
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features
• High Performance, Low Power Atmel AVR 8-bit Microcontroller

• Advanced RISC Architecture

– 123 Powerful Instructions - Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

• Non-volatile Program and Data Memories

– 16Kbyte of In-system Programmable (ISP) Program Memory Flash

• Endurance: 10,000 Write/Erase Cycles

– 512Bytes In-system Programmable EEPROM

• Endurance: 100,000 Write/Erase Cycles

– 512Bytes Internal SRAM

– Programming Lock for Self-programming Flash Program and EEPROM Data

Security

– Low Size LIN/UART Software In-system Programmable

• Peripheral Features

– LF-RFID Reader/Writer Front End

• Carrier Frequency fOSC = 100kHz to 150kHz

• Typical Data Rate up to 5Kbaud at 125kHz

• Suitable for Manchester anf Biphase Modulation

• Does not Require an External Crystal

• Power Supply from the Car Battery or from 5V Regulated Voltage

• Optimized for Car Immobilizer Applications

• Tuning Capability

– LIN 2.1 and 1.3 Controller or 8-bit UART

– 8-bit Asynchronous Timer/Counter 0:

• 10-bit Clock Prescaler

• 1 Output Compare or 8-bit PWM Channel

– 16-bit Synchronous Timer/Counter 1:

• 10-bit Clock Prescaler

• External Event Counter

• 2 Output Compares Units or 16-bit PWM Channels each Driving up to 4 Output

Pins

– Master/Slave SPI Serial Interface

– Universal Serial Interface (USI) with Start Condition Detector (Master/Slave SPI,

TWI, ...)

– 10-bit ADC:

• 11 Single-ended Channels

• 8 Differential ADC Channel Pairs with Programmable Gain (8x or 20x)

– On-chip Analog Comparator with Selectable Voltage Reference

– 100µA ±10% Current Source (LIN Node Identification)

– On-chip Temperature Sensor

– Programmable Watchdog Timer with Separate On-chip Oscillator

125kHz LF

Reader/Writer

with Integrated

Atmel AVR

Microcontroller

Atmel ATA5505

Preliminary

 9219A–RFID–01/11

2

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

• Special Microcontroller Features

– Dynamic Clock Switching (External/Internal RC/Watchdog Clock) for Power Control, EMC Reduction

– DebugWIRE On-chip Debug (OCD) System

– Hardware In-System Programmable (ISP) via SPI Port

– External and Internal Interrupt Sources

– Interrupt and Wake-up on Pin Change

– Low Power Idle, ADC Noise Reduction, and Power-down Modes

– Enhanced Power-on Reset Circuit

– Programmable Brown-out Detection Circuit

– Internal Calibrated RC Oscillator 8MHz

– 4-16 MHz and 32 KHz Crystal/Ceramic Resonator Oscillators

• Operating Voltage:

– 7 to 16V

– 4.5 to 5.5V Internal Voltage Regulator available for Digital and Logic

• Operating Temperature: –40°C to +85°C

Applications
• Access Control Units

• Animal Identification

• Component Authetication

• Brand Protection

• Automation

• Industrial

• Waste Management

• Process Control

3

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

1. Description
The Atmel® ATA5505 is an Atmel AVR® microcontroller with LF-RFID reader/writer front end

and LIN interface for low cost network applications.

The Atmel ATA5505 incorporates the energy-transfer circuit for supplying the transponder. It

consists of an on-chip power supply, an oscillator, and a coil driver optimized for automo-

tive-specific distances. It also includes all signal-processing circuits which are necessary to

transform the small input signal into a microcontroller-compatible signal.

The Atmel ATA5505 integrates a low-power CMOS 8-bit microcontroller based on the Atmel

AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle,

the ATA5505 achieves throughputs approaching 1 MIPS per MHz, allowing the system

designer to optimize power consumption versus processing speed.

The Atmel AVR core combines a rich instruction set with 32 general purpose working regis-

ters. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two

independent registers to be accessed in a single instruction executed in one clock cycle. The

resulting architecture is more code-efficient while achieving throughputs up to ten times faster

than conventional CISC microcontrollers.

The Atmel ATA5505 provides the following features: 16K byte of in-system programmable

Flash, 512bytes EEPROM, 512bytes SRAM, 16 general purpose I/O lines, 32 general purpose

working registers, one 8-bit timer/counter with compare modes, one 8-bit high speed

timer/counter, a universal serial interface, a LIN controller, internal and external interrupts, an

11-channel, 10-bit ADC, a programmable watchdog timer with internal oscillator, and three

software selectable power saving modes. The Idle mode stops the CPU while allowing the

SRAM, timer/counter, ADC, analog comparator, and interrupt system to continue functioning.

