
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

 8077I–AVR–11/2012

This document contains complete and detailed description of all modules included in the

Atmel®AVR®XMEGA®A microcontroller family. The XMEGA A is a family of low-power, high-

performance, and peripheral-rich CMOS 8/16-bit microcontrollers based on the AVR enhanced

RISC architecture. The available XMEGA A modules described in this manual are:

� Atmel AVR CPU

� Memories

� DMAC - Direct memory access controller

� Event system

� System clock and clock options

� Power management and sleep modes

� System control and reset

� Battery backup system

� WDT - Watchdog timer

� Interrupts and programmable multilevel interrupt controller

� PORT - I/O ports

� TC - 16-bit timer/counters

� AWeX - Advanced waveform extension

� Hi-Res - High resolution extension

� RTC - Real-time counter

� RTC32 - 32-bit real-time counter

� TWI - Two-wire serial interface

� SPI - Serial peripheral interface

� USART - Universal synchronous and asynchronous serial receiver and transmitter

� IRCOM - Infrared communication module

� AES and DES cryptographic engine

� EBI - External bus interface

� ADC - Analog-to-digital converter

� DAC - Digital-to-analog converter

� AC - Analog comparator

� IEEE 1149.1 JTAG interface

� PDI - Program and debug interface

� Memory programming

� Peripheral address map

� Register summary

� Interrupt vector summary

� Instruction set summary

8-bit Atmel XMEGA A Microcontroller

XMEGA A MANUAL

2XMEGA A [MANUAL]
8077I–AVR–11/2012

1. About the Manual

This document contains in-depth documentation of all peripherals and modules available for the XMEGA A

microcontroller family. All features are documented on a functional level and described in a general sense. All peripherals

and modules described in this manual may not be present in all XMEGA A devices.

For all device-specific information such as characterization data, memory sizes, modules, peripherals available and their

absolute memory addresses, refer to the device datasheets. When several instances of a peripheral exists in one device,

each instance will have a unique name. For example each port module (PORT) have unique name, such as PORTA,

PORTB, etc. Register and bit names are unique within one module instance.

For more details on applied use and code examples for peripherals and modules, refer to the Atmel AVR XMEGA

specific application notes available from http://www.atmel.com/avr.

1.1 Reading the Manual

The main sections describe the various modules and peripherals. Each section contains a short feature list and overview

describing the module. The remaining section describes the features and functions in more detail.

The register description sections list all registers and describe each register, bit and flag with their function. This includes

details on how to set up and enable various features in the module. When multiple bits are needed for a configuration

setting, these are grouped together in a bit group. The possible bit group configurations are listed for all bit groups

together with their associated Group Configuration and a short description. The Group Configuration refers to the defined

configuration name used in the Atmel AVR XMEGA assembler header files and application note source code.

The register summary sections list the internal register map for each module type.

The interrupt vector summary sections list the interrupt vectors and offset address for each module type.

1.2 Resources

A comprehensive set of development tools, application notes, and datasheets are available for download from

http://www.atmel.com/avr.

1.3 Recommended Reading

� XMEGA A device datasheets

� XMEGA application notes

This manual contains general modules and peripheral descriptions. The AVR XMEGA A device datasheets con-

tains the device-specific information. The XMEGA application notes and AVR Software Framework contain exam-

ple code and show applied use of the modules and peripherals.

For new users, it is recommended to read the AVR1000 - Getting Started Writing C Code for Atmel XMEGA, and

AVR1900 - Getting Started with Atmel ATxmega128A1 application notes.

2. Overview

The XMEGA A microcontrollers is a family of low-power, high-performance, and peripheral-rich CMOS 8/16-bit

microcontrollers based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock

cycle, the XMEGA A devices achieve throughputs approaching one million instructions per second (MIPS) per

megahertz, allowing the system designer to optimize power consumption versus processing speed.

The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly

connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,

executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times

faster than conventional single-accumulator or CISC based microcontrollers.

3XMEGA A [MANUAL]
8077I–AVR–11/2012

The XMEGA A devices provide the following features: in-system programmable flash with read-while-write capabilities;

internal EEPROM and SRAM; four-channel DMA controller; eight-channel event system and programmable multilevel

interrupt controller; up to 78 general purpose I/O lines; 16- or 32-bit real-time counter (RTC); up to eight flexible, 16-bit

timer/counters with capture, compare and PWM modes; up to eight USARTs; up to four I2C and SMBUS compatible two-

wire serial interfaces (TWIs); up to four serial peripheral interfaces (SPIs); AES and DES cryptographic engine; up to two

16-channel, 12-bit ADCs with programmable gain; up to two 2-channel, 12-bit DACs; up to four analog comparators with

window mode; programmable watchdog timer with separate internal oscillator; accurate internal oscillators with PLL and

prescaler; and programmable brown-out detection.

The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available. Selected

devices also have an IEEE std. 1149.1 compliant JTAG interface, and this can also be used for on-chip debug and

programming.

The Atmel AVR XMEGA devices have five software selectable power saving modes. The idle mode stops the CPU while

allowing the SRAM, DMA controller, event system, interrupt controller, and all peripherals to continue functioning. The

power-down mode saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the

next TWI or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to run,

allowing the application to maintain a timer base while the rest of the device is sleeping. In standby mode, the external

crystal oscillator keeps running while the rest of the device is sleeping. This allows very fast startup from the external

crystal, combined with low power consumption. In extended standby mode, both the main oscillator and the

asynchronous timer continue to run. To further reduce power consumption, the peripheral clock to each individual

peripheral can optionally be stopped in active mode and idle sleep mode.

