
C7	A14	H4	D11	P2	VDDPLL	U6	PB21
C8	BA1/A17	H8	GND	P3	PC30	U7	PB25
C9	A19	H9	GND	P4	PC28	U8	PB27
010	NANDOE	H10	GND	P5	PB11	09	PA12
011	PC9	H14	VDDCORE	P6	PB13	010	PA13
C12	PC12	H15		P7	PB24	011	PA14
013		H16	NIKSI DB40	P8		012	PA15
C14	HDMR	H17	PB18	P9	PB30	013	PA19
015		JI	PC19 DC17	P10	PB31	014	PAT/
015		J2		P11		015	
		J3		P12	PA3	016	
		J4		P13	PA7	01/	VUUIUPU
D2		JØ		P14	PAY		
D3		19		F13	PA20		
D4	DU	J10	GND	10	PAZO		

5. Power Considerations

5.1 Power Supplies

The AT91SAM9XE128/256/512 has several types of power supply pins:

- VDDCORE pins: Power the core, including the processor, the embedded memories and the peripherals; voltage ranges from 1.65V and 1.95V, 1.8V nominal.
- VDDIOM pins: Power the External Bus Interface I/O lines; voltage ranges between 1.65V and 1.95V (1.8V typical) or between 3.0V and 3.6V (3.3V nominal). The expected voltage range is selectable by software.
- VDDIOP0 pins: Power the Peripheral I/O lines and the USB transceivers; voltage ranges from 3.0V and 3.6V, 3V or 3.3V nominal.
- VDDIOP1 pin: Powers the Peripherals I/O lines involving the Image Sensor Interface; voltage ranges from 1.65V and 3.6V, 1.8V, 2.5V, 3V or 3.3V nominal.
- VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage ranges from 1.65V to 1.95V, 1.8V nominal.
- VDDPLL pins: Power the PLL cells and the main oscillator; voltage ranges from 1.65V and 1.95V, 1.8V nominal.
- VDDANA pin: Powers the Analog to Digital Converter; voltage ranges from 3.0V and 3.6V, 3.3V nominal.

The power supplies VDDIOM, VDDIOP0 and VDDIOP1 are identified in the pinout table and their associated I/O lines in the multiplexing tables. These supplies enable the user to power the device differently for interfacing with memories and for interfacing with peripherals.

Ground pins GND are common to VDDCORE, VDDIOM, VDDIOP0 and VDDIOP1 pins power supplies. Separated ground pins are provided for VDDBU, VDDPLL and VDDANA. These ground pins are respectively GNDBU, GNDPLL and GNDANA.

6. I/O Line Considerations

6.1 ERASE Pin

The ERASE pin is used to re-initialize the Flash content and the NVM bits. It integrates a permanent pull-down resistor of about 15 k Ω , so that it can be left unconnected for normal operations. The ERASE pin is powered by VDDIOP0 rail.

This pin is debounced on the RC oscillator or 32,768 Hz low-power oscillator to improve the glitch tolerance. Minimum debouncing time is 200 ms.

6.2 I/O Line Drive Levels

The PIO lines PA0 to PA31 and PB0 to PB31 and PC0 to PC3 are high-drive current capable. Each of these I/O lines can drive up to 16 mA permanently with a total of 350 mA on all I/O lines.

Refer to the "DC Characteristics" section of the product datasheet.

6.3 Shutdown Logic Pins

The SHDN pin is a tri-state output only pin, which is driven by the Shutdown Controller. There is no internal pull-up. An external pull-up to VDDBU is needed and its value must be higher than

1 $\ensuremath{M\Omega}$ The resisitor value is calculated according to the regulator enable implementation and the SHDN level.

The WKUP pin is an input-only. It can accept voltages only between 0V and VDDBU.

