: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- High FSK Sensitivity: $\mathbf{- 1 0 6} \mathrm{dBm}$ at $20 \mathrm{Kbit} / \mathrm{s} /-109.5 \mathrm{dBm}$ at $2.4 \mathrm{Kbit} / \mathrm{s}$ (433.92 MHz)

- Low Supply Current: 10.5 mA in RX and TX Mode ($3 \mathrm{~V} / \mathrm{TX}$ with 5 dBm)
- Data Rate 1 to 20 Kbit/s Manchester FSK, 1 to 10 Kbit/s Manchester ASK
- ASK/FSK Receiver Uses a Low-IF Architecture with High Selectivity, Blocking and Low Intermodulation (Typical Blocking 55 dB at $\pm 750 \mathrm{kHz} / 61 \mathrm{~dB}$ at $\pm 1.5 \mathrm{MHz}$ and 70 dB at $\pm 10 \mathrm{MHz}$, System I1dBCP = $\mathbf{- 3 0} \mathbf{d B m} /$ System IIP3 = $\mathbf{- 2 0} \mathbf{d B m}$)
- 226 kHz IF Frequency with 30 dB Image Rejection and 170 kHz Usable IF Bandwidth
- Transmitter Uses Closed Loop Fractional-N Synthesizer for FSK Modulation with a High PLL Bandwidth and an Excellent Isolation between PLL and PA
- Tolerances of XTAL Compensated by Fractional-N Synthesizer with 800 Hz RF Resolution
- Integrated RX/TX-Switch, Single-ended RF Input and Output
- RSSI (Received Signal Strength Indicator)
- Communication to Microcontroller with SPI Interface Working at Maximum 500 kBit/s
- Configurable Self Polling and RX/TX Protocol Handling with FIFO-RAM Buffering of Received and Transmitted Data
- 5 Push Button Inputs and One Wake-up Input are Active in Power-down Mode
- Integrated XTAL Capacitors
- PA Efficiency: up to $\mathbf{3 8 \%}$ ($433 \mathrm{MHz} / 10 \mathrm{dBm} / 3 \mathrm{~V}$)
- Low Inband Sensitivity Change of Typically $\pm 1.8 \mathrm{~dB}$ within $\pm 58 \mathrm{kHz}$ Center Frequency Change in the Complete Temperature and Supply Voltage Range
- Supply Voltage Switch, Supply Voltage Regulator, Reset Generation, Clock/Interrupt Generation and Low Battery Indicator for Microcontroller
- Fully Integrated PLL with Low Phase Noise VCO and PLL Loop Filter
- Sophisticated Threshold Control and Quasi Peak Detector Circuit in the Data Slicer
- Power Management via Different Operation Modes
- 433.92 MHz, 868.3 MHz and 315 MHz without External VCO and PLL Components
- Inductive Supply with Voltage Regulator if Battery is Empty (AUX Mode)
- Efficient XTO Start-up Circuit (>-1.5 k Ω Worst Case Start Impedance)
- Changing of Modulation Type ASK/FSK and Data Rate without Component Changes
- Minimal External Circuitry Requirements for Complete System Solution
- Adjustable Output Power: 0 to 10 dBm Adjusted and Stabilized with External Resistor
- ESD Protection at all Pins (2 kV HBM, 200 V MM)
- Supply Voltage Range: 2.4 V to 3.6 V or 4.4 V to 6.6 V
- Temperature Range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- Small 7×7 mm QFN48 Package

AIIEL UHF ASK/FSK Transceiver

- Automotive Keyless Entry and Passive Entry Go Systems
- Access Control Systems
- Remote Control Systems
- Alarm and Telemetry Systems
- Energy Metering
- Home Automation

Benefits

- No SAW Device Needed in Key Fob Designs to Meet Automotive Specifications
- Low System Cost Due to Very High System Integration Level
- Only One Crystal Needed in System
- Less Demanding Specification for the Microcontroller Due to Handling of Power-down Mode, Delivering of Clock, Reset, Low Battery Indication and Complete Handling of Receive/Transmit Protocol and Polling
- Single-ended Design with High Isolation of PLL/VCO from PA and the Power Supply Allows a Loop Antenna in the Key Fob to Surround the Whole Application

1. General Description

The ATA5811/ATA5812 is a highly integrated UHF ASK/FSK single-channel half-duplex transceiver with low power consumption supplied in a small QFN48 package. The receive part is built as a fully integrated low-IF receiver, whereas direct PLL modulation with the fractional-N synthesizer is used for FSK transmission and switching of the power amplifier for ASK transmission.

The device supports data rates of $1 \mathrm{Kbit} / \mathrm{s}$ to $20 \mathrm{Kbit/s}$ (FSK) and $1 \mathrm{Kbit} / \mathrm{s}$ to $10 \mathrm{Kbit/s}$ (ASK) in Manchester, Bi-phase and other codes in transparent mode. The ATA5811 can be used in the 433 MHz to 435 MHz and the 868 MHz to 870 MHz band, the ATA5812 in the 314 MHz to 316 MHz band. The very high system integration level results in few numbers of external components needed.

Due to its blocking and selectivity performance, together with the additional 15 dB to 20 dB loss and the narrow bandwidth of a typical key fob loop antenna, a bulky blocking SAW is not needed in the key fob or sensor application. Additionally, the building blocks needed for a typical RKE and access control system on both sides, the base and the mobile stations, are fully integrated.

Its digital control logic with self polling and protocol generation enables a fast challenge response systems without using a high-performance microcontroller. Therefore, the ATA5811/ATA5812 contains a FIFO buffer RAM and can compose and receive the physical messages themselves. This provides more time for the microcontroller to carry out other functions such as calculating crypto algorithms, composing the logical messages and controlling other devices. Due to that, a standard 4-/8-bit microcontroller without special periphery and clocked with the CLK output of about 4.5 MHz is sufficient to control the communication link. This is especially valid for passive entry and access control systems, where within less than 100 ms several challenge response communications with arbitration of the communication partner have to be handled.

It is hence possible to design bi-directional RKE and access control systems with a fast challenge response crypto function with the same PCB board size and with the same current consumption as uni-directional RKE systems.

Figure 1-1. System Block Diagram

Figure 1-2. Pinning QFN48

Table 1-1. Pin Description

Pin	Symbol	Function
1	NC	Not connected
2	NC	Not connected
3	NC	Not connected
4	RF_IN	RF input
5	NC	Not connected
6	433_N868	Selects RF input/output frequency range
7	NC	Not connected
8	R_PWR	Resistor to adjust output power
9	PWR_H	Pin to select output power
10	RF_OUT	RF output
11	NC	Not connected
12	NC	Not connected
13	NC	Not connected
14	NC	Not connected
15	NC	Not connected
16	AVCC	Blocking of the analog voltage supply
17	VS2	Power supply input for voltage range 4.4 V to 6.6 V
18	VS1	Power supply input for voltage range 2.4 V to 3.6 V
19	VAUX	Auxiliary supply voltage input
20	TEST1	Test input, at GND during operation
21	DVCC	Blocking of the digital voltage supply
22	VSOUT	Output voltage power supply for external devices
23	TEST2	Test input, at GND during operation
24	XTAL1	Reference crystal
25	XTAL2	Reference crystal
26	NC	Not connected
27	VSINT	Microcontroller Interface supply voltage
28	N_RESET	Output pin to reset a connected microcontroller
29	IRQ	Interrupt request
30	CLK	Output to clock a connected microcontroller
31	SDO_TMDO	Serial data out/transparent mode data out
32	SDI_TMDI	Serial data in/transparent mode data in
33	SCK	Serial clock
34	DEM_OUT	Demodulator open drain output signal
35	CS	Chip select for serial interface
36	RSSI	Output of the RSSI amplifier
37	CDEM	Capacitor to adjust the lower cut-off frequency data filter
38	RX_TX2	GND pin to decouple LNA in TX mode
39	RX_TX1	Switch pin to decouple LNA in TX mode
40	PWR_ON	Input to switch on the system (active high)
41	T5	Key input 5 (can also be used to switch on the system (active low)

