imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Atmel M90E25

Atmel

Single-Phase High-Performance Wide-Span Energy Metering IC

PRELIMINARY DATASHEET

FEATURES

Metering Features

- Metering features fully in compliance with the requirements of IEC62052-11 and IEC62053-21; applicable in class 1 or class 2 single-phase watt-hour meter.
- Accuracy of 0.1% for active energy over a dynamic range of 5000:1.
- Temperature coefficient is 15 ppm/ °C (typical) for on-chip reference voltage
- Single-point calibration over a dynamic range of 5000:1 for active energy.
- Energy Meter Constant doubling at low current to save verification time.
- Electrical parameters measurement: less than \pm 0.5% fiducial error for Vrms, Irms, mean active/ apparent power, frequency, power factor and phase angle.
- Forward/ reverse active energy with independent energy registers. Active energy can be output by pulse or read through energy registers to adapt to different applications.
- Programmable startup and no-load power threshold.
- Dedicated ADC and different gains for L line and N line current sampling circuits. Current sampled over shunt resistor or current transformer (CT); voltage sampled over resistor divider network or potential transformer (PT).
- Programmable L line and N line metering modes: anti-tampering mode (larger power), L line mode (fixed L line), L+N mode (applicable for single-phase three-wire system) and flexible mode (configure through register).
- Programmable L line and N line power difference threshold in anti-tampering mode.

Other Features

- 3.3V single power supply. Operating voltage range: 2.8~3.6V. Metering accuracy guaranteed within 3.0V~3.6V. 5V compatible for digital input.
- Built-in hysteresis for power-on reset.
- Four-wire SPI interface or simplified three-wire SPI interface with fixed 24 cycles for all registers operation
- Parameter diagnosis function and programmable interrupt output of the IRQ interrupt signal and the WarnOut signal.
- Programmable voltage sag detection and zero-crossing output.
- Channel input range
 - Voltage channel (when gain is '1'): 120µVrms~600mVrms.
 - L line current channel (when gain is '24'): 5μ Vrms~25mVrms.
 - N line current channel (when gain is '1'): 120µVrms~600mVrms.
- Programmable L line current gain: 1, 4, 8, 16, 24; Programmable N line gain: 1, 2, 4.
- Support L line and N line offset compensation.
- CF1 outputs active energy pulses which can be used for calibration or energy accumulation.
- Crystal oscillator frequency: 8.192 MHz. On-chip 10pF capacitors and no need of external capacitors.
- Green SSOP28 package.
- Operating temperature: -40 $^\circ\!\mathrm{C}$ ~ +85 $^\circ\!\mathrm{C}$.

APPLICATION

• The M90E25 is used for active energy metering for single-phase two-wire (1P2W), single-phase three-wire (1P3W) or anti-tampering energy meters. With the measurement function, the M90E25 can also be used in power instruments which need to measure voltage, current, etc.

DESCRIPTION

The M90E25 is high-performance wide-span energy metering chips. The ADC and DSP technology ensure the chips' long-term stability over variations in grid and ambient environmental conditions.

BLOCK DIAGRAM

Figure-1 Block Diagram

Table of Contents

FE	EATURES	1
A	PPLICATION	2
D	ESCRIPTION	2
В	LOCK DIAGRAM	2
1	PIN ASSIGNMENT	7
^		
2		0
3	FUNCTIONAL DESCRIPTION	10
	3.1 DYNAMIC METERING RANGE	10
	3.2 STARTUP AND NO-LOAD POWER	10
	3.3 ENERGY REGISTERS	10
	3.4 N LINE METERING AND ANTI-TAMPERING	11
	3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration	11
	3.4.2 Anti-Tampering Mode	11
	3.5 MEASUREMENT AND ZERO-CROSSING	12
	3.5.1 Measurement	12
	3.5.2 Zero-Crossing	12
	3.6 CALIBRATION	
	3.7 RESET	14
4		15
	4.1 SERIAL PERIPHERAL INTERFACE (SPI)	15
	4.1.1 Four-Wire Mode	15
	4.1.2 Three-Wire Mode	16
	4.1.3 Timeout and Protection	17
	4.2 WARNOUT PIN FOR FATAL ERROR WARNING	18
	4.3 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU	18
5	REGISTER	19
	5.1 REGISTER LIST	19
	5.2 STATUS AND SPECIAL REGISTER	21
	5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION	25
	5.3.1 Metering Calibration and Configuration Register	25
	5.3.2 Measurement Calibration Register	32
	5.4 ENERGY REGISTER	37
	5.5 MEASUREMENT REGISTER	40
6	ELECTRICAL SPECIFICATION	46
	6.1 ELECTRICAL SPECIFICATION	46
	6.2 SPI INTERFACE TIMING	48
	6.3 POWER ON RESET TIMING	50
	6.4 ZERO-CROSSING TIMING	51