7. Processor and Architecture

7.1 ARM926EJ-S Processor

- RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java acceleration
- Two Instruction Sets
 - ARM High-performance 32-bit Instruction Set
 - Thumb High Code Density 16-bit Instruction Set
- DSP Instruction Extensions
- 5-Stage Pipeline Architecture:
 - Instruction Fetch (F)
 - Instruction Decode (D)
 - Execute (E)
 - Data Memory (M)
 - Register Write (W)
- 8 Kbytes Data Cache, 16 Kbytes Instruction Cache
 - Virtually-addressed 4-way Associative Cache
 - Eight words per line
 - Write-through and Write-back Operation
 - Pseudo-random or Round-robin Replacement
- Write Buffer
 - Main Write Buffer with 16-word Data Buffer and 4-address Buffer
 - DCache Write-back Buffer with 8-word Entries and a Single Address Entry
 - Software Control Drain
- Standard ARM v4 and v5 Memory Management Unit (MMU)
 - Access Permission for Sections
 - Access Permission for large pages and small pages can be specified separately for each quarter of the page
 - 16 embedded domains
- Bus Interface Unit (BIU)
 - Arbitrates and Schedules AHB Requests
 - Separate Masters for both instruction and data access providing complete Matrix system flexibility
 - Separate Address and Data Buses for both the 32-bit instruction interface and the 32-bit data interface
 - On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit (Words)

AT91SAM9XE128/256/512 Preliminary

7.2 Bus Matrix

- 6-layer Matrix, handling requests from 6 masters
- Programmable Arbitration strategy
 - Fixed-priority Arbitration
 - Round-Robin Arbitration, either with no default master, last accessed default master or fixed default master
- Burst Management
 - Breaking with Slot Cycle Limit Support
 - Undefined Burst Length Support
- One Address Decoder provided per Master
 - Three different slaves may be assigned to each decoded memory area: one for internal ROM boot, one for internal flash boot, one after remap
- Boot Mode Select
 - Non-volatile Boot Memory can be internal ROM or internal Flash
 - Selection is made by General purpose NVM bit sampled at reset
- Remap Command
 - Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory (ROM or Flash)
 - Allows Handling of Dynamic Exception Vectors

7.2.1 Matrix Masters

The Bus Matrix of the AT91SAM9XE128/256/512 manages six Masters, thus each master can perform an access concurrently with others, depending on whether the slave it accesses is available.

Each Master has its own decoder, which can be defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings.

Master 0	ARM926 [™] Instruction
Master 1	ARM926 Data
Master 2	Peripheral DMA Controller
Master 3	USB Host Controller
Master 4	Image Sensor Controller
Master 5	Ethernet MAC

Table 7-1. List of Bus Matrix Masters

7.2.2 Matrix Slaves

Each Slave has its own arbiter, thus allowing a different arbitration per Slave to be programmed.

Slave 0	Internal SRAM
Slave 1	Internal ROM
Slave	USB Host User Interface
Slave 2	External Bus Interface

Table 7-2. List of Bus Matrix Slaves

Table 7-2. List of Bus Matrix Slaves (Continued)

Slave 3	Internal Flash
Slave 4	Internal Peripherals
Slave 5	Reserved

7.2.3 Masters to Slaves Access

All the Masters can normally access all the Slaves. However, some paths do not make sense, such as allowing access from the Ethernet MAC to the internal peripherals.

Thus, these paths are forbidden or simply not wired, and shown as "--" in the following table.

Table 7-3.Masters to Slaves Access

	Master	0 and 1	2	3	4	5
Slave		ARM926 Instruction and Data	Periphera DMA Controller	ISI Controller	Ethernet MAC	USB Host Controller
0	Internal SRAM	Х	Х	Х	Х	Х
1	Internal ROM	Х	Х	-	-	-
	UHP User Interface	Х	-	-	-	-
2	External Bus Interface	Х	-	-	Х	
3	Internal Flash	Х	Х	Х	Х	Х
4	Internal Peripherals	Х	Х	-	-	-
	Reserved	-	_	_	_	_

7.3 Peripheral DMA Controller

- Acting as one Matrix Master
- Allows data transfers from/to peripheral to/from any memory space without any intervention of the processor.
- Next Pointer Support, forbids strong real-time constraints on buffer management.
- Twenty-four channels
 - Two for each USART
 - Two for the Debug Unit
 - Two for each Serial Synchronous Controller
 - Two for each Serial Peripheral Interface
 - Two for the Two Wire Interface
 - One for Multimedia Card Interface
 - One for Analog To Digital Converter

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities):

- TWI0 Transmit Channel
- TWI1 Transmit Channel
- DBGU Transmit Channel
- USART4 Transmit Channel
- USART3 Transmit Channel

AT91SAM9XE128/256/512 Preliminary

- USART2 Transmit Channel
- USART1 Transmit Channel
- USART0 Transmit Channel
- SPI1 Transmit Channel
- SPI0 Transmit Channel
- SSC Transmit Channel
- TWI0 Receive Channel
- TWI1 Receive Channel
- DBGU Receive Channel
- USART4 Receive Channel
- USART3 Receive Channel
- USART2 Receive Channel
- USART1 Receive Channel
- USART0 Receive Channel
- ADC Receive Channel
- SPI1 Receive Channel
- SPI0 Receive Channel
- SSC Receive Channel
- MCI Transmit/Receive Channel