$4 \quad$ ATA5811/ATA5812

Table 1-1. Pin Description (Continued)

Pin	Symbol	Function
42	T4	Key input 4 (can also be used to switch on the system (active low)
43	T3	Key input 3 (can also be used to switch on the system (active low)
44	T2	Key input 2 (can also be used to switch on the system (active low)
45	T1	Key input 1 (can also be used to switch on the system (active low)
46	RX_ACTIVE	Indicates RX operation mode
47	NC	Not connected
48	NC	Not connected
	GND	Ground/backplane

Figure 1-3. Block Diagram

2. Typical Key Fob or Sensor Application with 1 Battery

Figure 2-1. Typical RKE Key Fob or Sensor Application, 433.92 MHz, 1 Battery

Figure 2-1 shows a typical 433.92 MHz RKE key fob or sensor application with one battery The external components are 11 capacitors, 1 resistor, 2 inductors and a crystal. C_{1} to C_{4} are 68 nF voltage supply blocking capacitors. C_{5} is a 10 nF supply blocking capacitor. C_{6} is a 15 nF fixed capacitor used for the internal quasi peak detector and for the highpass frequency of the data filter. C_{7} to C_{11} are RF matching capacitors in the range of 1 pF to 33 pF . L1 is a matching inductor of about 5.6 nH to 56 nH . L_{2} is a feed inductor of about 120 nH . A load capacitor of 9 pF for the crystal is integrated. R_{1} is typically $22 \mathrm{k} \Omega$ and sets the output power to about 5.5 dBm . The loop antenna's quality factor is somewhat reduced by this application due to the quality factor of L_{2} and the RX/TX switch. On the other hand, this lower quality factor is necessary to have a robust design with a bandwidth that is broad enough for production tolerances. Due to the single-ended and ground-referenced design, the loop antenna can be a free-form wire around the application as it is usually employed in RKE uni-directional systems. The ATA5811/ATA5812 provides sufficient isolation and robust pulling behavior of internal circuits from the supply voltage as well as an integrated VCO inductor to allow this. Since the efficiency of a loop antenna is proportional to the square of the surrounded area it is beneficial to have a large loop around the application board with a lower quality factor to relax the tolerance specification of the RF components and to get a high antenna efficiency in spite of their lower quality factor.

3. Typical Car or Sensor Base-station Application

Figure 3-1. Typical RKE Car or Sensor Base-station Application, 433.92 MHz

Figure 3-1 shows a typical $433.92 \mathrm{MHz} \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V RKE car or sensor base-station application. The external components are 12 capacitors, 1 resistor, 4 inductors, a SAW filter and a crystal. C_{1} and C_{3} to C_{4} are 68 nF voltage supply blocking capacitors. C_{2} and C_{12} are $2.2 \mu \mathrm{~F}$ supply blocking capacitors for the internal voltage regulators. C_{5} is a 10 nF supply blocking capacitor. C_{6} is a 15 nF fixed capacitor used for the internal quasi peak detector and for the highpass frequency of the data filter. C_{7} to C_{11} are RF matching capacitors in the range of 1 pF to 33 pF . L_{2} to L_{4} are matching inductors of about 5.6 nH to 56 nH . A load capacitor for the crystal of 9 pF is integrated. R_{1} is typically $22 \mathrm{k} \Omega$ and sets the output power at RF_OUT to about 10 dBm . Since a quarter wave or PCB antenna, which has high efficiency and wide band operation, is typically used here, it is recommended to use a SAW filter to achieve high sensitivity in case of powerful out-of-band blockers. $\mathrm{L}_{1}, \mathrm{C}_{10}$ and C_{9} together form a lowpass filter, which is needed to filter out the harmonics in the transmitted signal to meet regulations. An internally regulated voltage at pin VSOUT can be used in case the microcontroller only supports 3.3 V operation, a blocking capacitor with a value of $\mathrm{C}_{12}=2.2 \mu \mathrm{~F}$ has to be connected to VSOUT in any case.

4. Typical Key Fob Application, 2 Batteries

Figure 4-1. Typical RKE Key Fob Application, 433.92 MHz, 2 Batteries

Figure 4-1 shows a typical 433.92 MHz 2-battery RKE key fob or sensor application. The external components are 11 capacitors, 1 resistor, 2 inductors and a crystal. C_{1} and C_{4} are 68 nF voltage supply blocking capacitors. C_{2} and C_{3} are $2.2 \mu \mathrm{~F}$ supply blocking capacitors for the internal voltage regulators. C_{5} is a 10 nF supply blocking capacitor. C_{6} is a 15 nF fixed capacitor used for the internal quasi peak detector and for the highpass frequency of the data filter. C_{7} to C_{11} are RF matching capacitors in the range of 1 pF to 33 pF . L_{1} is a matching inductor of about 5.6 nH to 56 nH . L_{2} is a feed inductor of about 120 nH . A load capacitor for the crystal of 9 pF is integrated. R_{1} is typically $22 \mathrm{k} \Omega$ and sets the output power to about 5.5 dBm .

5. RF Transceiver

According to Figure 1-3 on page 5, the RF transceiver consists of an LNA (Low-Noise Amplifier), PA (Power Amplifier), RX/TX switch, fractional-N frequency synthesizer and the signal processing part with mixer, IF filter, IF amplifier, FSK/ASK demodulator, data filter and data slicer.

In receive mode the LNA pre-amplifies the received signal which is converted down to 226 kHz , filtered and amplified before it is fed into an FSK/ASK demodulator, data filter and data slicer. The RSSI (Received Signal Strength Indicator) signal and the raw digital output signal of the demodulator are available at the pins RSSI and DEM_OUT. The demodulated data signal Demod_Out is fed to the digital control logic where it is evaluated and buffered as described in section "Digital Control Logic" on page 33.

In transmit mode the fractional-N frequency synthesizer generates the TX frequency which is fed to the PA. In ASK mode the PA is modulated by the signal PA_Enable. In FSK mode the PA is enabled and the signal TX_DATA (FSK) modulates the fractional-N frequency synthesizer. The frequency deviation is digitally controlled and internally fixed to about $\pm 16 \mathrm{kHz}$ (see Table 6-1 on page 25 for exact values). The transmit data can also be buffered as described in section "Digital Control Logic" on page 33. A lock detector within the synthesizer ensures that the transmission will only start if the synthesizer is locked.

The RX/TX switch can be used to combine the LNA input and the PA output to a single antenna with a minimum of losses.

Transparent modes without buffering of RX and TX data are also available to allow protocols and coding schemes other than the internal supported Manchester encoding.

5.1 Low-IF Receiver

The receive path consists of a fully integrated low-IF receiver. It fulfills the sensitivity, blocking, selectivity, supply voltage and supply current specification needed to manufacture an automotive key fob without the use of SAW blocking filter (see Figure 2-1 on page 6). The receiver can be connected to the roof antenna in the car when using an additional blocking SAW front-end filter as shown in Figure 3-1 on page 7.