6.5	VOLTAGE SAG TIMING	. 52
6.6	PULSE OUTPUT	. 53
6.7	ABSOLUTE MAXIMUM RATING	. 53
ORDE	RING INFORMATION	54
PACK	AGE DIMENSIONS	55
REVIS	ION HISTORY	56

List of Tables

Table-1 Pin Description	8
Table-2 Active Energy Metering Error	10
Table-3 Threshold Configuration for Startup and No-Load Power	10
Table-4 Energy Registers	10
Table-5 Metering Mode	11
Table-6 The Measurement Format	12
Table-7 Read / Write Result in Four-Wire Mode	17
Table-8 Read / Write Result in Three-Wire Mode	17
Table-9 Register List	19
Table-10 SPI Timing Specification	49
Table-11 Power On Reset Specification	50
Table-12 Zero-Crossing Specification	51
Table-13 Voltage Sag Specification	52

List of Figures

Figure-1 Block Diagram	
Figure-2 Pin Assignment (Top View)	
Figure-3 Read Sequence in Four-Wire Mode	15
Figure-4 Write Sequence in Four-Wire Mode	15
Figure-5 Read Sequence in Three-Wire Mode	
Figure-6 Write Sequence in Three-Wire Mode	
Figure-7 4-Wire SPI Timing Diagram	
Figure-8 3-Wire SPI Timing Diagram	
Figure-9 Power On Reset Timing Diagram	50
Figure-10 Zero-Crossing Timing Diagram	51
Figure-11 Voltage Sag Timing Diagram	
Figure-12 Output Pulse Width	53

1 PIN ASSIGNMENT

Figure-2 Pin Assignment (Top View)

2 **PIN DESCRIPTION**

Table-1 Pin Description

Name	Pin No.	I/O note 1	Туре	Description	
Reset	4	I	LVTTL	Reset: Reset Pin (active low) This pin should connect to ground through a 0.1μ F filter capacitor. In appli- cation it can also directly connect to one output pin from microcontroller (MCU).	
DVDD	3	I	Power	DVDD: Digital Power Supply This pin provides power supply to the digital part. It should be decoupled with a 10μ F electrolytic capacitor and a 0.1μ F capacitor.	
DGND	2	I	Power	DGND: Digital Ground	
AVDD	5	Ι	Power	AVDD: Analog Power Supply This pin provides power supply to the analog part. This pin should connect to DVDD through a 10Ω resistor and be decoupled with a 0.1μ F capacitor.	
Vref	13	0	Analog	Vref: Output Pin for Reference Voltage This pin should be decoupled with a 1μ F capacitor and a 1nF capacitor.	
AGND	6, 14	I	Power	AGND: Analog Ground	
I1P I1N	10 11	I	Analog	 I1P: Positive Input for L Line Current I1N: Negative Input for L Line Current These pins are differential inputs for L line current. Input range is 5μVrms~25mVrms when gain is '24'. 	
I2P I2N	7 8	I	Analog	I2P: Positive Input for N Line Current I2N: Negative Input for N Line Current These pins are differential inputs for N line current. Input range is 120μVrms~600mVrms when gain is '1'.	
VP VN	16 15	I	Analog	VP: Positive Input for Voltage VN: Negative Input for Voltage These pins are differential inputs for voltage. Input range is 120μVrms~600mVrms.	
NC	9, 12, 19			NC: These pins could be left open or connect to ground.	
<u>CS</u>	24	I	LVTTL	CS: Chip Select (Active Low) In 4-wire SPI mode, this pin must be driven from high to low for each read/ write operation, and maintain low for the entire operation. In 3-wire SPI mode, this pin must be low all the time. Refer to section 4.1.	
SCLK	25	I	LVTTL	SCLK: Serial Clock This pin is used as the clock for the SPI interface. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK.	
SDO	26	οz	LVTTL	SDO: Serial Data Output This pin is used as the data output for the SPI interface. Data on this pin is shifted out of the chip on the falling edge of SCLK.	
SDI	27	I	LVTTL	SDI: Serial Data Input This pin is used as the data input for the SPI interface. Address and data on this pin is shifted into the chip on the rising edge of SCLK.	
MMD1 MMD0	1 28	I	LVTTL	 MMD1/0: Metering Mode Configuration 00: anti-tampering mode (larger power); 01: L line mode (fixed L line); 10: L+N mode (applicable for single-phase three-wire system); 11: flexible mode (line specified by the LNSel bit (MMode, 2BH)) 	
OSCI	22	Ι	LVTTL	OSCI: External Crystal Input An 8.192 MHz crystal is connected between OSCI and OSCO. There is an on-chip 10pF capacitor, therefore no need of external capacitors.	