The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can

be reprogrammed in-system through the PDI or JTAG interfaces. A boot loader running in the device can use any

interface to download the application program to the flash memory. The boot loader software in the boot flash section will

continue to run while the application flash section is updated, providing true read-while-write operation. By combining an

8/16-bit RISC CPU with In-system, self-programmable flash, the Atmel AVR XMEGA is a powerful microcontroller family

that provides a highly flexible and cost effective solution for many embedded applications.

The XMEGA A devices are supported with a full suite of program and system development tools, including C compilers,

macro assemblers, program debugger/simulators, programmers, and evaluation kits.Block Diagram

4XMEGA A [MANUAL]
8077I–AVR–11/2012

Figure 2-1. XMEGA A block diagram.

In Table 2-1 on page 5 a feature summary for the XMEGA A family is shown, split into one feature summary column for

each sub-family. Each sub-family has identical feature set, but different memory options, refer to their device datasheet

for ordering codes and memory options.

VBAT

Power

Supervision

Battery Backup

Controller

Real Time

Counter

32.768 kHz

XOSC

Power

Supervision

POR/BOD &

RESET
PORT A (8)

PORT B (8)

EVENT ROUTING NETWORK

DMA

Controller

BUS

Matrix

SRAM

EBI

ADCA

DACA

ACA

DACB

ADCB

ACB

OCD

PORT K (8)

PORT J (8)

PORT H (8)

PDI

Watchdog

Timer

Watchdog

Oscillator

Interrupt

Controller

DATA BUS

Prog/Debug

Controller

P
O

R
T

 R
 (

2
)

Oscillator

Circuits/

Clock

Generation

Oscillator

Control

Real Time

Counter

Event System

Controller

JTAG

Sleep

Controller

DES

IR
C

O
M

PORT G (8)

PORT L (8)

P
O

R
T

 Q
 (

8
)

PORT M (8)

PORT C (8)

T
C

C
0

:1

U
S

A
R

T
C

0
:1

T
W

IC

S
P

IC

PORT D (8)

T
C

D
0

:1

U
S

A
R

T
D

0
:1

T
W

ID

S
P

ID

T
C

F
0
:1

U
S

A
R

T
F

0
:1

T
W

IF

S
P

IF

T
C

E
0
:1

U
S

A
R

T
E

0
:1

T
W

IE

S
P

IE

PORT E (8) PORT F (8)

EVENT ROUTING NETWORK

AES

AREFA

AREFB

PORT N (8)

PORT P (8)

CPU

NVM Controller

MORPEEhsalF

DATA BUS

Int. Refs.

Tempref

Digital function

Analog function

Bus masters / Programming / Debug

Oscillator / Crystal / Clock

General Purpose I/O

EBI

5XMEGA A [MANUAL]
8077I–AVR–11/2012

Table 2-1. XMEGA A feature summary overview.

Feature Details / sub-family A1 A3 A3B A4

Pins, I/O
Total 100 64 64 44

Programmable I/O pins 78 50 47 34

Memory

Program memory (KB) 64 - 128 64 - 256 256 16 - 128

Boot memory (KB) 4 - 8 4 - 8 8 4 - 8

SRAM (KB) 4 - 8 4 - 16 16 2 - 8

EEPROM 2 2 - 4 4 1 -2

General purpose registers 16 16 16 16

Package

TQFP 100A 64A 64A 44A

QFN /VQFN – 64M2 64M2 44M1

BGA 100C1/100C2 – – 49C2

QTouch Sense channels 56 56 56 56

DMA Controller Channels 4 4 4 4

Event System
Channels 8 8 8 8

QDEC 3 3 3 3

Crystal Oscillator
0.4 - 16MHz XOSC Yes Yes Yes Yes

32.768 kHz TOSC Yes Yes Yes Yes

Internal Oscillator

2MHz calibrated Yes Yes Yes Yes

32MHz calibrated Yes Yes Yes Yes

128MHz PLL Yes Yes Yes Yes

32.768kHz calibrated Yes Yes Yes Yes

32kHz ULP Yes Yes Yes Yes

Timer / Counter

TC0 - 16-bit, 4 CC 4 4 4 3

TC1 - 16-bit, 2 CC 4 3 2 2

TC2 - 2x 8-bit 4 4 4 2

Hi-Res 4 4 4 3

AWeX 4 2 2 1

RTC 1 1 1

RTC32 1

Battery Backup System Yes

Serial Communication

USART 8 7 6 5

SPI 4 3 3 2

TWI 4 2 2 2

6XMEGA A [MANUAL]
8077I–AVR–11/2012

Crypto
AES-128 Yes Yes Yes Yes

DES Yes Yes Yes Yes

External Memory (EBI)

Chip selects 4 – – –

SRAM Yes

SDRAM Yes

Analog to Digital

Converter (ADC)

2 2 2 1

Resolution (bits) 12 12 12 12

Sampling speed (kbps) 1000 2000 2000 2000

Input channels per ADC 8 8 8 12

Conversion channels 4 4 4 4

Digital to Analog

Converter (DAC)