At 433.92 MHz the receiver has a typical system noise figure of 7.0 dB , a system I 1 dBCP of -30 dBm and a system IIP3 of -20 dBm . There is no AGC or switching of the LNA needed, thus, a better blocking performance is achieved. This receiver uses an IF (Intermediate Frequency) of 226 kHz , the typical image rejection is 30 dB and the typical 3 dB IF filter bandwidth is 185 kHz $\left(f_{\text {IF }}=226 \mathrm{kHz} \pm 92.5 \mathrm{kHz}, \mathrm{f}_{\text {IO_IF }}=133.5 \mathrm{kHz}\right.$ and $\mathrm{f}_{\text {hi_IF }}=318.5 \mathrm{kHz}$). The demodulator needs a signal to Gaussian noise ratio of 8 dB for $20 \mathrm{Kbit} / \mathrm{s}$ Manchester with $\pm 16 \mathrm{kHz}$ frequency deviation in FSK mode, thus, the resulting sensitivity at 433.92 MHz is typically -106 dBm at $20 \mathrm{Kbit} / \mathrm{s}$ Manchester.

Due to the low phase noise and spurious of the synthesizer in receive mode ${ }^{(1)}$ together with the eighth order integrated IF filter the receiver has a better selectivity and blocking performance than more complex double superhet receivers but without external components and without numerous spurious receiving frequencies.

A low-IF architecture is also less sensitive to second-order intermodulation (IIP2) than direct conversion receivers where every pulse or AM-modulated signal (especially the signals from TDMA systems like GSM) demodulates to the receiving signal band at second-order non-linearities.

Note: \quad 1. $-120 \mathrm{dBC} / \mathrm{Hz}$ at $\pm 1 \mathrm{MHz}$ and -75 dBC at \pm FREF at 433.92 MHz

5.2 Input Matching at RF_IN

The measured input impedances as well as the values of a parallel equivalent circuit of these impedances can be seen in Table 5-1. The highest sensitivity is achieved with power matching of these impedances to the source impedance of 50Ω

Table 5-1. \quad Measured Input Impedances of the RF_IN Pin

$\mathbf{f}_{\mathbf{R F}} / \mathbf{M H z}$	$\left.\mathbf{Z (R F _ I N}\right)$	$\mathbf{R}_{\mathbf{p}} / / \mathbf{C}_{\mathbf{p}}$
315	$(44-\mathrm{j} 233) \Omega$	$1278 \Omega / / 2.1 \mathrm{pF}$
433.92	$(32-\mathrm{j} 169) \Omega$	$925 \Omega / 2.1 \mathrm{pF}$
868.3	$(21-\mathrm{j} 78) \Omega$	$311 \Omega / 2.2 \mathrm{pF}$

The matching of the LNA Input to 50Ω was done with the circuit according to Figure 5-1 and with the values given in Table 5-2. The reflection coefficients were always $\leq 10 \mathrm{~dB}$. Note that value changes of C_{1} and L_{1} may be necessary to for compensate individual board layouts. The measured typical FSK and ASK Manchester code sensitivities with a Bit Error Rate (BER) of 10^{-3} are shown in Table 5-3 on page 11 and Table 5-4 on page 11. These measurements were done with inductors having a quality factor according to Table 5-2, resulting in estimated matching losses of 1.0 dB at $315 \mathrm{MHz}, 1.2 \mathrm{~dB}$ at 433.92 MHz and 0.6 dB at 868.3 MHz . These losses can be estimated when calculating the parallel equivalent resistance of the inductor with $R_{\text {loss }}=2 \times \pi \times f \times L \times Q_{L}$ and the matching loss with $10 \log \left(1+R_{p} / R_{\text {loss }}\right)$.
With an ideal inductor, for example, the sensitivity at $433.92 \mathrm{MHz} / \mathrm{FSK} / 20 \mathrm{Kbit} / \mathrm{s} /$ $\pm 16 \mathrm{kHz} /$ Manchester can be improved from -106 dBm to -107.2 dBm . The sensitivity depends on the control logic which examines the incoming data stream. The examination limits must be programmed in control registers 5 and 6 . The measurements in Table 5-3 and Table 5-4 on page 11 are based on the values of registers 5 and 6 according to Table 11-3 on page 58.

Figure 5-1. Input Matching to 50Ω

Table 5-2. Input Matching to 50Ω

$\mathbf{f}_{\mathbf{R F}} / \mathbf{M H z}$	$\mathbf{C}_{\mathbf{1}} / \mathbf{p F}$	$\mathbf{L}_{\mathbf{1}} / \mathbf{n H}$	$\mathbf{Q}_{\mathbf{L} 1}$
315	2.2	56	43
433.92	1.8	27	40
868.3	1.2	6.8	58

Table 5-3. Measured Sensitivity FSK, $\pm 16 \mathrm{kHz}$, Manchester, $\mathrm{dBm}, \mathrm{BER}=10^{-3}$

RF Frequency	BR_Range_0 $\mathbf{1 . 0 ~ K b i t / s ~}$	BR_Range_0 $\mathbf{2 . 4 ~ K b i t / s ~}$	BR_Range_1 $\mathbf{5 . 0} \mathbf{~ K b i t / s ~}$	BR_Range_2 $\mathbf{1 0 ~ K b i t / s ~}$	BR_Range_3 $\mathbf{2 0} \mathbf{~ K b i t / s ~}$
315 MHz	-110.0 dBm	-110.5 dBm	-109.0 dBm	-108.0 dBm	-107.0 dBm
433.92 MHz	-109.0 dBm	-109.5 dBm	-108.0 dBm	-107.0 dBm	-106.0 dBm
868.3 MHz	-106.0 dBm	-106.5 dBm	-105.5 dBm	-104.0 dBm	-103.5 dBm

Table 5-4. Measured Sensitivity 100% ASK, Manchester, dBm , BER $=10^{-3}$

RF Frequency	BR_Range_0 $\mathbf{1 . 0 ~ K b i t / s ~}$	BR_Range_0 $\mathbf{2 . 4 ~ K b i t / s ~}$	BR_Range_1 $\mathbf{5 . 0 ~ K b i t / s ~}$	BR_Range_2 $\mathbf{1 0 ~ K b i t / s ~}$
315 MHz	-117.0 dBm	-117.5 dBm	-115 dBm	-113.5 dBm
433.92 MHz	-116.0 dBm	-116.5 dBm	-114.0 dBm	-112.5 dBm
868.3 MHz	-112.5 dBm	-113.0 dBm	-111.5 dBm	-109.5 dBm

5.3 Sensitivity versus Supply Voltage, Temperature and Frequency Offset

To calculate the behavior of a transmission system it is important to know the reduction of the sensitivity due to several influences. The most important are frequency offset due to crystal oscillator (XTO) and crystal frequency (XTAL) errors, temperature and supply voltage dependency of the noise figure and IF filter bandwidth of the receiver. Figure 5-2 shows the typical sensitivity at $433.92 \mathrm{MHz} / \mathrm{FSK} / 20 \mathrm{Kbit} / \mathrm{s} / \pm 16 \mathrm{kHz} /$ Manchester versus the frequency offset between transmitter and receiver with $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+105^{\circ} \mathrm{C}$ and supply voltage $\mathrm{VS} 1=\mathrm{VS} 2=2.4 \mathrm{~V}, 3.0 \mathrm{~V}$ and 3.6 V .