Table-1 Pin Description (Continued)

Name	Pin No.	I/O ^{note 1}	Туре	Description		
OSCO	23	о	LVTTL	OSCO: External Crystal Output An 8.192 MHz crystal is connected between OSCI and OSCO. There is a on-chip 10pF capacitor, therefore no need of external capacitors.		
CF1	18	о	LVTTL	CF1: Active Energy Pulse Output This pin outputs active energy pulses.		
ZX	21	0	LVTTL	ZX: Voltage Zero-Crossing Output This pin is asserted when voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing or all zero- crossing by the Zxcon[1:0] bits (MMode, 2BH).		
IRQ	20	о	LVTTL	IRQ: Interrupt Output This pin is asserted when one or more events in the SysStatus register (01H) occur. It is deasserted when there is no bit set in the SysStatus register (01H).		
WarnOut	17	О	LVTTL	WarnOut: Fatal Error Warning This pin is asserted when there is metering parameter calibration error or voltage sag. Refer to section 4.2.		
Note 1: All digital in	puts are 5V toler	rant excep	t for the OS	Cl pin.		

3 FUNCTIONAL DESCRIPTION

3.1 DYNAMIC METERING RANGE

Accuracy is 0.1% for active energy metering over a dynamic range of 5000:1 (typical). Refer to Table-2.

Table-2 Active Energy Metering Error

Current	Power Factor	Error (%)				
20 mA \leq I $<$ 50mA	1.0	±0.2				
$50 \mathrm{mA} \leqslant \mathrm{I} \leqslant 100 \mathrm{A}$	1.0	±0.1				
$50 \mathrm{mA} \leqslant \mathrm{I} < 100 \mathrm{mA}$	0.5 (Inductive)	±0.2				
100mA \leq I \leq 100A0.8 (Capacitive) \pm 0.1						
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6 Ω .						

3.2 STARTUP AND NO-LOAD POWER

Startup and no-load power thresholds are programmable. The related registers are listed in Table-3.

Table-3 Threshold Configuration for Startup and No-Load Power

Threshold	Register
Threshold for Active Startup Power	PStartTh, 27H
Threshold for Active No-load Power	PNoITh, 28H

The chip will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less than the corresponding power of 20mA when power factor or sin_{ϕ} is 1.0.

The chip has no-load status bits, the Pnoload bit (EnStatus, 46H). The chip will not output any active pulse (CF1) in active no-load state.

3.3 ENERGY REGISTERS

The M90E25 provides energy pulse output CF1 which is proportionate to active energy. Energy is usually accumulated by adding the CF1 pulses in system applications. Alternatively, the M90E25 provides energy registers. There are forward (inductive), reverse (capacitive) and absolute energy registers. Refer to Table-4.

Table-4 Energy Registers

Energy	Register
Forward Active Energy	APenergy, 40H
Reverse Active Energy	ANenergy, 41H
Absolute Active Energy	ATenergy, 42H

Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy pulse.

3.4 N LINE METERING AND ANTI-TAMPERING

3.4.1 METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION

The M90E25 has two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0 pins are used to configure the metering mode. Refer to Table-5.

Table-5 Metering Mode

MMD1	MMD0	Metering Mode	CF1 Output
0	0	Anti-tampering Mode (larger power)	CF1 represents the larger energy line. Refer to section 3.4.2.
0	1	L Line Mode (fixed L line)	CF1 represents L line energy all the time.
1	0	L+N Mode (applicable for single-phase three- wire system)	CF1 represents the arithmetic sum of L line and N line energy
1	1	Flexible Mode (line specified by the LNSel bit (MMode, 2BH))	CF1 represents energy of the specified line.