2 1 1 1

Resolution (bits) 12 12 12 12

Sampling speed (kbps) 1000 1000 1000 1000

Output channels per DAC 2 2 2 2

Analog Comparator (AC) 4 4 4 2

Program and Debug

Interface

PDI Yes Yes Yes Yes

JTAG Yes Yes Yes

Boundary scan Yes Yes Yes

Feature Details / sub-family A1 A3 A3B A4

7XMEGA A [MANUAL]
8077I–AVR–11/2012

3. Atmel AVR CPU

3.1 Features
� 8/16-bit, high-performance Atmel AVR RISC CPU

– 142 instructions

– Hardware multiplier

� 32x8-bit registers directly connected to the ALU

� Stack in RAM

� Stack pointer accessible in I/O memory space

� Direct addressing of up to 16MB of program memory and 16MB of data memory

� True 16/24-bit access to 16/24-bit I/O registers

� Efficient support for 8-, 16-, and 32-bit arithmetic

� Configuration change protection of system-critical features

3.2 Overview

All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and

perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the

program in the flash memory. Interrupt handling is described in a separate section, “Interrupts and Programmable

Multilevel Interrupt Controller” on page 125.

3.3 Architectural Overview

In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories

and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one

instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to

be executed on every clock cycle. For a summary of all AVR instructions, refer to “Instruction Set Summary” on page

444. For details of all AVR instructions, refer to http://www.atmel.com/avr.

Figure 3-1. Block diagram of the AVR CPU architecture.

8XMEGA A [MANUAL]
8077I–AVR–11/2012

The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a

register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is

updated to reflect information about the result of the operation.

The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have

single clock cycle access time allowing single-cycle arithmetic logic unit operation between registers or between a

register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data

space addressing, enabling efficient address calculations.

The memory spaces are linear. The data memory space and the program memory space are two different memory

spaces.

The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can be

memory mapped in the data memory.

All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O

memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.

The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as

data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.

The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different

addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.

Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.

The program memory is divided in two sections, the application program section and the boot program section. Both

sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-

programming of the application flash memory must reside in the boot program section. The application section contains

an application table section with separate lock bits for write and read/write protection. The application table section can

be used for save storing of nonvolatile data in the program memory.

3.4 ALU - Arithmetic Logic Unit

The arithmetic logic unit supports arithmetic and logic operations between registers or between a constant and a register.

Single-register operations can also be executed. The ALU operates in direct connection with all 32 general purpose

registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register and an

immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the status

register is updated to reflect information about the result of the operation.

ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit

arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit arithmetic. The hardware

multiplier supports signed and unsigned multiplication and fractional format.

3.4.1 Hardware Multiplier

The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different

variations of signed and unsigned integer and fractional numbers:

 Multiplication of unsigned integers

 Multiplication of signed integers

 Multiplication of a signed integer with an unsigned integer

 Multiplication of unsigned fractional numbers

 Multiplication of signed fractional numbers

 Multiplication of a signed fractional number with an unsigned one

A multiplication takes two CPU clock cycles.

9XMEGA A [MANUAL]
8077I–AVR–11/2012

3.5 Program Flow

After reset, the CPU starts to execute instructions from the lowest address in the flash program memory ‘0.’ The program

counter (PC) addresses the next instruction to be fetched.

Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole

address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.

During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general

data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After

reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the

I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be

accessed through the five different addressing modes supported in the AVR CPU.

3.6 Instruction Execution Timing

The AVR CPU is clocked by the CPU clock, clkCPU. No internal clock division is used. Figure 3-2 on page 9 shows the

parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access register

file concept. This is the basic pipelining concept used to obtain up to 1MIPS/MHz performance with high power efficiency.

Figure 3-2. The parallel instruction fetches and instruction executions.

Figure 3-3 on page 9 shows the internal timing concept for the register file. In a single clock cycle, an ALU operation

using two register operands is executed and the result is stored back to the destination register.

Figure 3-3. Single Cycle ALU Operation.

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clk
CPU

10XMEGA A [MANUAL]
8077I–AVR–11/2012

3.7 Status Register

The status register (SREG) contains information about the result of the most recently executed arithmetic or logic

instruction. This information can be used for altering program flow in order to perform conditional operations. Note that

the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many

cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine nor restored when returning from an

interrupt. This must be handled by software.

The status register is accessible in the I/O memory space.

3.8 Stack and Stack Pointer

The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing

temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit

registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and

POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing

data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded

after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point

above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.

During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be

two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program

memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices

with more than 128KB of program memory, the return address is three bytes, and hence the SP is

decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the

RETI instruction, and from subroutine calls using the RET instruction.

The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one

when data is popped off the stack using the POP instruction.

To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts

for up to four instructions or until the next I/O memory write.

3.9 Register File

The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register

file supports the following input/output schemes:

 One 8-bit output operand and one 8-bit result input

 Two 8-bit output operands and one 8-bit result input

 Two 8-bit output operands and one 16-bit result input

 One 16-bit output operand and one 16-bit result input

Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient

address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash

program memory.

11XMEGA A [MANUAL]
8077I–AVR–11/2012

Figure 3-4. AVR CPU general purpose working registers.

The register file is located in a separate address space, and so the registers are not accessible as data memory.

3.9.1 The X-, Y-, and Z- Registers

Registers R26..R31 have added functions besides their general-purpose usage.

These registers can form 16-bit address pointers for addressing data memory. These three address registers are called

the X-register, Y-register, and Z-register. The Z-register can also be used as an address pointer to read from and/or write

to the flash program memory, signature rows, fuses, and lock bits.