Power-down mode saves the register contents, disabling all chip functions until the next inter-

rupt or hardware reset. To minimize switching noise during ADC conversions, ADC noise

reduction mode stops the CPU and all I/O modules except ADC,

The device is manufactured using Atmel’s high-density non-volatile memory technology. The

on-chip ISP Flash allows the program memory to be re-programmed in-system via an SPI

serial interface, by a conventional non-volatile memory programmer or by an on-chip boot

code running on the Atmel AVR core. The boot program can use any interface to download the

application program in the Flash memory. By combining an 8-bit RISC CPU with in-system

self-programmable Flash on a monolithic chip, the Atmel ATA5505 is a powerful microcon-

troller providing a highly flexible and cost-effective solution to many embedded control

applications.

The Atmel ATA5505 AVR is supported with a full suite of program and system development

tools including: C compilers, macro assemblers, program debuggers/simulators, in-circuit

emulators, and evaluation kits.

4

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

1.1 System Block Diagram

The system block diagram for a stand alone reader application is shown in Figure 1-1. No

additional microcontroller is required..

Figure 1-1. System Block Diagram - Stand Alone Reader

A system block diagram for a reader station application with a LIN transceiver IC is shown in

Figure 1-2. The reader is then communicating with a central unit.

Figure 1-2. System Block Diagram - Reader with LIN Connection

All Atmel® LF-RFID tag ICs can be read by the ATA5505: e5530, TK5530, e5551, T5551,

TK5551, e5552, TK5552, e5554, T5555, Q5, T5557, ATA5567, ATA5558, T5561, TK5561,

ATA5577, ATA5575.

1.2 Block Diagram

In Figure 1-3 on page 5 the basic architecture of the Atmel ATA5505 consisting of the Atmel

AVR and the front end is shown. The Atmel AVR is a low-power CMOS 8-bit microcontroller

with RISC architecture. The Atmel AVR includes several features. The main features are

in-system programmable Flash, EEPROM, SRAM, Ports A and B as general purpose I/O

lines, a timer and a LIN controller. The details of the front end are shown in Figure 1-4 on page

5.

NF

Read Channel

Frontend

MCU

Core

Immobilizer

Stack

SPI

T/ATA5551
ATA5557/67
ATA5577
ATA5558
ATA5575
Q5

Successor

Osc

Atmel ATA5505

NF

Read Channel

MCU

Core

Immobilizer

Stack

LIN

UART LIN

TRx

Central
Unit

T/ATA5551
ATA5557/67
ATA5577
ATA5558
ATA5575
Q5

Successor

Osc

Atmel ATA5505

Reader

Frontend

5

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

Figure 1-3. Block Diagram

Figure 1-4 shows the front end in more detail. The circuit block depicted consists of the

receiver, an internal oscillator and driver for the coil, and a power supply unit.

Figure 1-4. Reader Front End Block Diagram

Control (0 to 3)

PB (0 to 7)

DGND

Input

COIL2

COIL1

Flash

Power / Reset

Reader Frontend

AVR CPU

LIN / UART

EEPROM

Watchdog

Atmel ATA5505

SRAM

Timer

SPI

A/D

converter

Port B Port A

AVCC

V
CC

GND

AGND

Input

PA (0 to 7)

Power supply

DV
S

V
EXT

Frequency

adjustment

&

&

Schmitt trigger

Frontend

Standby

MS

CFE

OE

Output

RF

Control (0 to 3)

DGND

Input

COIL2

COIL1

Oscillator

= 1

Lowpass filter

HIPASS

V
S

V
Batt

Driver

6

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

1.3 Pin Configuration

Figure 1-5. Pinout Atmel® ATA5505 - QFN38 5 mm by 7 mm

1.4 Pin Description

27

26

23

22

25

24

31

38 37 36 35 34 33 32

13 14 15

Atmel

ATA5505

16 17 18 19

30

29

28

5

6

9

10

7

8

1

2

3

4

PA5

P
A

4

A
G

N
D

A
V

C
C

P
A

3

P
A

2

G
N

D

G
N

D

C
F

E

D
G

N
D

C
O

IL
2

C
O

IL
1

V
E

X
T

D
V

S

G
N

D

PA6

PA7

PB7/RST

PB6

PB5

PB4/XTAL

VDD

OUTPUT

OE

INPUT

MS

GND

PA1

PA0

PB0

PB1

PB2

PB3

RF

GAIN

VS

STBY

VBAT
2111

2012

Table 1-1. Pin Description

Pin Symbol Function

1

PA5

PCINT5

ADC5

T1

USCK

SCL

SCK

GPIO Port A – Pin 5

PCINT5 (Pin Change Interrupt 5)

ADC5 (ADC Input Channel 5)