The M90E25 has two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.

3.4.2 ANTI-TAMPERING MODE

Threshold

In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%, 3.125% and 1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the default value is 3.125%.

Compare Method

In anti-tampering mode, the compare method is as follows:

If current metering line is L line and

NLine Active Power - L Line Active Power L Line Active Power * 100% > Threshold

N line is switched as the metering line, otherwise L line keeps as the metering line.

If current metering line is N line and

L Line Active Power - N Line Active Power N Line Active Power * 100% > Threshold

L line is switched as the metering line, otherwise N line keeps as the metering line.

This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.

Special Treatment at Low Power

When power is low, general factors such as the quantization error or calibration difference between L line and N line might cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is adopted:

The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the startup power but higher than the startup power.

3.5 MEASUREMENT AND ZERO-CROSSING

3.5.1 MEASUREMENT

The M90E25 has the following measurements:

- voltage rms
- current rms (L line/N line)
- mean active power (L line/N line)
- voltage frequency
- power factor (L line/N line)
- phase angle between voltage and current (L line/N line)
- mean apparent power (L line/N line)

The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:

$$Fiducial_E rror = \frac{U_{mea} - U_{real}}{U_{EV}} * 100\%$$

Where U_{mea} is the measured voltage, U_{real} is the actual voltage and U_{FV} is the fiducial value.

Table-6 The Measurement Format

Measurement	Fiducial Value (FV)	M90E25 Defined Format	Range	Comment
Voltage rms	Un	XXX.XX	0~655.35V	
Current rms ^{note 1, note 2}	lmax as 4lb	XX.XXX	0~65.535A	
Active Power ^{note 1}	maximum power as Un*4lb	XX.XXX	-32.768~+32.767 kW	Complement, MSB as the sign bit
Apparent Power ^{note 1}	Un*4lb	XX.XXX	0~+32.767 kVA	Complement, MSB always '0'
Frequency	fn	XX.XX	45.00~65.00 Hz	
Power Factor ^{note 3}	1.000	X.XXX	-1.000~+1.000	Signed, MSB as the sign bit
Phase Angle ^{note 4}	180°	XXX.X	-180°~+180°	Signed, MSB as the sign bit

Note 1: All registers are of 16 bits. For cases when the current and active/apparent power goes beyond the above range, it is suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the M90E25, the actual active/apparent power is also twice of that of the chip.

Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at I_{FV} of 5A and fiducial accuracy of 0.5%.

Note 3: Power factor is obtained by active power dividing apparent power

Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small current.

3.5.2 ZERO-CROSSING

The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zerocrossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.

The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical smart meter applications.

3.6 CALIBRATION

Calibration includes metering and measurement calibration.

Metering Calibration

The M90E25 design methodology guarantees the accuracy over the entire dynamic range, after metering calibration at one specific current, i.e. the basic current of I_{b} .

The calibration procedure includes the following steps:

- 1. Calibrate gain at unity power factor;
- 2. Calibrate phase angle compensation at 0.5 inductive power factor.

Generally, line current sampling is susceptible to the circuits around the sensor when shunt resistor is employed as the current sensor in L line. For example, the transformer in the energy meter's power supply may conduct interference to the shunt resistor. Such interference will cause perceptible metering error, especially at low current conditions. The total interfere is at a statistically constant level. In this case, the M90E25 provides the power offset compensation feature to improve metering performance.

L line and N line need to be calibrated sequentially.

Measurement Calibration

Measurement calibration includes gain calibration for voltage rms and current rms.

Considering the possible nonlinearity around zero caused by external components, the M90E25 also provides offset compensation for voltage rms, current rms and mean active power.

The M90E25 design methodology guarantees automatic calibration for frequency, phase angle and power factor measurement.

3.7 RESET

The M90E25 has an on-chip power supply monitor circuit with built-in hysteresis. The M90E25 only works within the voltage range.

The M90E25 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their default value after reset.

Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.

Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over 200μ s.

Software Reset: Software Reset is initiated when '789AH' is written to the software reset register (SoftReset, 00H).

4 INTERFACE

4.1 SERIAL PERIPHERAL INTERFACE (SPI)

SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire mode, four pins are used: \overline{CS} , SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. The LastSPIData register (06H) stores the 16-bit data that is just read or written.