Figure 3-5. The X-, Y- and Z-registers.

The lowest register address holds the least-significant byte (LSB), and the highest register address holds the most-

significant byte (MSB). In the different addressing modes, these address registers function as fixed displacement,

automatic increment, and automatic decrement (see the instruction set reference for details).

3.10 RAMP and Extended Indirect Registers

In order to access program memory or data memory above 64KB, the address pointer must be larger than 16 bits. This is

done by concatenating one register to one of the X-, Y-, or Z-registers. This register then holds the most-significant byte

(MSB) in a 24-bit address or address pointer.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

Bit (individually) 7 R27 0 7 R26 0

X-register XH XL

Bit (X-register) 15 8 7 0

Bit (individually) 7 R29 0 7 R28 0

Y-register YH YL

Bit (Y-register) 15 8 7 0

Bit (individually) 7 R31 0 7 R30 0

Z-register ZH ZL

Bit (Z-register) 15 8 7 0

12XMEGA A [MANUAL]
8077I–AVR–11/2012

These registers are available only on devices with external bus interface and/or more than 64KB of program or data

memory space. For these devices, only the number of bits required to address the whole program and data memory

space in the device is implemented in the registers.

3.10.1 RAMPX, RAMPY and RAMPZ registers

The RAMPX, RAMPY and RAMPZ registers are concatenated with the X-, Y-, and Z-registers, respectively, to enable

indirect addressing of the whole data memory space above 64KB and up to 16MB.

Figure 3-6. The combined RAMPX + X, RAMPY + Y and RAMPZ + Z registers.

When reading (ELPM) and writing (SPM) program memory locations above the first 128KB of the program memory,

RAMPZ is concatenated with the Z-register to form the 24-bit address. LPM is not affected by the RAMPZ setting.

3.10.2 RAMPD register

This register is concatenated with the operand to enable direct addressing of the whole data memory space above 64KB.

Together, RAMPD and the operand will form a 24-bit address.

Figure 3-7. The combined RAMPD + K register.

3.10.3 EIND - Extended Indirect register

EIND is concatenated with the Z-register to enable indirect jump and call to locations above the first 128KB (64K words)

of the program memory.

Figure 3-8. The combined EIND + Z register.

3.11 Accessing 16-bit Registers

The AVR data bus is 8 bits wide, and so accessing 16-bit registers requires atomic operations. These registers must be

byte-accessed using two read or write operations. 16-bit registers are connected to the 8-bit bus and a temporary register

using a 16-bit bus.

Bit (Individually) 7 0 7 0 7 0

RAMPX XH XL

Bit (X-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 7 0 7 0

RAMPY YH YL

Bit (Y-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 7 0 7 0

RAMPZ ZH ZL

Bit (Z-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 15 0

RAMPD K

Bit (D-pointer) 23 16 15 0

Bit (Individually) 7 0 7 0 7 0

EIND ZH ZL

Bit (D-pointer) 23 16 15 8 7 0

13XMEGA A [MANUAL]
8077I–AVR–11/2012

For a write operation, the low byte of the 16-bit register must be written before the high byte. The low byte is then written

into the temporary register. When the high byte of the 16-bit register is written, the temporary register is copied into the

low byte of the 16-bit register in the same clock cycle.

For a read operation, the low byte of the 16-bit register must be read before the high byte. When the low byte register is

read by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as the

low byte is read. When the high byte is read, it is then read from the temporary register.

This ensures that the low and high bytes of 16-bit registers are always accessed simultaneously when reading or writing

the register.

Interrupts can corrupt the timed sequence if an interrupt is triggered and accesses the same 16-bit register during an

atomic 16-bit read/write operation. To prevent this, interrupts can be disabled when writing or reading 16-bit registers.

The temporary registers can also be read and written directly from user software.

3.11.1 Accessing 24- and 32-bit Registers

For 24- and 32-bit registers, the read and write access is done in the same way as described for 16-bit registers, except

there are two temporary registers for 24-bit registers and three for 32-bit registers. The least-significant byte must be

written first when doing a write, and read first when doing a read.

3.12 Configuration Change Protection

System critical I/O register settings are protected from accidental modification. The SPM instruction is protected from

accidental execution, and the LPM instruction is protected when reading the fuses and signature row. This is handled

globally by the configuration change protection (CCP) register. Changes to the protected I/O registers or bits, or

execution of protected instructions, are only possible after the CPU writes a signature to the CCP register. The different

signatures are described in the register description.

There are two modes of operation: one for protected I/O registers, and one for the protected instructions, SPM/LPM.

3.12.1 Sequence for write operation to protected I/O registers

1. The application code writes the signature that enable change of protected I/O registers to the CCP register.

2. Within four instruction cycles, the application code must write the appropriate data to the protected register. Most

protected registers also contain a write enable/change enable bit. This bit must be written to one in the same oper-

ation as the data are written. The protected change is immediately disabled if the CPU performs write operations to

the I/O register or data memory or if the SPM, LPM, or SLEEP instruction is executed.

3.12.2 Sequence for execution of protected SPM/LPM

1. The application code writes the signature for the execution of protected SPM/LPM to the CCP register.

2. Within four instruction cycles, the application code must execute the appropriate instruction. The protected change

is immediately disabled if the CPU performs write operations to the data memory or if the SLEEP instruction is

executed.