T1 (Timer/Counter1 Clock Input)

USCK (Three-wire Mode USI Alternate Clock Input)

SCL (Two-wire Mode USI Alternate Clock Input)

SCK (SPI Master Clock)

2

PA6

PCINT6

ADC6

AIN0

SS

GPIO Port A – Pin 6

PCINT6 (Pin Change Interrupt 6)

ADC6 (ADC Input Channel 6)

AIN0 (Analog Comparator Negative Input)

SS (SPI Slave Select Input)

3

PA7

PCINT7

ADC7

AIN1

XREF

AREF

GPIO Port A – Pin 7

PCINT7 (Pin Change Interrupt 7)

ADC7 (ADC Input Channel 7)

AIN1 (Analog Comparator Positive Input)

XREF (Internal Voltage Reference Output)

AREF (External Voltage Reference Input)

4

PB7

PCINT15

ADC10

OC1BX

RESET

dW

GPIO Port B – Pin 7

PCINT15 (Pin Change Interrupt 15)

ADC10 (ADC Input Channel 10)

OC1BX (Output Compare and PWM Output B-X for Timer/Counter1)

RESET (Reset input pin)

dW (debugWIRE I/O)

7

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

5

PB6

PCINT14

ADC9

OC1AX

INT0

GPIO Port B – Pin 6

PCINT14 (Pin Change Interrupt 14)

ADC9 (ADC Input Channel 9)

OC1AX (Output Compare and PWM Output A-X for Timer/Counter 1)

INT0 (External Interrupt0 Input)

6

PB5

PCINT13

ADC8

OC1BW

XTAL2

CLKO

GPIO Port B – Pin 5

PCINT13 (Pin Change Interrupt 13)

ADC8 (ADC Input Channel 8)

OC1BW (Output Compare and PWM Output B-W for Timer/Counter 1)

XTAL2 (Chip Clock Oscillator Pin 2)

CLKO (System Clock Output)

7

PB4

PCINT12

OC1AW

XTAL1

CLKI

GPIO Port B – Pin 4

PCINT12 (Pin Change Interrupt 12)

OC1AW (Output Compare and PWM Output A-W for Timer/Counter 1)

XTAL1 (Chip clock Oscillator pin 1)

CLKI (External Clock Input)

8 VDD Atmel® AVR® Supply Voltage

9 OUTPUT Reader Data Output

10 OE Reader Station Data Output Enable

11 INPUT Reader Station Data Input

12 MS Reader Station Mode Select

13 CFE Reader Station: Carrier Frequency Enable

14 DGND Digital Ground (Driver Ground)

15 COIL 2 Reader Coil Driver 2

16 COIL 1 Reader Coil Driver 1

17 VEXT Reader External Power Supply

18 DVS Reader Driver Supply Voltage

19 GND Ground

20 VBATT Battery Voltage for Reader

21 STANDBY Front End Standby Input

22 VS Internal Power Supply (5V) for Reader

23 HIPASS HIPASS DC Decoupling (Gain)

24 RF Frequency Adjustment

25

PB3

PCINT11

OC1BV

GPIO Port B - Pin 3

PCINT11 (Pin Change Interrupt 11)

OC1BV (Output Compare and PWM Output B-V for Timer/Counter 1)

26

PB2

PCINT10

OC1AV

USCK

SCL

GPIO Port B – Pin 2

PCINT10 (Pin Change Interrupt 10)

OC1AV (Output Compare and PWM Output A-V for Timer/Counter 1)

USCK (Three-wire Mode USI Default Clock Input)

SCL (Two-wire Mode USI Default Clock Input)

27

PB1

PCINT9

OC1BU

DO

GPIO Port B – Pin 1

PCINT9 (Pin Change Interrupt 9)

OC1BU (Output Compare and PWM Output B-U for Timer/Counter 1)

DO (Three-wire Mode USI Default Data Output)

Table 1-1. Pin Description

Pin Symbol Function

8

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

28

PB0

PCINT8

OC1AU

DI

SDA

GPIO Port B – Pin 0

PCINT8 (Pin Change Interrupt 8)

OC1AU (Output Compare and PWM Output A-U for Timer/Counter 1)

DI (Three-wire Mode USI Default Data Input)

SDA (Two-wire Mode USI Default Data Input / Output)

29

PA0

PCINT0

ADC0

RXD

RXLIN

GPIO Port A – Pin 0

PCINT0 (Pin Change Interrupt 0)

ADC0 (ADC Input Channel 0)

RXD (UART Receive Pin)

RXLIN (LIN Receive Pin)

30

PA1

PCINT1

ADC1

TXD

TXLIN

GPIO Port A – Pin 1

PCINT1 (Pin Change Interrupt 1)