7.4 Debug and Test Features

- ARM926 Real-time In-circuit Emulator
 - Two real-time Watchpoint Units
 - Two Independent Registers: Debug Control Register and Debug Status Register
 - Test Access Port Accessible through JTAG Protocol
 - Debug Communications Channel
- Debug Unit
 - Two-pin UART
 - Debug Communication Channel Interrupt Handling
 - Chip ID Register
- IEEE1149.1 JTAG Boundary-scan on All Digital Pins

8. Memories

A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the Advanced High performance Bus (AHB) for its Master and Slave interfaces with additional features.

Decoding breaks up the 4 Gbytes of address space into 16 banks of 256 Mbytes. The banks 1 to 7 are directed to the EBI that associates these banks to the external chip selects EBI_NCS0 to EBI_NCS7. Bank 0 is reserved for the addressing of the internal memories, and a second level of decoding provides 1 Mbyte of internal memory area. Bank 15 is reserved for the peripherals and provides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master requesting such an access.

Each Master has its own bus and its own decoder, thus allowing a different memory mapping per Master. However, in order to simplify the mappings, all the masters have a similar address decoding.

Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different Slaves are assigned to the memory space decoded at address 0x0: one for internal boot, one for external boot, one after remap, refer to Table 8-3, "Internal Memory Mapping," on page 25 for details.

A complete memory map is presented in Figure 8-1 on page 20.

8.1 Embedded Memories

8.1.1 AT91SAM9XE128

- 32 Kbytes ROM
 - Single Cycle Access at full matrix speed
- 16 Kbytes Fast SRAM
 - Single Cycle Access at full matrix speed
- 128 Kbytes Embedded Flash

8.1.2 AT91SAM9XE256

- 32 Kbytes ROM
 - Single Cycle Access at full matrix speed
- 32 Kbytes Fast SRAM
 - Single Cycle Access at full matrix speed
- 256 Kbytes Embedded Flash

8.1.3 AT91SAM9XE512

- 32 Kbytes ROM
 - Single Cycle Access at full matrix speed
- 32 Kbytes Fast SRAM
 - Single Cycle Access at full matrix speed
- 512 Kbytes Embedded Flash

8.1.4 ROM Topology

The embedded ROM contains the Fast Flash Programming and the SAM-BA boot programs. Each of these two programs is stored on 16-Kbyte Boundary of FFPI and the program executed

at address zero depends on the combination of the TST pin and PA0 to PA3 pins. Figure 8-2 shows the contents of the ROM and the program available at address zero.

Figure 8-2. ROM Boot Memory Map

8.1.4.1 Fast Flash Programming Interface

The Fast Flash Programming Interface programs the device through a serial JTAG interface or a multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PA0 and PA1 pins are all tied high, while PA2 and PA3 are tied low.

Signal Name	PIO	Туре	Active Level	Comments
PGMEN0	PA0	Input	High	Must be connected to VDDIO
PGMEN1	PA1	Input	High	Must be connected to VDDIO
PGMEN2	PA2	Input	Low	Must be connected to GND
PGMEN3	PA3	Input	Low	Must be connected to GND
PGMNCMD	PA4	Input	Low	Pulled-up input at reset
PGMRDY	PA5	Output	High	Pulled-up input at reset
PGMNOE	PA6	Input	Low	Pulled-up input at reset
PGMNVALID	PA7	Output	Low	Pulled-up input at reset
PGMM[3:0]	PA8PA10	Input		Pulled-up input at reset
PGMD[15:0]	PA12PA27	Input/Output		Pulled-up input at reset

Table 8-1.Signal Description

8.1.4.2 SAM-BA[®] Boot Assistant

The SAM-BA Boot Assistant is a default Boot Program that provides an easy way to program in situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication through the DBGU or through the USB Device Port.

- Communication through the DBGU supports a wide range of crystals from 3 to 20 MHz via software auto-detection.
- Communication through the USB Device Port is depends on crystal selected:
 - limited to an 18,432 Hz crystal if the internal RC oscillator is selected
 - supports a wide range of crystals from 3 to 20 MHz if the 32,768 Hz crystal is selected

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

8.1.5 Embedded Flash

The Flash of the AT91SAM9XE128/256/512 is organized in 256/512/1024 pages of 512 bytes directly connected to the 32-bit internal bus. Each page contains 128 words.