Once the correct signature is written by the CPU, interrupts will be ignored for the duration of the configuration change

enable period. Any interrupt request (including non-maskable interrupts) during the CCP period will set the

corresponding interrupt flag as normal, and the request is kept pending. After the CCP period is completed, any pending

interrupts are executed according to their level and priority. DMA requests are still handled, but do not influence the

protected configuration change enable period. A signature written by DMA is ignored.

3.13 Fuse Lock

For some system-critical features, it is possible to program a fuse to disable all changes to the associated I/O control

registers. If this is done, it will not be possible to change the registers from the user software, and the fuse can only be

reprogrammed using an external programmer. Details on this are described in the datasheet module where this feature is

available.

14XMEGA A [MANUAL]
8077I–AVR–11/2012

3.14 Register Descriptions

3.14.1 CCP – Configuration Change Protection register

 Bit 7:0 – CCP[7:0]: Configuration Change Protection

The CCP register must be written with the correct signature to enable change of the protected I/O register or execution of

the protected instruction for a maximum period of four CPU instruction cycles. All interrupts are ignored during these

cycles. After these cycles, interrupts will automatically be handled again by the CPU, and any pending interrupts will be

executed according to their level and priority. When the protected I/O register signature is written, CCP[0] will read as

one as long as the protected feature is enabled. Similarly when the protected SPM/LPM signature is written, CCP[1] will

read as one as long as the protected feature is enabled. CCP[7:2] will always read as zero. Table 3-1 on page 14 shows

the signature for the various modes.

Table 3-1. Modes of CPU change protection.

3.14.2 RAMPD – Extended Direct Addressing register

This register is concatenated with the operand for direct addressing (LDS/STS) of the whole data memory space on

devices with more than 64KB of data memory. This register is not available if the data memory, including external

memory, is less than 64KB.

 Bit 7:0 – RAMPD[7:0]: Extended Direct Addressing bits

These bits hold the MSB of the 24-bit address created by RAMPD and the 16-bit operand. Only the number of bits

required to address the available data memory is implemented for each device. Unused bits will always read as zero.

Bit 7 6 5 4 3 2 1 0

+0x04 CCP[7:0]

Read/Write W W W W W W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Signature Group Configuration Description

0x9D SPM Protected SPM/LPM

0xD8 IOREG Protected IO register

Bit 7 6 5 4 3 2 1 0

+0x08 RAMPD[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

15XMEGA A [MANUAL]
8077I–AVR–11/2012

3.14.3 RAMPX – Extended X-Pointer register

This register is concatenated with the X-register for indirect addressing (LD/LDD/ST/STD) of the whole data memory

space on devices with more than 64KB of data memory. This register is not available if the data memory, including

external memory, is less than 64KB.

 Bit 7:0 – RAMPX[7:0]: Extended X-pointer Address bits

These bits hold the MSB of the 24-bit address created by RAMPX and the 16-bit X-register. Only the number of bits

required to address the available data memory is implemented for each device. Unused bits will always read as zero.

3.14.4 RAMPY – Extended Y-Pointer register

This register is concatenated with the Y-register for indirect addressing (LD/LDD/ST/STD) of the whole data memory

space on devices with more than 64KB of data memory. This register is not available if the data memory, including

external memory, is less than 64KB.

 Bit 7:0 – RAMPY[7:0]: Extended Y-pointer Address bits

These bits hold the MSB of the 24-bit address created by RAMPY and the 16-bit Y-register. Only the number of bits

required to address the available data memory is implemented for each device. Unused bits will always read as zero.

3.14.5 RAMPZ – Extended Z-Pointer register

This register is concatenated with the Z-register for indirect addressing (LD/LDD/ST/STD) of the whole data memory

space on devices with more than 64KB of data memory. RAMPZ is concatenated with the Z-register when reading

(ELPM) program memory locations above the first 64KB and writing (SPM) program memory locations above the first

128KB of the program memory.

This register is not available if the data memory, including external memory and program memory in the device, is less

than 64KB.

 Bit 7:0 – RAMPZ[7:0]: Extended Z-pointer Address bits

These bits hold the MSB of the 24-bit address created by RAMPZ and the 16-bit Z-register. Only the number of bits

required to address the available data and program memory is implemented for each device. Unused bits will always

read as zero.

Bit 7 6 5 4 3 2 1 0

+0x09 RAMPX[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0A RAMPY[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0B RAMPZ[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

16XMEGA A [MANUAL]
8077I–AVR–11/2012

3.14.6 EIND – Extended Indirect register

This register is concatenated with the Z-register for enabling extended indirect jump (EIJMP) and call (EICALL) to the

whole program memory space on devices with more than 128KB of program memory. The register should be used for

jumps to addresses below 128KB if ECALL/EIJMP are used, and it will not be used if CALL and IJMP commands are

used. For jump or call to addresses below 128KB, this register is not used. This register is not available if the program

memory in the device is less than 128KB.

 Bit 7:0 – EIND[7:0]: Extended Indirect Address bits

These bits hold the MSB of the 24-bit address created by EIND and the 16-bit Z-register. Only the number of bits

required to access the available program memory is implemented for each device. Unused bits will always read as zero.

3.14.7 SPL – Stack Pointer register Low

The SPH and SPL register pair represent the 16-bit SP value. The SP holds the stack pointer that points to the top of the

stack. After reset, the stack pointer points to the highest internal SRAM address. To prevent corruption when updating

the stack pointer from software, a write to SPL will automatically disable interrupts for the next four instructions or until

the next I/O memory write.