Figure 5-2. Measured Sensitivity $433.92 \mathrm{MHz} / F S K / 20 \mathrm{Kbit} / \mathrm{s} / \pm 16 \mathrm{kHz} /$ Manchester versus Frequency Offset, Temperature and Supply Voltage

As can be seen in Figure 5-2 on page 11 the supply voltage has almost no influence. The temperature has an influence of about $+1.5 /-0.7 \mathrm{~dB}$ and a frequency offset of $\pm 65 \mathrm{kHz}$ also influences by about $\pm 1 \mathrm{~dB}$. All these influences, combined with the sensitivity of a typical IC, are then within a range of -103.7 dBm and -107.3 dBm over temperature, supply voltage and frequency offset which is $-105.5 \mathrm{dBm} \pm 1.8 \mathrm{~dB}$. The integrated IF filter has an additional production tolerance of only $\pm 7 \mathrm{kHz}$, hence, a frequency offset between the receiver and the transmitter of $\pm 58 \mathrm{kHz}$ can be accepted for XTAL and XTO tolerances.

Note: For the demodulator used in the ATA5811/ATA5812, the tolerable frequency offset does not change with the data frequency, hence, the value of $\pm 58 \mathrm{kHz}$ is valid for up to $1 \mathrm{Kbit} / \mathrm{s}$.
This small sensitivity spread over supply voltage, frequency offset and temperature is very unusual in such a receiver. It is achieved by an internal, very fast and automatic frequency correction in the FSK demodulator after the IF filter, which leads to a higher system margin. This frequency correction tracks the input frequency very quickly, if however, the input frequency makes a larger step (e.g., if the system changes between different communication partners), the receiver has to be restarted. This can be done by switching back to Idle mode and then again to RX mode. For that purpose, an automatic mode is also available. This automatic mote switches to Idle mode and back into RX mode every time a bit error occurs (see section "Digital Control Logic" on page 33).

5.4 Frequency Accuracy of the Crystals

The XTO is an amplitude regulated Pierce oscillator with integrated load capacitors. The initial tolerances (due to the frequency tolerance of the XTAL, the integrated capacitors on XTAL1, XTAL2 and the XTO's initial transconductance gm) can be compensated to a value within $\pm 0.5 \mathrm{ppm}$ by measuring the CLK output frequency and programming the control registers 2 and 3 (see Table 9-7 on page 36 and Table 9-10 on page 36). The XTO then has a remaining influence of less than $\pm 2 \mathrm{ppm}$ over temperature and supply voltage due to the bandgap controlled gm of the XTO.

The needed frequency stability of the used crystals over temperature and aging is hence $\pm 58 \mathrm{kHz} / 433.92 \mathrm{MHz}-2 \times \pm 2.5 \mathrm{ppm}= \pm 128.66 \mathrm{ppm}$ for 433.92 MHz and $\pm 58 \mathrm{kHz} / 868.3 \mathrm{MHz}-2 \times \pm 2.5 \mathrm{ppm}= \pm 61.8 \mathrm{ppm}$ for 868.3 MHz . Thus, the used crystals in receiver and transmitter each need to be better than $\pm 64.33 \mathrm{ppm}$ for 433.92 MHz and $\pm 30.9 \mathrm{ppm}$ for 868.3 MHz . In access control systems it may be advantageous to have a more tight tolerance at the base-station in order to relax the requirement for the key fob.

5.5 RX Supply Current versus Temperature and Supply Voltage

Table 5-5 shows the typical supply current at 433.92 MHz of the transceiver in RX mode versus supply voltage and temperature with $\mathrm{VS}=\mathrm{VS} 1=\mathrm{VS} 2$. As you can see the supply current at 2.4 V and $-40^{\circ} \mathrm{C}$ is less than the typical one which helps because this is also the operation point where a lithium cell has the worst performance. The typical supply current at 315 MHz or 868.3 MHz in RX mode is about the same as for 433.92 MHz.

Table 5-5. Measured 433.92 MHz Receive Supply Current in FSK Mode

VS $=$	$\mathbf{2 . 4 ~ V}$	$\mathbf{3 . 0} \mathbf{V}$	$\mathbf{3 . 6} \mathbf{~ V}$
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$	8.4 mA	8.8 mA	9.2 mA
$\mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	9.9 mA	10.3 mA	10.8 mA
$\mathrm{~T}_{\mathrm{amb}}=105^{\circ} \mathrm{C}$	11.4 mA	11.9 mA	12.4 mA

5.6 Blocking, Selectivity

As can be seen in Figure 5-3 and Figure 5-4, the receiver can receive signals 3 dB higher than the sensitivity level in presence of very large blockers of $-47 \mathrm{dBm} /-34 \mathrm{dBm}$ with small frequency offsets of $\pm 1 / \pm 10 \mathrm{MHz}$.

Figure $5-3$ shows narrow band blocking and Figure $5-4$ wide band blocking characteristics. The measurements were done with a useful signal of $433.92 \mathrm{MHz} / \mathrm{FSK} / 20 \mathrm{Kbit} / \mathrm{s} / \pm 16 \mathrm{kHz} /$ Manchester with a level of $-106 \mathrm{dBm}+3 \mathrm{~dB}=-103 \mathrm{dBm}$ which is 3 dB above the sensitivity level. The figures show how much a continuous wave signal can be larger than -103 dBm until the $B E R$ is higher than 10^{-3}. The measurements were done at the 50Ω input according to Figure 5-1 on page 10. At 1 MHz , for example, the blocker can be 56 dB higher than -103 dBm which is $-103 \mathrm{dBm}+56 \mathrm{~dB}=-47 \mathrm{dBm}$. These values, together with the good intermodulation performance, avoid the need for a SAW filter in the key fob application.

Figure 5-3. Narrow Band 3 dB Blocking Characteristic at 433.92 MHz

Figure 5-4. Wide Band 3 dB Blocking Characteristic at 433.92 MHz

Figure 5-5 shows the blocking measurement close to the received frequency to illustrate the selectivity and image rejection. This measurement was done 6 dB above the sensitivity level with a useful signal of $433.92 \mathrm{MHz} / \mathrm{FSK} / 20 \mathrm{Kbit} / \mathrm{s} / \pm 16 \mathrm{kHz} /$ Manchester with a level of $-106 \mathrm{dBm}+6 \mathrm{~dB}=-100 \mathrm{dBm}$. The figure shows to which extent a continuous wave signal can surpass -100 dBm until the BER is higher than 10^{-3}. For example, at 1 MHz the blocker can than be 59 dB higher than -100 dBm which is $-100 \mathrm{dBm}+59 \mathrm{~dB}=-41 \mathrm{dBm}$.

Table 5-6 shows the blocking performance measured relative to -100 dBm for some other frequencies. Note that sometimes the blocking is measured relative to the sensitivity level (dBS) instead of the carrier (dBC).

Table 5-6. Blocking 6 dB Above Sensitivity Level with BER $<10^{-3}$

Frequency Offset	Blocker Level	Blocking
+0.75 MHz	-45 dBm	$55 \mathrm{dBC} / 61 \mathrm{dBS}$
-0.75 MHz	-45 dBm	$55 \mathrm{dBC} / 61 \mathrm{dBS}$
+1.5 MHz	-38 dBm	$62 \mathrm{dBC} / 68 \mathrm{dBS}$
-1.5 MHz	-38 dBm	$62 \mathrm{dBC} / 68 \mathrm{dBS}$
+10 MHz	-30 dBm	$70 \mathrm{dBC} / 76 \mathrm{dBS}$
-10 MHz	-30 dBm	$70 \mathrm{dBC} / 76 \mathrm{dBS}$

The ATA5811/ATA5812 can also receive FSK and ASK modulated signals if they are much higher than the I1dBCP. It can typically receive useful signals at 10 dBm . This is often referred to as the nonlinear dynamic range which is the maximum to minimum receiving signal which is 116 dB for $20 \mathrm{Kbit} / \mathrm{s}$ Manchester. This value is useful if two transceivers have to communicate and are very close to each other.