The Flash contains a 512-byte write buffer allowing the programming of a page. This buffer is write-only as 128 32-bit words, and accessible all along the 1-Mbyte address space, so that each word can be written at its final address.

The Flash benefits from the integration of a power reset cell and from a brownout detector to prevent code corruption during power supply changes, even in the worst conditions.

8.1.5.1 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked.

The Enhanced Embedded Flash Controller (EEFC) is a slave for the bus matrix and is configurable through its User Interface on the APB bus. It ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance, four 32-bit data are read during each access, this multiply the throughput by 4 in case of consecutive data.

It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic programming of the access parameters of the Flash (number of wait states, timings, etc.)

8.1.5.2 Lock Regions

The memory plane of 128, 256 or 512 Kbytes is organized in 8, 16 or 32 locked regions of 32 pages each. Each lock region can be locked independently, so that the software protects the first memory plane against erroneous programming:

If a locked-regions erase or program command occurs, the command is aborted and the EEFC could trigger an interrupt.

The Lock bits are software programmable through the EEFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

Figure 8-3. Flash First Memory Plane Mapping

8.1.5.3 GPNVM Bits

The AT91SAM9XE128/256/512 features four GPNVM bits that can be cleared or set respectively through the commands "Clear GPNVM Bit" and "Set GPNVM Bit" of the EEFC User Interface.

Table 8-2.	General-purpose	Non volatile	Memory Bits
------------	-----------------	--------------	-------------

GPNVMBit[#]	Function
0	Security Bit
1	Brownout Detector Enable
2	Brownout Detector Reset Enable
3	Boot Mode Select (BMS)

8.1.5.4 Security Bit

The AT91SAM9XE128/256/512 features a security bit, based on a specific GPNVM bit, GPN-VMBit[0]. When the security is enabled, access to the Flash, either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are permitted.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation.

8.1.5.5 Non-volatile Brownout Detector Control

Two GPNVM bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state.

- GPNVMBit[1] is used as a brownout detector enable bit. Setting GPNVMBit[1] enables the BOD, clearing it disables the BOD. Asserting ERASE clears GPNVMBit[1] and thus disables the brownout detector by default.
- GPNVMBit[2] is used as a brownout reset enable signal for the reset controller. Setting GPNVMBit[2] enables the brownout reset when a brownout is detected, clearing GPNVMBit[2] disables the brownout reset. Asserting ERASE disables the brownout reset by default.

8.1.6 Boot Strategies

Table 8-3 summarizes the Internal Memory Mapping for each Master, depending on the Remap status and the GPNVMBit[3] state at reset.

Address	REMAP = 0	REMAP = 1	
Address	GPNVMBit[3] clear	GPNVMBit[3] set	
0x0000 0000	ROM	Flash	SRAM

 Table 8-3.
 Internal Memory Mapping

The system always boots at address 0x0. To ensure a maximum number of possibilities for boot, the memory layout can be configured with two parameters.

REMAP allows the user to lay out the first internal SRAM bank to 0x0 to ease development. This is done by software once the system has booted. Refer to the section "AT91SAM9XE Bus Matrix" in the product datasheet for more details.

When REMAP = 0, a non volatile bit stored in Flash memory (GPNVMBit[3]) allows the user to lay out to 0x0, at his convenience, the ROM or the Flash. Refer to the section "Enhanced Embedded Flash Controller (EEFC)" in the product datasheet for more details.

Note: Memory blocks not affected by these parameters can always be seen at their specified base addresses. See the complete memory map presented in Figure 8-1 on page 20.

The AT91SAM9XE Matrix manages a boot memory that depends on the value of GPNVMBit[3] at reset. The internal memory area mapped between address 0x0 and 0x0FFF FFFF is reserved for this purpose.

If GPNVMBit[3] is set, the boot memory is the internal Flash memory

If GPNVMBit[3] is clear (Flash reset State), the boot memory is the embedded ROM. After a Flash erase, the boot memory is the internal ROM.

8.1.6.1 GPNVMBit[3] = 0, Boot on Embedded ROM

The system boots using the Boot Program.

- Boot on slow clock (On-chip RC oscillator or 32,768 Hz low-power oscillator)
- Auto baudrate detection
- SAM-BA Boot in case no valid program is detected in external NVM, supporting
 - Serial communication on a DBGU
 - USB Device Port