ADC1 (ADC Input Channel 1)

TXD (UART Transmit Pin)

TXLIN (LIN Transmit Pin)

31 GND Ground

32 GND Ground

33 GND Ground

34

PA2

PCINT2

ADC2

OCA0A

DO

MISO

GPIO Port A – Pin 2

PCINT2 (Pin Change Interrupt 2)

ADC2 (ADC Input Channel 2)

OC0A (Output Compare and PWM Output A for Timer/Counter 0)

DO (Three-wire Mode USI Alternate Data Output)

MISO (SPI Master Input/Slave Output)

35

PA3

PCINT3

ADC3

ISRC

INT1

GPIO Port A – Pin 3

PCINT3 (Pin Change Interrupt 3)

ADC3 (ADC Input Channel 3)

ISRC (Current Source Pin)

INT1 (External Interrupt1 Input)

36 AVCC Analog Supply Voltage

37 AGND Analog Ground

38

PA4

PCINT4

ADC4

ICP1

DI

SDA

MOSI

GPIO Port A – Pin 4

PCINT4 (Pin Change Interrupt 4)

ADC4 (ADC Input Channel 4)

ICP1 (Timer/Counter 1 Input Capture Trigger)

DI (Three-wire Mode USI Alternate Data Input)

SDA (Two-wire Mode USI Alternate Data Input/Output)

MOSI (SPI Master Output/Slave Input)

Table 1-1. Pin Description

Pin Symbol Function

9

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

1.4.1 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit).

The Port A output buffers have symmetrical drive characteristics with both high sink and

source capability. As inputs, Port A pins that are externally pulled low will source current if the

pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes

active, even if the clock is not running. Port A also serves the functions of various special fea-

tures of the microcontroller.

1.4.2 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit).

The Port B output buffers have symmetrical drive characteristics with both high sink and

source capability. As inputs, Port B pins that are pulled low externally will source current if the

pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes

active, even if the clock is not running. Port B also serves the functions of various special fea-

tures of the microcontroller.

1.4.3 RESET

Device reset

1.4.4 XTAL1 and XTAL2

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be

configured for use as an On-chip oscillator. Either a quartz crystal or a ceramic resonator may

be used.

1.5 Atmel AVR Description

The microcontroller is a low-power CMOS 8-bit microcontroller based on the Atmel® AVR®

enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the

microcontroller achieves throughputs approaching 1MIPS per MHz, allowing the system

designer to optimize power consumption versus processing speed.

The Atmel AVR core combines a rich instruction set with 32 general purpose working regis-

ters. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two

independent registers to be accessed in a single instruction executed in one clock cycle. The

resulting architecture is more code-efficient while achieving throughputs up to ten times faster

than conventional CISC microcontrollers.

The microcontroller provides the following features: 16K byte of in-system programmable

Flash, 512bytes EEPROM, 512bytes SRAM, 16 general purpose I/O lines, 32 general purpose

working registers, one 8-bit timer/counter with compare modes, one 8-bit high speed

timer/counter, a universal serial interface, a LIN controller, internal and external interrupts, an

11-channel, 10-bit ADC, a programmable watchdog timer with internal oscillator, and three

software selectable power saving modes. The Idle mode stops the CPU while allowing the

SRAM, timer/counter, ADC, analog comparator, and interrupt system to continue functioning.

Power-down mode saves the register contents, disabling all chip functions until the next inter-

rupt or hardware reset. To minimize switching noise during ADC conversions, ADC noise

reduction mode stops the CPU and all I/O modules except ADC.

10

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

The device is manufactured using Atmel®’s high- density non-volatile memory technology. The

on-chip ISP Flash allows the program memory to be re-programmed In-system through via an

SPI serial interface, by a conventional non-volatile memory programmer or by an on-chip boot

code running on the Atmel AVR® core. The boot program can use any interface to download

the application program in the Flash memory. By combining an 8-bit RISC CPU with In-system

self-programmable Flash on a monolithic chip, the Atmel ATA5505 is a powerful microcon-

troller that provides a highly flexible and cost- effective solution to many embedded control

applications.

The embedded microcontroller is supported with a full suite of program and system develop-

ment tools including: C compilers, macro assemblers, program debuggers/simulators,

in-circuit emulators, and evaluation kits.

1.6 Resources

A comprehensive set of development tools, application notes and datasheets are available for

download at http://www.atmel.com/avr.

1.7 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts

of the device. These code examples assume that the part-specific header file is included

before compilation. Be aware that not all C compiler vendors include bit definitions in the

header files and interrupt handling in C is compiler-dependent. Please consult the C compiler

documentation for more details.