Only the number of bits required to address the available data memory, including external memory, up to 64KB is

implemented for each device. Unused bits will always read as zero.

Note: 1. Refer to specific device datasheets for exact initial values.

 Bit 7:0 – SP[7:0]: Stack Pointer low byte

These bits hold the LSB of the 16-bit stack pointer (SP).

3.14.8 SPH – Stack Pointer register High

Note: 1. Refer to specific device datasheets for exact initial values.

 Bit 7:0 – SP[15:8]: Stack Pointer high byte

These bits hold the MSB of the 16-bit stack pointer (SP).

Bit 7 6 5 4 3 2 1 0

+0x0C EIND[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0D SP[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value(1) 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Bit 7 6 5 4 3 2 1 0

+0x0E SP[15:8]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value(1) 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

17XMEGA A [MANUAL]
8077I–AVR–11/2012

3.14.9 SREG – Status Register

The status register (SREG) contains information about the result of the most recently executed arithmetic or logic

instruction.

 Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set for interrupts to be enabled. If the global interrupt enable register is cleared,

none of the interrupts are enabled independent of the individual interrupt enable settings. This bit is not cleared by

hardware after an interrupt has occurred. This bit can be set and cleared by the application with the SEI and CLI

instructions, as described in “Instruction Set Description.” Changing the I flag through the I/O-register result in a one-

cycle wait state on the access.

 Bit 6 – T: Bit Copy Storage

The bit copy instructions bit load (BLD) and bit store (BST) use the T bit as source or destination for the operated bit. A bit

from a register in the register file can be copied into this bit by the BST instruction, and this bit can be copied into a bit in

a register in the register file by the BLD instruction.

 Bit 5 – H: Half Carry Flag

The half carry flag (H) indicates a half carry in some arithmetic operations. Half carry Is useful in BCD arithmetic. See

“Instruction Set Description” for detailed information.

 Bit 4 – S: Sign Bit, S = N V

The sign bit is always an exclusive or between the negative flag, N, and the two’s complement overflow flag, V. See

“Instruction Set Description” for detailed information.

 Bit 3 – V: Two’s Complement Overflow Flag

The two’s complement overflow flag (V) supports two’s complement arithmetic. See “Instruction Set Description” for

detailed information.

 Bit 2 – N: Negative Flag

The negative flag (N) indicates a negative result in an arithmetic or logic operation. See “Instruction Set Description” for

detailed information.

 Bit 1 – Z: Zero Flag

The zero flag (Z) indicates a zero result in an arithmetic or logic operation. See “Instruction Set Description” for detailed

information.

 Bit 0 – C: Carry Flag

The carry flag (C) indicates a carry in an arithmetic or logic operation. See “Instruction Set Description” for detailed

information.

Bit 7 6 5 4 3 2 1 0

+0x0F I T H S V N Z C

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

18XMEGA A [MANUAL]
8077I–AVR–11/2012

3.15 Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 Reserved – – – – – – – –

+0x01 Reserved – – – – – – – –

+0x02 Reserved – – – – – – – –

+0x03 Reserved – – – – – – – –

+0x04 CCP CCP[7:0] 14

+0x05 Reserved – – – – – – – –

+0x06 Reserved – – – – – – – –

+0x07 Reserved – – – – – – – –

+0x08 RAMPD RAMPD[7:0] 14

+0x09 RAMPX RAMPX[7:0] 15

+0x0A RAMPY RAMPY[7:0] 15

+0x0B RAMPZ RAMPZ[7:0] 15

+0x0C EIND EIND[7:0] 16

+0x0D SPL SPL[7:0] 16

+0x0E SPH SPH[7:0] 16

+0x0F SREG I T H S V N Z C 17

19XMEGA A [MANUAL]
8077I–AVR–11/2012

4. Memories

4.1 Features
� Flash program memory

– One linear address space

– In-system programmable

– Self-programming and boot loader support

– Application section for application code

– Application table section for application code or data storage

– Boot section for application code or bootloader code

– Separate read/write protection lock bits for all sections

– Built in fast checksum generator of a selectable flash program memory section

� Data memory

– One linear address space

– Single-cycle access from CPU

– SRAM

– EEPROM

Byte and page accessible

Optional memory mapping for direct load and store

– I/O memory

Configuration and status registers for all peripherals and modules

16 bit-accessible general purpose registers for global variables or flags

– External memory support

SRAM

SDRAM

Memory mapped external hardware

– Bus arbitration

Deterministic handling of priority between CPU, DMA controller, and other bus masters

– Separate buses for SRAM, EEPROM, I/O memory, and external memory access

Simultaneous bus access for CPU and DMA controller

� Production signature row memory for factory programmed data

– ID for each microcontroller device type

– Serial number for each device

– Calibration bytes for factory calibrated peripherals

� User signature row

– One flash page in size

– Can be read and written from software

– Content is kept after chip erase

4.2 Overview

This section describes the different memory sections. The AVR architecture has two main memory spaces, the program

memory and the data memory. Executable code can reside only in the program memory, while data can be stored in the

program memory and the data memory. The data memory includes the internal SRAM, and EEPROM for nonvolatile

data storage. All memory spaces are linear and require no memory bank switching. Nonvolatile memory (NVM) spaces

can be locked for further write and read/write operations. This prevents unrestricted access to the application software.