Figure 5-5. Close In 6 dB Blocking Characteristic and Image Response at 433.92 MHz

This high blocking performance makes it even possible for some applications using quarter wave whip antennas to use a simple LC band-pass filter instead of a SAW filter in the receiver. When designing such an LC filter take into account that the 3 dB blocking at $433.92 \mathrm{MHz} / 2=216.96 \mathrm{MHz}$ is 43 dBC and at $433.92 \mathrm{MHz} / 3=144.64 \mathrm{MHz}$ is 48 dBC and at $2 \times(433.92 \mathrm{MHz}+226 \mathrm{kHz})+-226 \mathrm{kHz}=868.066 \mathrm{MHz} / 868.518 \mathrm{MHz}$ is 56 dBC . And especially that at $3 \times(433.92 \mathrm{MHz}+226 \mathrm{kHz})+226 \mathrm{kHz}=1302.664 \mathrm{MHz}$ the receiver has its second LO harmonic receiving frequency with only 12 dBC blocking.

5.7 Inband Disturbers, Data Filter, Quasi Peak Detector, Data Slicer

If a disturbing signal falls into the received band or a blocker is not continuous wave the performance of a receiver strongly depends on the circuits after the IF filter. Hence the demodulator, data filter and data slicer are important in that case.

The data filter of the ATA5811/ATA5812 implies a quasi peak detector. This results in a good suppression of the above mentioned disturbers and exhibits a good carrier to Gaussian noise performance. The required useful signal to disturbing signal ratio to be received with a BER of 10^{-3} is less than 12 dB in ASK mode and less than 3 dB (BR_Range_0 ... BR_Range_2)/6 dB (BR_Range_3) in FSK mode. Due to the many different waveforms possible these numbers are measured for signal as well as for disturbers with peak amplitude values. Note that these values are worst case values and are valid for any type of modulation and modulating frequency of the disturbing signal as well as the receiving signal. For many combinations, lower carrier to disturbing signal ratios are needed.

5.8 DEM_OUT Output

The internal raw output signal of the demodulator Demod_Out is available at pin DEM_OUT. DEM_OUT is an open drain output and must be connected to a pull-up resistor if it is used (typically $100 \mathrm{k} \Omega$) otherwise no signal is present at that pin.

5.9 RSSI Output

The output voltage of the pin RSSI is an analog voltage, proportional to the input power level. Using the RSSI output signal, the signal strength of different transmitters can be distinguished. The usable dynamic range of the RSSI amplifier is 70 dB , the input power range $P\left(R F_{I N}\right)$ is -115 dBm to -45 dBm and the gain is $8 \mathrm{mV} / \mathrm{dB}$. Figure $5-6$ on page 16 shows the RSSI characteristic of a typical device at 433.92 MHz with $\mathrm{VS} 1=\mathrm{VS} 2=2.4 \mathrm{~V}$ to 3.6 V and $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ with a matched input according to Table 5-2 on page 10 and Figure $5-1$ on page 10. At 868.3 MHz about 2.7 dB more signal level and at 315 MHz about 1 dB less signal level is needed for the same RSSI results.

Figure 5-6. Typical RSSI Characteristic versus Temperature and Supply Voltage

5.10 Frequency Synthesizer

The synthesizer is a fully integrated fractional-N design with internal loop filters for receive and transmit mode. The XTO frequency $\mathrm{f}_{\text {хто }}$ is the reference frequency FREF for the synthesizer. The bits FR0 to FR8 in control registers 2 and 3 (see Table 9-7 on page 36 and Table 9-10 on page 36) are used to adjust the deviation of $f_{\text {XTO }}$. In transmit mode, at 433.92 MHz , the carrier has a phase noise of $-111 \mathrm{dBC} / \mathrm{Hz}$ at 1 MHz and spurious at FREF of -66 dBC with a high PLL loop bandwidth allowing the direct modulation of the carrier with $20 \mathrm{Kbit/s}$ Manchester data. Due to the closed loop modulation any spurious caused by this modulation are effectively filtered out as can be seen in Figure 5-9 on page 18. In RX mode the synthesizer has a phase noise of $-120 \mathrm{dBC} / \mathrm{Hz}$ at 1 MHz and spurious of -75 dBC .

The initial tolerances of the crystal oscillator due to crystal tolerances, internal capacitor tolerances and the parasitics of the board have to be compensated at manufacturing setup with control registers 2 and 3 as can be seen in Table 6-1 on page 25. The other control words for the synthesizer needed for ASK, FSK and receive/transmit switching are calculated internally. The RF (Radio Frequency) resolution is equal to the XTO frequency divided by 16384 which is 777.1 Hz at $315.0 \mathrm{MHz}, 808.9 \mathrm{~Hz}$ at 433.92 MHz and 818.59 Hz at 868.3 MHz .

5.11 FSK/ASK Transmission

Due to the fast modulation capability of the synthesizer and the high resolution, the carrier can be internally FSK modulated which simplifies the application of the transceiver. The deviation of the transmitted signal is ± 20 digital frequency steps of the synthesizer which is equal to $\pm 15.54 \mathrm{kHz}$ for $315 \mathrm{MHz}, \pm 16.17 \mathrm{kHz}$ for 433.92 MHz and $\pm 16.37 \mathrm{kHz}$ for 868.3 MHz .

Due to closed loop modulation with PLL filtering the modulated spectrum is very clean, meeting ETSI and CEPT regulations when using a simple LC filter for the power amplifier harmonics as it is shown in Figure 3-1 on page 7. In ASK mode the frequency is internally connected to the center of the FSK transmission and the power amplifier is switched on and off to perform the modulation. Figure 5-7 on page 17 to Figure 5-9 on page 18 show the spectrum of the FSK modulation with pseudo random data with $20 \mathrm{Kbit} / \mathrm{s} / \pm 16.17 \mathrm{kHz} /$ Manchester and 5 dBm output power.

Figure 5-7. FSK-modulated TX Spectrum ($20 \mathrm{Kbit} / \mathrm{s} / \pm 16.17 \mathrm{kHz} /$ Manchester Code)

Figure 5-8. Unmodulated TX Spectrum $\mathrm{f}_{\text {FSK_L }}$

Figure 5-9. FSK-modulated TX Spectrum ($20 \mathrm{Kbit} / \mathrm{s} / \pm 16.17 \mathrm{kHz} /$ Manchester Code)

5.12 Output Power Setting and PA Matching at RF_OUT

The Power Amplifier (PA) is a single-ended open collector stage which delivers a current pulse which is nearly independent of supply voltage, temperature and tolerances due to bandgap stabilization. Resistor R_{1}, see Figure 5-10 on page 19, sets a reference current which controls the current in the PA. A higher resistor value results in a lower reference current, a lower output power and a lower current consumption of the PA. The usable range of R_{1} is $15 \mathrm{k} \Omega$ to $56 \mathrm{k} \Omega$ Pin PWR_H switches the output power range between about 0 dBm to 5 dBm (PWR_H = GND) and 5 dBm to 10 dBm (PWR_H = AVCC) by multiplying this reference current with a factor 1 (PWR_H = GND) and 2.5 (PWR_H = AVCC) which corresponds to about 5 dB more output power.