11

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

2. AVR CPU Core

2.1 Overview

This section discusses the Atmel® AVR® core architecture in general. The main function of the

CPU core is to ensure correct program execution. The CPU must therefore be able to access

memories, perform calculations, control peripherals, and handle interrupts.

Figure 2-1. Block Diagram of the Atmel AVR Architecture

In order to maximize performance and parallelism, the Atmel AVR uses a Harvard architecture

– with separate memories and buses for program and data. Instructions in the Program mem-

ory are executed with a single level pipelining. While one instruction is being executed, the

next instruction is pre-fetched from the Program memory. This concept enables instructions to

be executed in every clock cycle. The Program memory is In-System Reprogrammable Flash

memory. The fast-access Register File contains 32 x 8-bit general purpose working registers

with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)

operation. In a typical ALU operation, two operands are output from the Register File, the

operation is executed, and the result is stored back in the Register File – in one clock cycle.

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

EEPROM

Data Bus 8-bit

I/O Lines

Data
SRAM

D
ir
e

c
t

A
d

d
re

s
s
in

g

In
d

ir
e

c
t

A
d

d
re

s
s
in

g

I/O Module 2

Analog
Comparator

I/O Module1

Watchdog
Timer

I/O Module n

Interrupt
Unit

A.D.C.

12

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data

Space addressing – enabling efficient address calculations. One of the these address pointers

can also be used as an address pointer for look up tables in Flash Program memory. These

added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant

and a register. Single register operations can also be executed in the ALU. After an arithmetic

operation, the Status Register is updated to reflect information about the result of the

operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to

directly address the whole address space. Most Atmel® AVR® instructions have a single 16-bit

word format. Every Program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on

the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the

Stack size is only limited by the total SRAM size and the usage of the SRAM. All user pro-

grams must initialize the SP in the Reset routine (before subroutines or interrupts are

executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM

can easily be accessed through the five different addressing modes supported in the Atmel

AVR architecture.

The memory spaces in the Atmel AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global

Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the

Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector

position. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-

ters, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the Data

Space locations following those of the Register File, 0x20 - 0x5F.

2.2 ALU – Arithmetic Logic Unit

The high-performance Atmel AVR ALU operates in direct connection with all the 32 general

purpose working registers. Within a single clock cycle, arithmetic operations between general

purpose registers or between a register and an immediate are executed. The ALU operations

are divided into three main categories – arithmetic, logical, and bit-functions. Some implemen-

tations of the architecture also provide a powerful multiplier supporting both signed/unsigned

multiplication and fractional format. See the “Instruction Set” section for a detailed description.

2.3 Status Register

The Status Register contains information about the result of the most recently executed arith-

metic instruction. This information can be used for altering program flow in order to perform

conditional operations. Note that the Status Register is updated after all ALU operations, as

specified in the Instruction Set Reference. This will in many cases remove the need for using

the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and

restored when returning from an interrupt. This must be handled by software.

13

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

2.3.1 SREG – Atmel AVR Status Register

The Atmel® AVR® Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual

interrupt enable control is then performed in separate control registers. If the Global Interrupt

Enable Register is cleared, none of the interrupts are enabled independent of the individual

interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and

is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and

cleared by the application with the SEI and CLI instructions, as described in the instruction set

reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or des-

tination for the operated bit. A bit from a register in the Register File can be copied into T by

the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by

the BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is use-

ful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement

Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the

“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the

“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction

Set Description” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set

Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

2.4 General Purpose Register File

The Register File is optimized for the Atmel® AVR® Enhanced RISC instruction set. In order to

achieve the required performance and flexibility, the following input/output schemes are sup-

ported by the Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 2-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 2-2. Atmel AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and

most of them are single cycle instructions.

As shown in Figure 2-2, each register is also assigned a Data memory address, mapping them

directly into the first 32 locations of the user Data Space. Although not being physically imple-

mented as SRAM locations, this memory organization provides great flexibility in access of the

registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

2.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These

registers are 16-bit address pointers for indirect addressing of the data space. The three indi-

rect address registers X, Y, and Z are defined as described in Figure 2-3 on page 15.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

15

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

Figure 2-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displace-

ment, automatic increment, and automatic decrement (see the instruction set reference for

details).

2.5 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing

return addresses after interrupts and subroutine calls. The Stack Pointer Register always

points to the top of the Stack. Note that the Stack is implemented as growing from higher

memory locations to lower memory locations. This implies that a Stack PUSH command

decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt

Stacks are located. This Stack space in the data SRAM must be defined by the program

before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be

set to point above 0x60. The Stack Pointer is decremented by one when data is pushed onto

the Stack with the PUSH instruction, and it is decremented by two when the return address is

pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by

one when data is popped from the Stack with the POP instruction, and it is incremented by two

when data is popped from the Stack with return from subroutine RET or return from interrupt

RETI.