A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can

only be written by an external programmer.

20XMEGA A [MANUAL]
8077I–AVR–11/2012

4.3 Flash Program Memory

All XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The flash memory

can be accessed for read and write from an external programmer through the PDI or from application software running in

the device.

All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized

in two main sections, the application section and the boot loader section, as shown in Figure 4-1 on page 20. The sizes

of the different sections are fixed, but device-dependent. These two sections have separate lock bits, and can have

different levels of protection. The store program memory (SPM) instruction, used to write to the flash from the application

software, will only operate when executed from the boot loader section.

The application section contains an application table section with separate lock settings. This enables safe storage of

nonvolatile data in the program memory.

Figure 4-1. Flash memory sections.

4.3.1 Application Section

The Application section is the section of the flash that is used for storing the executable application code. The protection

level for the application section can be selected by the boot lock bits for this section. The application section can not store

any boot loader code since the SPM instruction cannot be executed from the application section.

4.3.2 Application Table Section

The application table section is a part of the application section of the flash memory that can be used for storing data.

The size is identical to the boot loader section. The protection level for the application table section can be selected by

the boot lock bits for this section. The possibilities for different protection levels on the application section and the

application table section enable safe parameter storage in the program memory. If this section is not used for data,

application code can reside here.

Application Flash

Section

0x000000

End Application

Start Boot Loader

Flashend

Application Table

Flash Section

Boot Loader Flash

Section

21XMEGA A [MANUAL]
8077I–AVR–11/2012

4.3.3 Boot Loader Section

While the application section is used for storing the application code, the boot loader software must be located in the boot

loader section because the SPM instruction can initiate programming when executing from this section. The SPM

instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader

section can be selected by the boot loader lock bits. If this section is not used for boot loader software, application code

can be stored here.

4.3.4 Production Signature Row

The production signature row is a separate memory section for factory programmed data. It contains calibration data for

functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the

corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to

the corresponding peripheral registers from software. For details on calibration conditions such as temperature, voltage

references, etc., refer to the device datasheet.

The production signature row also contains an ID that identifies each microcontroller device type and a serial number for

each manufactured device. The serial number consists of the production lot number, wafer number, and wafer

coordinates for the device.

The production signature row cannot be written or erased, but it can be read from application software and external

programmers.

For accessing the Production Signature Row, refer to “NVM Flash Commands” on page 358.

4.3.5 User Signature Row

The user signature row is a separate memory section that is fully accessible (read and write) from application software

and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration

data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase

commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during

multiple program/erase operations and on-chip debug sessions.

4.4 Fuses and Lock bits

The fuses are used to configure important system functions, and can only be written from an external programmer. The

application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and

watchdog, startup configuration, JTAG enable, and JTAG user ID.

The lock bits are used to set protection levels for the different flash sections (i.e., if read and/or write access should be

blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.

Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the

lock bits are erased after the rest of the flash memory has been erased.

An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.

Both fuses and lock bits are reprogrammable like the flash program memory.

For some fuse bytes, leaving them unprogrammed (0xFF) will result in invalid settings. The user must ensure that the

fuse bytes are programmed to values which give valid settings. Refer to the detailed description of the individual fuse

bytes for further information.

4.5 Data Memory

The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external memory,

if available. The data memory is organized as one continuous memory section, as shown in Figure 4-2 on page 22.

22XMEGA A [MANUAL]
8077I–AVR–11/2012

Figure 4-2. Data memory map.

I/O memory, EEPROM, and SRAM will always have the same start addresses for all XMEGA devices. The address

space for external memory will always start at the end of internal SRAM and end at address 0xFFFFFF.

4.6 Internal SRAM

The internal SRAM always starts at hexadecimal address 0x2000. SRAM is accessed by the CPU using the load

(LD/LDS/LDD) and store (ST/STS/STD) instructions.

4.7 EEPROM

All XMEGA devices have EEPROM for nonvolatile data storage. It is addressable in a separate data space (default) or

memory mapped and accessed in normal data space. The EEPROM supports both byte and page access. Memory

mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is

accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal address

0x1000.

4.8 I/O Memory

The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O

memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,

which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT

instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,

single-cycle instructions for manipulation and checking of individual bits are available.

I/O Memory
(Up to 4 KB)

EEPROM
(Up to 4 KB)

Internal SRAM

External Memory
(0 to 16 MB)

0x000000

0x001000

0xFFFFFF

0x002000

Start/End

Address
Data Memory

23XMEGA A [MANUAL]
8077I–AVR–11/2012

4.8.1 General Purpose I/O Registers

The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for

storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

4.9 External Memory

Up to four ports are dedicated to external memory, supporting external SRAM, SDRAM, and memory mapped

peripherals such as LCD displays. For details, refer to “EBI – External Bus Interface” on page 263. The external memory

address space will always start at the end of internal SRAM.

4.10 Data Memory and Bus Arbitration

Since the data memory is organized as four separate sets of memories, the different bus masters (CPU, DMA controller

read and DMA controller write, etc.) can access different memory sections at the same time. See Figure 4-3 on page 23.

Figure 4-3. Bus access.

4.10.1 Bus Priority

When several masters request access to the same bus, the bus priority is in the following order (from higher to lower

priority):

1. Bus Master with ongoing access.

 Bus access granted, but waiting for slave to complete

2. Bus Master with ongoing burst.

 If DMA controller is transferring between two locations within the same memory section the read and write master

will alternate until the burst is complete.