4.1.1 FOUR-WIRE MODE

In four-wire mode, the \overline{CS} pin must be driven low for the entire read or write operation. The first bit on SDI defines the access type and the lower 7-bit is decoded as address.

Read Sequence

As shown in Figure-3, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.

Figure-3 Read Sequence in Four-Wire Mode

Write Sequence

As shown in Figure-4, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then shifted into the chip on SDI. A complete write operation contains 24 cycles.

Figure-4 Write Sequence in Four-Wire Mode

4.1.2 THREE-WIRE MODE

In three-wire mode, \overline{CS} is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or write operation is triggered if SCLK is consistently low for at least 400µs. The subsequent read or write operation is similar to that in four-wire mode. Refer to Figure-5 and Figure-6.

Figure-6 Write Sequence in Three-Wire Mode

4.1.3 TIMEOUT AND PROTECTION

Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write operation is aborted.

If there are more than 24 SCLK cycles when \overline{CS} is driven low in four-wire mode or between two starts in three-wire mode, writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the valid ones. However, the reading result might not be the intended one.

A read access to an invalid address returns all zero. A write access to an invalid address is discarded.

Table-7 and Table-8 list the read or write result in different conditions.

Table-7 Read / Write Result in Four-Wire Mode

	Condition	Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update
	_note 2	>=24	Normal Read	Yes
Read	_note 2	<24	Partial Read	No
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

Note 2: '-' stands for Don't Care.

Table-8 Read / Write Result in Three-Wire Mode

	Condition		Result			
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update		
	No	>=24 ^{note 2}	Normal Read	Yes		
	Timeout after 24 cycles	>24	Normal Read	Yes		
	Timeout before 24 cycles	_note 3	Partial Read	No		
Read	Timeout at 24 cycles	=24	Normal Read	Yes		
	No	=24	Normal Write	Yes		
	No	!=24	No Write	No		
Write	Yes	-	No Write	No		

Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any. Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK cycles in the next operation is counted into this operation. In this case, data is corrupted. Note 3: '-' stands for Don't Care.

4.2 WARNOUT PIN FOR FATAL ERROR WARNING

Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.

Calibration Error

The M90E25 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of pulses during power-on or any abnormal situation upon incorrect parameters.

Voltage Sag

Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.

When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register (02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large capacitor in traditional rectifier circuit, and can detect voltage sag earlier.

4.3 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU

The following functions can be achieved at low cost when the M90E25 is isolated from the MCU:

SPI: MCU can perform read and write operations through low speed optocoupler (e.g. PS2501) when the M90E25 is isolated from the MCU. The SPI interface can be of 3-wire or 4-wire.

Energy Pulses CF1: Energy can be accumulated by reading values in corresponding energy registers. CF1 can also connect to the optocoupler and the energy pulse light can be turned on by CF1.

Fatal Error WarnOut: Fatal error can be acquired by reading the CalErr[1:0] bits (SysStatus, 01H).

IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).

Reset: The M90E25 is reset when '789AH' is written to the software reset register (SoftReset, 00H).

5 **REGISTER**

5.1 REGISTER LIST

Table-9 Register List

Register Address	Register Name	Read/Write Type	Functional Description	Page
н		Status and	Special Register	1
00H	SoftReset	W	Software Reset	P 21
01H	SysStatus	R/C	System Status	P 22
02H	FuncEn	R/W	Function Enable	P 23
03H	SagTh	R/W	Voltage Sag Threshold	P 23
04H	SmallPMod	R/W	Small-Power Mode	P 24
06H	LastSPIData	R	Last Read/Write SPI Value	P 24
		Metering Calibration a	and Configuration Register	
20H	CalStart	R/W	Calibration Start Command	P 25
21H	PLconstH	R/W	High Word of PL_Constant	P 25
22H	2H PLconstL R/W Low Word of PL_Constant			
23H	Lgain	R/W	L Line Calibration Gain	P 26
24H	Lphi	R/W	L Line Calibration Angle	P 26
25H	Ngain	R/W	N Line Calibration Gain	P 27
26H	Nphi	R/W	N Line Calibration Angle	P 27
27H	PStartTh	R/W	Active Startup Power Threshold	P 27
28H	PNolTh	R/W	Active No-Load Power Threshold	P 28
2BH	2BH MMode R/W Metering Mode Configuration		Metering Mode Configuration	P 29
2CH	CS1	R/W	Checksum 1	P 31
		Measurement 0	Calibration Register	•
30H	AdjStart	R/W	Measurement Calibration Start Command	P 32
31H	Ugain	R/W	Voltage rms Gain	P 32
32H	IgainL	R/W	L Line Current rms Gain	P 33
33H	IgainN	R/W	N Line Current rms Gain	P 33
34H	Uoffset	R/W	Voltage Offset	P 33
35H	IoffsetL	R/W	L Line Current Offset	P 34
36H	loffsetN	R/W	N Line Current Offset	P 34
37H	PoffsetL	R/W	L Line Active Power Offset	P 34
39H	PoffsetN	R/W	N Line Active Power Offset	P 35
3BH	CS2	R/W	Checksum 2	P 36
		Energ	y Register	
40H	APenergy	R/C	Forward Active Energy	P 37
41H	ANenergy	R/C	Reverse Active Energy	P 38
42H	ATenergy	R/C	Absolute Active Energy	P 38
46H	EnStatus	R	Metering Status	P 39
		Measurer	ment Register	
48H	Irms	R	L Line Current rms	P 40
49H	Urms	R	Voltage rms	P 40
4AH	Pmean	R	L Line Mean Active Power	P 41
4CH	Freq	R	Voltage Frequency	P 41