If the PA is switched off in TX mode, the current consumption without output stage with $\mathrm{VS} 1=\mathrm{VS} 2=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ is typically 6.5 mA for 868.3 MHz and 6.95 mA for 315 MHz and 433.92 MHz .

The maximum output power is achieved with optimum load resistances $\mathrm{R}_{\text {Lopt }}$ according to Table $5-7$ on page 20 with compensation of the 1.0 pF output capacitance of the RF_OUT pin by absorbing it into the matching network consisting of $\mathrm{L}_{1}, \mathrm{C}_{1}, \mathrm{C}_{3}$ as shown in Figure $5-10$ on page 19. There must be also a low resistive DC path to AVCC to deliver the DC current of the power amplifier's last stage. The matching of the PA output was done with the circuit according to Figure 5-10 on page 19 with the values in Table 5-7 on page 20. Note that value changes of these elements may be necessary to compensate for individual board layouts.

Example:

According to Table 5-7 on page 20, with a frequency of 433.92 MHz and output power of 11 dBm the overall current consumption is typically 17.8 mA hence the PA needs $17.8 \mathrm{~mA}-6.95 \mathrm{~mA}=10.85 \mathrm{~mA}$ in this mode which corresponds to an overall power amplifier efficiency of the PA of $\left(10^{(11 \mathrm{dBm} / 10)} \times 1 \mathrm{~mW}\right) /(3 \mathrm{~V} \times 10.85 \mathrm{~mA}) \times 100 \%=38.6 \%$ in this case.
Using a higher resistor in this example of $R_{1}=1.091 \times 22 \mathrm{k} \Omega=24 \mathrm{k} \Omega$ results in 9.1% less current in the PA of $10.85 \mathrm{~mA} / 1.091=9.95 \mathrm{~mA}$ and $10 \times \log (1.091)=0.38 \mathrm{~dB}$ less output power if using a new load resistance of $300 \Omega \times 1.091=327 \Omega$. The resulting output power is then $11 \mathrm{dBm}-0.38 \mathrm{~dB}=10.6 \mathrm{dBm}$ and the overall current consumption is $6.95 \mathrm{~mA}+9.95 \mathrm{~mA}=16.9 \mathrm{~mA}$.

The values of Table 5-7 on page 20 were measured with standard multi-layer chip inductors with quality factors Q according to Table 5-7 on page 20 . Looking to the $433.92 \mathrm{MHz} / 11 \mathrm{dBm}$ case with the quality factor of $Q_{L 1}=43$ the loss in this inductor is estimated with the parallel equivalent resistance of the inductor $R_{\text {loss }}=2 \times \pi \times f \times L \times Q_{L 1}$ and the matching loss with $10 \log \left(1+R_{\text {Lopt }} / R_{\text {loss }}\right)$ which is equal to 0.32 dB losses in this inductor. Taking this into account the PA efficiency is then 42% instead of 38.6%.

Be aware that the high power mode (PWR_H = AVCC) can only be used with a supply voltage higher than 2.7V, whereas the low power mode (PWR_H = GND) can be used down to 2.4 V as can be seen in the section "Electrical Characteristics: General" on page 63.

The supply blocking capacitor $\mathrm{C}_{2}(10 \mathrm{nF}$) has to be placed close to the matching network because of the RF current flowing through it.

Figure 5-10. Power Setting and Output Matching

Table 5-7. Measured Output Power and Current Consumption with VS1 = VS2 = $3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Frequency (MHz)	TX Current (mA)	Output Power (dBm)	$\mathbf{R 1}(\mathbf{k} \Omega)$	VPWR_H	$\mathbf{R}_{\text {Lopt }}(\Omega)$	$\mathbf{L 1}(\mathbf{n H})$	$\mathbf{Q}_{\mathbf{L 1}}$	$\mathbf{C 1}(\mathbf{p F})$	$\mathbf{C 3}(\mathbf{p F})$
315	8.5	0.4	56	GND	2500	82	28	1.5	0
315	10.5	5.7	27	GND	920	68	32	2.2	0
315	16.7	10.5	27	AVCC	350	56	35	3.9	0
433.92	8.6	0.1	56	GND	2300	56	40	0.75	0
433.92	11.2	6.2	22	GND	890	47	38	1.5	0
433.92	17.8	11	22	AVCC	300	33	43	2.7	0
868.3	9.3	-0.3	33	GND	1170	12	58	1.0	3.3
868.3	11.5	5.4	15	GND	471	15	54	1.0	0
868.3	16.3	9.5	22	AVCC	245	10	57	1.5	0

5.13 Output Power and TX Supply Current versus Supply Voltage and Temperature

Table 5-8 on page 20 shows the measurement of the output power for a typical device with VS1 = VS2 = VS in the 433.92 MHz and 6.2 dBm case versus temperature and supply voltage measured according to Figure 5-10 on page 19 with components according to Table 5-7. As opposed to the receiver sensitivity the supply voltage has here the major impact on output power variations because of the large signal behavior of a power amplifier. Thus, a two battery system with voltage regulator or a 5 V system shows much less variation than a 2.4 V to 3.6 V one battery system because the supply voltage is then well within 3.0 V and 3.6 V .

The reason is that the amplitude at the output RF_OUT with optimum load resistance is AVCC -0.4 V and the power is proportional to (AVCC -0.4 V) ${ }^{2}$ if the load impedance is not changed. This means that the theoretical output power reduction if reducing the supply voltage from 3.0 V to 2.4 V is $10 \log \left((3 \mathrm{~V}-0.4 \mathrm{~V})^{2} /(2.4 \mathrm{~V}-0.4 \mathrm{~V})^{2}\right)=2.2 \mathrm{~dB}$. Table $5-8$ shows that principle behavior in the measurement. This is not the same case for higher voltages since here increasing the supply voltage from 3 V to 3.6 V should theoretical increase the power by 1.8 dB but only 0.8 dB in the measurement shows that the amplitude does not increase with the supply voltage because the load impedance is optimized for 3 V and the output amplitude stays more constant.

Table 5-8. Measured Output Power and Supply Current at 433.92 MHz, PWR_H = GND

VS =	$\mathbf{2 . 4 ~ V}$	$\mathbf{3 . 0} \mathbf{~ V}$	$\mathbf{3 . 6} \mathbf{~ V}$
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$	10.19 mA	10.19 mA	10.78 mA
	3.8 dBm	5.5 dBm	6.2 dBm
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$	10.62 mA	11.19 mA	11.79 mA
	4.6 dBm	6.2 dBm	7.1 dBm
$\mathrm{T}_{\mathrm{amb}}=+105^{\circ} \mathrm{C}$	11.4 mA	12.02 mA	12.73 mA
	3.8 dBm	5.4 dBm	6.3 dBm

Table 5-9 on page 21 shows the relative changes of the output power of a typical device compared to $3.0 \mathrm{~V} / 25^{\circ} \mathrm{C}$. As can be seen a temperature change to -40° as well as to $+105^{\circ}$ reduces the power by less than 1 dB due to the bandgap regulated output current. Measurements of all the cases in Table 5-7 on page 20 over temperature and supply voltage have shown about the same relative behavior as shown in Table 5-9 on page 21.