3. Bus Master requesting new burst access.

 1st pri: CPU (CALL/RET)

 2nd pri: DMAC (2BYTE or more)

4. Bus Master requesting new bus access.

 1st pri: CPU (load, store)

 2nd pri: 2 DMAC (1BYTE)

Peripherals and system modules

Bus matrix

CPUDMA

RAM

DAC

OCD

USART

SPI

Timer /

Counter

TWI

Interrupt

Controller

Power

Management

SRAM

External

Programming

External

Memory

EBI

PDIAVR core

CH0

ADC

AC

Crypto

modules

Event System

Controller

Oscillator

Control

CH1

CH2 CH3

Non-Volatile

Memory

EEPROM

Flash

Real Time

Counter
I/O

NVM

Controller

Battery

Backup

24XMEGA A [MANUAL]
8077I–AVR–11/2012

4.11 Memory Timing

Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from

SRAM takes two cycles. For burst read (DMA), new data are available every cycle. EEPROM page load (write) takes one

cycle, and three cycles are required for read. For burst read, new data are available every second cycle. External

memory has multi-cycle read and write. The number of cycles depends on the type of memory and configuration of the

external bus interface. Refer to the instruction summary for more details on instructions and instruction timing.

4.12 Device ID and Revision

Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A

separate register contains the revision number of the device.

4.13 JTAG Disable

It is possible to disable the JTAG interface from the application software. This will prevent all external JTAG access to the

device until the next device reset or until JTAG is enabled again from the application software. As long as JTAG is

disabled, the I/O pins required for JTAG can be used as normal I/O pins.

4.14 I/O Memory Protection

Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the

I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is

enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers

themselves are protected by the configuration change protection mechanism. For details, refer to “Configuration Change

Protection” on page 13.

25XMEGA A [MANUAL]
8077I–AVR–11/2012

4.15 Register Description – NVM Controller

4.15.1 ADDR0 – Address register 0

The ADDR0, ADDR1, and ADDR2 registers represent the 24-bit value, ADDR.

 Bit 7:0 – ADDR[7:0]: Address byte 0

This register gives the address low byte when accessing NVM locations.

4.15.2 ADDR1 – Address register 1

 Bit 7:0 – ADDR[15:8]: Address byte 1

This register gives the address high byte when accessing NVM locations.

4.15.3 ADDR2 – Address register 2

 Bit 7:0 – ADDR[23:16]: Address byte 2

This register gives the address extended byte when accessing NVM locations.

4.15.4 DATA0 – Data register 0

The DATA0, DATA1, and DATA registers represent the 24-bit value, DATA.

 Bit 7:0 – DATA[7:0]: Data byte 0

This register gives the data value byte 0 when accessing either of the memory locations.

Bit 7 6 5 4 3 2 1 0

+0x00 ADDR[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

+0x01 ADDR[15:8]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 ADDR[23:16]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 DATA[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

	Contact us
	1. About the Manual
	1.1 Reading the Manual
	1.2 Resources
	1.3 Recommended Reading

	2. Overview
	3. Atmel AVR CPU
	3.1 Features
	3.2 Overview
	3.3 Architectural Overview
	3.4 ALU - Arithmetic Logic Unit
	3.4.1 Hardware Multiplier

	3.5 Program Flow
	3.6 Instruction Execution Timing
	3.7 Status Register
	3.8 Stack and Stack Pointer
	3.9 Register File
	3.9.1 The X-, Y-, and Z- Registers

	3.10 RAMP and Extended Indirect Registers
	3.10.1 RAMPX, RAMPY and RAMPZ registers
	3.10.2 RAMPD register
	3.10.3 EIND - Extended Indirect register

	3.11 Accessing 16-bit Registers
	3.11.1 Accessing 24- and 32-bit Registers

	3.12 Configuration Change Protection
	3.12.1 Sequence for write operation to protected I/O registers
	3.12.2 Sequence for execution of protected SPM/LPM

	3.13 Fuse Lock
	3.14 Register Descriptions
	3.14.1 CCP – Configuration Change Protection register
	3.14.2 RAMPD – Extended Direct Addressing register
	3.14.3 RAMPX – Extended X-Pointer register
	3.14.4 RAMPY – Extended Y-Pointer register
	3.14.5 RAMPZ – Extended Z-Pointer register
	3.14.6 EIND – Extended Indirect register
	3.14.7 SPL – Stack Pointer register Low
	3.14.8 SPH – Stack Pointer register High
	3.14.9 SREG – Status Register

	3.15 Register Summary

	4. Memories
	4.1 Features
	4.2 Overview
	4.3 Flash Program Memory
	4.3.1 Application Section
	4.3.2 Application Table Section
	4.3.3 Boot Loader Section
	4.3.4 Production Signature Row
	4.3.5 User Signature Row

	4.4 Fuses and Lock bits
	4.5 Data Memory
	4.6 Internal SRAM
	4.7 EEPROM
	4.8 I/O Memory
	4.8.1 General Purpose I/O Registers

	4.9 External Memory
	4.10 Data Memory and Bus Arbitration
	4.10.1 Bus Priority

	4.11 Memory Timing
	4.12 Device ID and Revision
	4.13 JTAG Disable
	4.14 I/O Memory Protection