The Atmel® AVR® Stack Pointer is implemented as two 8-bit registers in the I/O space. The

number of bits actually used is implementation dependent. Note that the data space in some

implementations of the Atmel AVR architecture is so small that only SPL is needed. In this

case, the SPH Register will not be present

2.5.1 SPH and SPL – Stack Pointer Register

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value ISRAM end (See Table 3-1 on page 19)

16

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

2.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The

Atmel® AVR® CPU is driven by the CPU clock clkCPU, directly generated from the selected

clock source for the chip. No internal clock division is used.

Figure 2-4 shows the parallel instruction fetches and instruction executions enabled by the

Harvard architecture and the fast access Register File concept. This is the basic pipelining

concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions

per cost, functions per clocks, and functions per power-unit.

Figure 2-4. The Parallel Instruction Fetches and Instruction Executions

Figure 2-5 shows the internal timing concept for the Register File. In a single clock cycle an

ALU operation using two register operands is executed, and the result is stored back to the

destination register.

Figure 2-5. Single Cycle ALU Operation

2.7 Reset and Interrupt Handling

The Atmel AVR provides several different interrupt sources. These interrupts and the separate

Reset Vector each have a separate Program Vector in the Program memory space. All inter-

rupts are assigned individual enable bits which must be written logic one together with the

Global Interrupt Enable bit in the Status Register in order to enable the interrupt.

The lowest addresses in the Program memory space are by default defined as the Reset and

Interrupt Vectors. The complete list of vectors is shown in Section 7. “Interrupts” on page 63.

The list also determines the priority levels of the different interrupts. The lower the address the

higher is the priority level. RESET has the highest priority, and next is INT0 – the External

Interrupt Request 0.

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clk
CPU

17

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

2.7.1 Interrupt behavior

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-

abled. The user software can write logic one to the I-bit to enable nested interrupts. All

enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set

when a Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the

Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt

Vector in order to execute the interrupt handling routine, and hardware clears the correspond-

ing Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit

position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt

enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is

enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur

while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set

and remembered until the Global Interrupt Enable bit is set, and will then be executed by order

of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These

interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before

the interrupt is enabled, the interrupt will not be triggered.

When the Atmel® AVR® exits from an interrupt, it will always return to the main program and

execute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine,

nor restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately dis-

abled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously

with the CLI instruction. The following example shows how this can be used to avoid interrupts

during the timed EEPROM write sequence.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

18

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-

cuted before any pending interrupts, as shown in this example.

2.7.2 Interrupt Response Time

The interrupt execution response for all the enabled Atmel® AVR® interrupts is four clock

cycles minimum. After four clock cycles the Program Vector address for the actual interrupt

handling routine is executed. During this four clock cycle period, the Program Counter is

pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this jump

takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this

instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is

in sleep mode, the interrupt execution response time is increased by four clock cycles. This

increase comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock

cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is

incremented by two, and the I-bit in SREG is set.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

19

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

3. Atmel AVR Memories
This section describes the different memories in the Atmel® AVR®. The Atmel AVR architec-

ture has two main memory spaces, the Data memory and the Program memory space. In

addition, the Atmel AVR features an EEPROM Memory for data storage. All three memory

spaces are linear and regular.

Notes: 1. Byte address.

2. Word (16-bit) address.

3.1 In-System Re-programmable Flash Program Memory

The Atmel AVR contains On-chip In-System Reprogrammable Flash memory for program

storage (see “Flash size” in Table 3-1 on page 19). Since all Atmel AVR instructions are 16 or

32 bits wide, the Flash is organized as 16 bits wide. Atmel AVR does not have separate Boot

Loader and Application Program sections, and the SPM instruction can be executed from the

entire Flash. See SELFPRGEN description in Section 21.2.1 “Store Program Memory Control

and Status Register – SPMCSR” on page 230 for more details.

The Flash memory has an endurance of at least 10,000 write/erase cycles in automotive

range. The Atmel AVR Program Counter (PC) address the program memory locations. Sec-

tion 22. “Memory Programming” on page 236 contains a detailed description on Flash data

serial downloading using the SPI pins.

Constant tables can be allocated within the entire Program memory address space (see the

LPM – Load Program memory instruction description).

Table 3-1. Memory Mapping.