ATA5811/ATA5812

Table 5-9. Measurements of Typical Output Power Relative to $3 \mathrm{~V} / 25^{\circ}$

VS $=$	$\mathbf{2 . 4 V}$	$\mathbf{3 . 0 V}$	$\mathbf{3 . 6 V}$
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$	-2.4 dB	-0.7 dB	0 dB
$\mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$	-1.6 dB	0 dB	+0.9 dB
$\mathrm{~T}_{\mathrm{amb}}=+105^{\circ} \mathrm{C}$	-2.4 dB	-0.8 dB	+0.1 dB

5.14 RX/TX Switch

The RX/TX switch decouples the LNA from the PA in TX mode, and directs the received power to the LNA in RX mode. To do this, it has a low impedance to GND in TX mode and a high impedance to GND in RX mode. To design a proper RX/TX decoupling a linear simulation tool for radio frequency design together with the measured device impedances of Table 5-1 on page 10, Table 5-7 on page 20, Table 5-10 and Table $5-11$ on page 22 should be used, but the exact element values have to be found on board. Figure $5-11$ on page 21 shows an approximate equivalent circuit of the switch. The principal switching operation is described here according to the application of Figure 2-1 on page 6. The application of Figure 3-1 on page 7 works similarly.

Table 5-10. Impedance of the RX/TX Switch RX_TX2 Shorted to GND

Frequency	Z(RX_TX1) TX Mode	Z(RX_TX1) RX Mode
315 MHz	$(4.8+\mathrm{j} 3.2) \Omega$	$(11.3-\mathrm{j} 214) \Omega$
433.92 MHz	$(4.5+\mathrm{j} 4.3) \Omega$	$(10.3-\mathrm{j} 153) \Omega$
868.3 MHz	$(5+\mathrm{j} 9) \Omega$	$(8.9-\mathrm{j} 73) \Omega$

Figure 5-11. Equivalent Circuit of the Switch

5.15 Matching Network in TX Mode

In TX mode the 20 mm long and 0.4 mm wide transmission line which is much shorter than $\lambda / 4$ is approximately switched in parallel to the capacitor C_{9} to GND. The antenna connection between C_{8} and C_{9} has an impedance of about 50Ω locking from the transmission line into the loop antenna with pin RF_OUT, $\mathrm{L}_{2}, \mathrm{C}_{10}, \mathrm{C}_{8}$ and C_{9} connected (using a C_{9} without the added 7.6 pF as discussed later). The transmission line can be approximated with a 16 nH inductor in series with a 1.5Ω resistor, the closed switch can be approximated according to Table 5-10 on page 21 with the series connection of 1.6 nH and 5Ω in this mode. To have a parallel resonant high impedance circuit with little RF power going into it looking from the loop antenna into the transmission line a capacitor of about 7.6 pF to GND is needed at the beginning of the transmission line (this capacitor is later absorbed into C_{9} which is then higher as needed for 50Ω transformation). To keep the 50Ω impedance in RX mode at the end of this transmission line C_{7} has to be also about 7.6 pF . This reduces the TX power by about 0.5 dB at 433.92 MHz compared to the case the where the LNA path is completely disconnected.

5.16 Matching Network in RX Mode

In RX mode the RF_OUT pin has a high impedance of about $7 \mathrm{k} \Omega$ in parallel with 1.0 pF at 433.92 MHz as can be seen in Table 5-11 on page 22. This together with the losses of the inductor L_{2} with 120 nH and $Q_{\mathrm{L} 2}=25$ gives about $3.7 \mathrm{k} \Omega$ loss impedance at RF_OUT. Since the optimum load impedance in TX mode for the power amplifier at RF_OUT is 890Ω the loss associated with the inductor L_{2} and the RF_OUT pin can be estimated to be $10 \times \log (1+890 / 3700)=0.95 \mathrm{~dB}$ compared to the optimum matched loop antenna without L_{2} and RF_OUT. The switch represents, in this mode at 433.92 MHz , about an inductor of 1.6 nH in series with the parallel connection of 2.5 pF and $2.0 \mathrm{k} \Omega$. Since the impedance level at pin RX_TX1 in RX mode is about 50Ω this only negligiblably dampens the received signal by about 0.1 dB . When matching the LNA to the loop antenna the transmission line and the 7.6 pF part of C_{9} has to be taken into account when choosing the values of C_{11} and L_{1} so that the impedance seen from the loop antenna into the transmission line with the 7.6 pF capacitor connected is 50Ω Since the loop antenna in RX mode is loaded by the LNA input impedance the loaded Q of the loop antenna is lowered by about a factor of 2 in $R X$ mode hence the antenna bandwidth is higher than in TX mode.

Table 5-11. Impedance RF_OUT Pin in RX Mode

Frequency	Z(RF_OUT)RX	$\mathbf{R}_{\mathbf{p}} / / \mathbf{C}_{\mathbf{p}}$
315 MHz	$36 \Omega-\mathrm{j} 502 \Omega$	$7 \mathrm{k} \Omega / 1.0 \mathrm{pF}$
433.92 MHz	$19 \Omega-\mathrm{j} 366 \Omega$	$7 \mathrm{k} \Omega / 1.0 \mathrm{pF}$
868.3 MHz	$2.8 \Omega-\mathrm{j} 141 \Omega$	$7 \mathrm{k} \Omega / 1.3 \mathrm{pF}$

Note that if matching to 50Ω, like in Figure $3-1$ on page 7 , a high Q wire wound inductor with a $Q>70$ should be used for L_{2} to minimize its contribution to $R X$ losses which will otherwise be dominant. The RX and TX losses will be in the range of 1.0 dB there.

6. XTO

The XTO is an amplitude regulated Pierce oscillator type with integrated load capacitances ($2 \times 18 \mathrm{pF}$ with a tolerance of $\pm 17 \%$) hence $\mathrm{C}_{\mathrm{Lmin}}=7.4 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{Lmax}}=10.6 \mathrm{pF}$. The XTO oscillation frequency $f_{\text {xTO }}$ is the reference frequency FREF for the fractional-N synthesizer. When designing the system in terms of receiving and transmitting frequency offset the accuracy of the crystal and XTO have to be considered.

The synthesizer can adjust the local oscillator frequency for more than $\pm 150 \mathrm{ppm}$ at $433.92 \mathrm{MHz} / 315 \mathrm{MHz}$ and up to $\pm 118 \mathrm{ppm}$ at 868.3 MHz of initial frequency error in $\mathrm{f}_{\mathrm{xто}}$. This is done at nominal supply voltage and temperature with the control registers 2 and 3 (see Table $9-7$ on page 36 and Table 9-10 on page 36). The remaining local oscillator tolerance at nominal supply voltage and temperature is then $< \pm 0.5 \mathrm{ppm}$. A XTO frequency error of $\pm 150 \mathrm{ppm} / \pm 118 \mathrm{ppm}$ can hence be tolerated due to the crystal tolerance at $25^{\circ} \mathrm{C}$ and the tolerances of $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$. The XTO's gm has very low influence of less than $\pm 2 \mathrm{ppm}$ on the frequency at nominal supply voltage and temperature.
Over temperature and supply voltage, the XTO's additional pulling is only $\pm 2 \mathrm{ppm}$ if $\mathrm{C}_{\mathrm{m}} \leq 7 \mathrm{fF}$. The XTAL versus temperature and its aging is then the main source of frequency error in the local oscillator.