Memory Mnemonic Atmel AVR

Flash

Size Flash size 16 K bytes

Start Address - 0x0000

End Address Flash end
0x3FFF(1)

0x1FFF(2)

32 Registers

Size - 32 bytes

Start Address - 0x0000

End Address - 0x001F

I/O

Registers

Size - 64 bytes

Start Address - 0x0020

End Address - 0x005F

Ext I/O

Registers

Size - 160 bytes

Start Address - 0x0060

End Address - 0x00FF

Internal

SRAM

Size ISRAM size 512 bytes

Start Address ISRAM start 0x0100

End Address ISRAM end 0x02FF

EEPROM

Size E2 size 512 bytes

Start Address - 0x0000

End Address E2 end 0x01FF

20

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

Timing diagrams for instruction fetch and execution are presented in Section 2.6 “Instruction

Execution Timing” on page 16.

Figure 3-1. Program Memory Map

3.2 SRAM Data Memory

Figure 3-2 shows how the Atmel® AVR® SRAM Memory is organized.

The Atmel AVR is a complex microcontroller with more peripheral units than can be supported

within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the

Extended I/O space in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be

used.

The data memory locations address both the Register File, the I/O memory, Extended I/O

memory, and the internal data SRAM. The first 32 locations address the Register File, the next

64 location the standard I/O memory, then 160 locations of Extended I/O memory, and the

next locations address the internal data SRAM (see “ISRAM size” in Table 3-1 on page 19).

The five different addressing modes for the Data memory cover: Direct, Indirect with Displace-

ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register

File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address

given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-

ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers and

the internal data SRAM in the Atmel AVR are all accessible through all these addressing

modes. The Register File is described in “General Purpose Register File” on page 14.

0x0000

Flash end

Program Memory

21

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

Figure 3-2. Data Memory Map

3.2.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The

internal data SRAM access is performed in two clkCPU cycles as described in Figure 3-3.

Figure 3-3. On-chip Data SRAM Access Cycles

3.3 EEPROM Data Memory

The Atmel® AVR® contains EEPROM memory (see “E2 size” in Table 3-1 on page 19). It is

organized as a separate data space, in which single bytes can be read and written. The

EEPROM has an endurance of at least 100,000 write/erase cycles in automotive range. The

access between the EEPROM and the CPU is described in the following, specifying the

EEPROM Address Registers, the EEPROM Data Register and the EEPROM Control

Register.

Section 22. “Memory Programming” on page 236 contains a detailed description on EEPROM

programming in SPI or Parallel Programming mode.

32 Registers

64 I/O Registers

Internal SRAM
(ISRAM size)

0x0000 - 0x001F

0x0020 - 0x005F

ISRAM end

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.

ISRAM start

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
e

a
d

W
ri

te

CPU

Memory Access Instruction Next Instruction

22

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

3.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access times for the EEPROM are given in Table 3-2. A self-timing function, how-

ever, lets the user software detect when the next byte can be written. If the user code contains

instructions that write the EEPROM, some precautions must be taken. In heavily filtered power

supplies, VCC is likely to rise or fall slowly on Power-up/down. This causes the device for some

period of time to run at a voltage lower than specified as minimum for the clock frequency

used. See “Preventing EEPROM Corruption” on page 24 for details on how to avoid problems

in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.

Refer to “Atomic Byte Programming” on page 22 and “Split Byte Programming” on page 22 for

details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction

is executed. When the EEPROM is written, the CPU is halted for two clock cycles before the

next instruction is executed.

3.3.2 Atomic Byte Programming

Using Atomic Byte Programming is the simplest mode. When writing a byte to the EEPROM,

the user must write the address into the EEARL Register and data into EEDR Register. If the

EEPMn bits are zero, writing EEPE (within four cycles after EEMPE is written) will trigger the

erase/write operation. Both the erase and write cycle are done in one operation and the total

programming time is given in Table 1. The EEPE bit remains set until the erase and write

operations are completed. While the device is busy with programming, it is not possible to do

any other EEPROM operations.

3.3.3 Split Byte Programming

It is possible to split the erase and write cycle in two different operations. This may be useful if

the system requires short access time for some limited period of time (typically if the power

supply voltage falls). In order to take advantage of this method, it is required that the locations

to be written have been erased before the write operation. But since the erase and write oper-

ations are split, it is possible to do the erase operations when the system allows doing

time-critical operations (typically after Power-up).

3.3.4 Erase

To erase a byte, the address must be written to EEAR. If the EEPMn bits are 0b01, writing the

EEPE (within four cycles after EEMPE is written) will trigger the erase operation only (pro-

gramming time is given in Table 1). The EEPE bit remains set until the erase operation

completes. While the device is busy programming, it is not possible to do any other EEPROM

operations.

3.3.5 Write

To write a location, the user must write the address into EEAR and the data into EEDR. If the

EEPMn bits are 0b10, writing the EEPE (within four cycles after EEMPE is written) will trigger

the write operation only (programming time is given in Table 1). The EEPE bit remains set until

the write operation completes. If the location to be written has not been erased before write,

the data that is stored must be considered as lost. While the device is busy with programming,

it is not possible to do any other EEPROM operations.