The XTO frequency depends on XTAL properties and the load capacitances $\mathrm{C}_{\mathrm{L} 1,2}$ at pin XTAL1 and XTAL2. The pulling of $f_{\text {XTO }}$ from the nominal $f_{\text {XTAL }}$ is calculated using the following formula:

$$
P=\frac{C_{m}}{2} \times \frac{C_{L N}-C_{L}}{\left(C_{0}+C_{L N}\right) \times\left(C_{0}+C_{L}\right)} \times 10^{6} \mathrm{ppm} .
$$

C_{m} is the crystal's motional, C_{0} the shunt and C_{LN} the nominal load capacitance of the XTAL found in its data sheet. C_{L} is the total actual load capacitance of the crystal in the circuit and consists of $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$ in series connection.

Figure 6-1. XTAL with Load Capacitance

With $\mathrm{C}_{\mathrm{m}} \leq 14 \mathrm{fF}, \mathrm{C}_{0} \geq 1.5 \mathrm{pF}, \mathrm{C}_{\mathrm{LN}}=9 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{L}}=7.6 \mathrm{pF}$ to 10.6 pF the pulling amounts to $\mathrm{P} \leq \pm 100 \mathrm{ppm}$ and with $\mathrm{C}_{\mathrm{m}} \leq 7 \mathrm{fF}, \mathrm{C}_{0} \geq 1.5 \mathrm{pF}, \mathrm{C}_{\mathrm{LN}}=9 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{L}}=7.4 \mathrm{pF}$ to 10.6 pF the pulling is $\mathrm{P} \leq \pm 50 \mathrm{ppm}$.

Since typical crystals have less than $\pm 50 \mathrm{ppm}$ tolerance at 25° the compensation is not critical.
C_{0} of the XTAL has to be lower than $\mathrm{C}_{\mathrm{Lmin}} / 2=3.8 \mathrm{pF}$ for a Pierce oscillator type in order to not enter the steep region of pulling versus load capacitance where there is a risk of an unstable oscillation.

To ensure proper start-up behavior the small signal gain and thus the negative resistance provided by this XTO at start is very large, for example oscillation starts up even in worst case with a crystal series resistance of $1.5 \mathrm{k} \Omega$ at $\mathrm{C}_{0} \leq 2.2 \mathrm{pF}$ with this XTO. The negative resistance is approximately given by
$\operatorname{Re}\left\{Z_{\text {xtocore }}\right\}=\operatorname{Re}\left\{\frac{Z_{1} \times Z_{3}+Z_{2} \times Z_{3}+Z_{1} \times Z_{2} \times Z_{3} \times g_{m}}{Z_{1}+Z_{2}+Z_{3}+Z_{1} \times Z_{2} \times g_{m}}\right\}$
with Z_{1}, Z_{2} as complex impedances at pin XTAL1 and XTAL2 hence
$Z 1=-j /\left(2 \times \pi \times f_{X T O} \times C_{L 1}\right)+5 \Omega$ and $Z 2=-j /\left(2 \times \pi \times f_{X T O} \times C_{L 2}\right)+5 \Omega$
Z_{3} consists of crystals C_{0} in parallel with an internal $110 \mathrm{k} \Omega$ resistor hence
$\mathrm{Z3}=-\mathrm{j} /\left(2 \times \pi \times \mathrm{f}_{\text {хто }} \times \mathrm{C}_{0}\right) / 110 \mathrm{k} \Omega, \mathrm{gm}$ is the internal transconductance between XTAL1 and XTAL2 with typically 19 ms at $25^{\circ} \mathrm{C}$.

With $\mathrm{f}_{\text {хто }}=13.5 \mathrm{MHz}$, gm $=19 \mathrm{~ms}, \mathrm{CL}=9 \mathrm{pF}, \mathrm{C}_{0}=2.2 \mathrm{pF}$ this results in a negative resistance of about $2 \mathrm{k} \Omega$ The worst case for technological, supply voltage and temperature variations is then for $\mathrm{C}_{0} \leq 2.2 \mathrm{pF}$ always higher than $1.5 \mathrm{k} \Omega$
Due to the large gain at start the XTO is able to meet a very low start-up time. The oscillation start-up time can be estimated with the time constant τ.

$$
\tau=\frac{2}{4 \times \pi^{2} \times f_{m}^{2} \times C_{m} \times\left(\operatorname{Re}\left(Z_{\text {xtocore }}\right)+R_{m}\right)}
$$

After 10τ to 20τ an amplitude detector detects the oscillation amplitude and sets XTO_OK to High if the amplitude is large enough, this sets N_RESET to High and activates the CLK output if CLK_ON in control register 3 is High (see Table 9-7 on page 36). Note that the necessary conditions of the VSOUT and DVCC voltage also have to be fulfilled (see Figure 6-2 on page 25 and Figure 7-1 on page 27).
To save current in Idle and sleep mode, the load capacitors partially are switched off in this modes with S1 and S2 seen in Figure 6-2 on page 25.

It is recommended to use a crystal with $\mathrm{C}_{\mathrm{m}}=4.0 \mathrm{fF}$ to $7.0 \mathrm{fF}, \mathrm{C}_{\mathrm{LN}}=9 \mathrm{pF}, \mathrm{R}_{\mathrm{m}}<120 \Omega$ and $\mathrm{C}_{0}=1.5 \mathrm{pF}$ to 2.2 pF .

Figure 6-2. XTO Block Diagram

To find the right values used in the control registers 2 and 3 (see Table 9-7 on page 36 and Table 9-10 on page 36) the relationship between f_{XTO} and the f_{RF} is shown in Table 6-1. To determine the right content the frequency at pin CLK as well as the output frequency at RF_OUT in ASK mode can be measured, than the FREQ value can be calculated according to Table 6-1 so that $f_{R F}$ is exactly the desired radio frequency

Table 6-1. \quad Calculation of $f_{R F}$

Frequency (MHz)	$\begin{gathered} \text { Pin } 6 \\ \text { 433_N868 } \end{gathered}$	$\begin{gathered} \hline \text { CREG1 } \\ \text { Bit(4) } \\ \text { FS } \end{gathered}$	$\mathrm{f}_{\mathrm{xT0}}(\mathrm{MHz})$	$\mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{TX} _ \text {ASK }}=\mathrm{f}_{\text {RX }}$	$\mathrm{f}_{\text {TX_FSK_L }}$	$\mathrm{f}_{\text {TX_FSK_H }}$
433.92	AVCC	0	13.25311	$\mathrm{f}_{\text {хто }} \times\left(32,5+\frac{\mathrm{FREQ}+20,5}{16384}\right)$	$\mathrm{f}_{\mathrm{RF}}-16.17 \mathrm{kHz}$	$\mathrm{f}_{\mathrm{RF}}+16.17 \mathrm{kHz}$
868.3	GND	0	13.41191	$\mathrm{f}_{\text {XTO }} \times\left(64,5+\frac{\mathrm{FREQ}+20,5}{16384}\right)$	$\mathrm{f}_{\mathrm{RF}}-16.37 \mathrm{kHz}$	$\mathrm{f}_{\mathrm{RF}}+16.37 \mathrm{kHz}$
315.0	AVCC	1	12.73193	$\mathrm{f}_{\text {XTO }} \times\left(24,5+\frac{\mathrm{FREQ}+20,5}{16384}\right)$	$\mathrm{f}_{\mathrm{RF}}-15.54 \mathrm{kHz}$	$\mathrm{f}_{\mathrm{RF}}+15.54 \mathrm{kHz}$