23

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

The calibrated Oscillator is used to time the EEPROM accesses. Make sure the Oscillator fre-

quency is within the requirements described in “OSCCAL – Oscillator Calibration Register” on

page 41.

The following code examples show one assembly and one C function for erase, write, or

atomic write of the EEPROM. The examples assume that interrupts are controlled (e.g., by

disabling interrupts globally) so that no interrupts will occur during execution of these

functions.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write

; Set Programming mode

ldi r16, (0<<EEPM1)|(0<<EEPM0)

out EECR, r16

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to data register

out EEDR, r16

; Write logical one to EEMPE

sbi EECR,EEMPE

; Start eeprom write by setting EEPE

sbi EECR,EEPE

ret

C Code Example

void EEPROM_write(unsigned char ucAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set Programming mode */

EECR = (0<<EEPM1)|(0<<EEPM0);

/* Set up address and data registers */

EEAR = ucAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

24

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

The next code examples show assembly and C functions for reading the EEPROM. The

examples assume that interrupts are controlled so that no interrupts will occur during execu-

tion of these functions.

3.3.6 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is

too low for the CPU and the EEPROM to operate properly. These issues are the same as for

board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low.

First, a regular write sequence to the EEPROM requires a minimum voltage to operate cor-

rectly. Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too

low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned char ucAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = ucAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

25

9219A–RFID–01/11

Atmel ATA5505 [Preliminary]

Keep the Atmel® AVR® RESET active (low) during periods of insufficient power supply volt-

age. This can be done by enabling the internal Brown-out Detector (BOD). If the detection

level of the internal BOD does not match the needed detection level, an external low VCC reset

protection circuit can be used. If a reset occurs while a write operation is in progress, the write

operation will be completed provided that the power supply voltage is sufficient.

3.4 I/O Memory

The I/O space definition of the Atmel AVR is shown in Section 26. “Register Summary” on

page 282.

All Atmel AVR I/Os and peripherals are placed in the I/O space. All I/O locations may be

accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32

general purpose working registers and the I/O space. I/O Registers within the address range

0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers,

the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the

instruction set section for more details. When using the I/O specific commands IN and OUT,

the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space

using LD and ST instructions, 0x20 must be added to these addresses. The Atmel AVR is a

complex microcontroller with more peripheral units than can be supported within the 64 loca-

tion reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from

0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.

Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most

other Atmel AVRs, the CBI and SBI instructions will only operate on the specified bit, and can

therefore be used on registers containing such Status Flags. The CBI and SBI instructions

work with registers 0x00 to 0x1F only.

The I/O and Peripherals Control Registers are explained in later sections.

3.4.1 General Purpose I/O Registers

The Atmel AVR contains three General Purpose I/O Registers. These registers can be used

for storing any information, and they are particularly useful for storing global variables and Sta-

tus Flags.

The General Purpose I/O Registers within the address range 0x00 - 0x1F are directly

bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

3.5 Register Description

3.5.1 EEARH and EEARL – EEPROM Address Register

Bit 7 6 5 4 3 2 1 0

- - - - - - - EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

Initial Value X X X X X X X X

	Contact us
	Features
	Applications
	1. Description
	1.1 System Block Diagram
	1.2 Block Diagram
	1.3 Pin Configuration
	1.4 Pin Description
	1.4.1 Port A (PA7..PA0)
	1.4.2 Port B (PB7..PB0)
	1.4.3 RESET
	1.4.4 XTAL1 and XTAL2

	1.5 Atmel AVR Description
	1.6 Resources
	1.7 About Code Examples

	2. AVR CPU Core
	2.1 Overview
	2.2 ALU – Arithmetic Logic Unit
	2.3 Status Register
	2.3.1 SREG – Atmel AVR Status Register

	2.4 General Purpose Register File
	2.4.1 The X-register, Y-register, and Z-register

	2.5 Stack Pointer
	2.5.1 SPH and SPL – Stack Pointer Register

	2.6 Instruction Execution Timing
	2.7 Reset and Interrupt Handling
	2.7.1 Interrupt behavior
	2.7.2 Interrupt Response Time

	3. Atmel AVR Memories
	3.1 In-System Re-programmable Flash Program Memory
	3.2 SRAM Data Memory
	3.2.1 Data Memory Access Times

	3.3 EEPROM Data Memory
	3.3.1 EEPROM Read/Write Access
	3.3.2 Atomic Byte Programming
	3.3.3 Split Byte Programming
	3.3.4 Erase
	3.3.5 Write
	3.3.6 Preventing EEPROM Corruption