Table-9 Register List (Continued)

Register Address	Register Name	Read/Write Type	Functional Description	Page	
4DH	PowerF	R	L Line Power Factor	P 42	
4EH	Pangle	R	Phase Angle between Voltage and L Line Current	P 42	
4FH	Smean	R	L Line Mean Apparent Power	P 43	
68H	Irms2	R	N Line Current rms	P 43	
6AH	Pmean2	R	N Line Mean Active Power	P 44	
6DH	PowerF2	R	N Line Power Factor	P 44	
6EH	Pangle2	R	Phase Angle between Voltage and N Line Current	P 45	
6FH	Smean2	R	R N Line Mean Apparent Power		

5.2 STATUS AND SPECIAL REGISTER

SoftReset Software Reset

Address: 00H Type: Write Default Value: 0000H										
15		14		13	12	11	10	9	8	
SoftRese	SoftReset15		t14	SoftReset13	SoftReset12	SoftReset11	SoftReset10	SoftReset9	SoftReset8	
7		6		5	4	3	2	1	0	
SoftRes	et7	SoftRese	et6	SoftReset5	SoftReset4	SoftReset3	SoftReset2	SoftReset1	SoftReset0	
Bit	3it Name Description									
15 - 0	:	SoftRe- set[15:0]	Softw	oftware reset register. The XXXXXX resets if only 789AH is written to this register.						

SysStatus System Status

Address: 01H	Address: 01H								
Type: Read/Cl	ear								
Default value:	0000H								
15	14	13	12	11	10	9	8		
CalErr1	CalErr	0 AdjErr1	AdjErr0	-	-	-	-		
7	6	5	4	3	2	1	0		
LNchange	e -	RevPchg	-	-	-	SagWarn	-		
Dit	Nama			Decori	intion				
ы	Name	Those bits indicate	CS1 chocksum s	tatus	ption				
15 - 14	CalErr[1:0] 00: CS1 checksum correct (default) 11: CS1 checksum error. At the same time, the WarnOut pin is asserted.								
13 - 12	AdjErr[1:0]	These bits indicate CS2 checksum status. 00: CS2 checksum correct (default) 11: CS2 checksum error.							
11 - 8	-	Reserved.							
7	LNchange	This bit indicates wh 0: metering line no o 1: metering line cha	nether there is an change (default) nged	y change of the	metering line (L l	ine and N line).			
6	-	Reserved.							
5	RevPchg	This bit indicates wh 0: direction of active 1: direction of active This status is enable	nether there is an e energy no chan e energy changeo ed by the RevPE	y change with th ge (default) I n bit (FuncEn, 02	e direction of act 2H).	tive energy.			
4 - 2	-	Reserved.							
1	SagWarn	 This bit indicates the voltage sag status. 0: no voltage sag (default) 1: voltage sag Voltage sag is enabled by the SagEn bit (FuncEn, 02H). Voltage sag status can also be reported by the WarnOut pin. It is enabled by the SagWo bit(Funcl 02H). 							
0	-	Reserved.							
Note: Any of the above events will prompt the IRQ pin to be asserted, which can be supplied to external MCU as an interrupt.									

FuncEn Function Enable

Address: 02H Type: Read/Write Default Value: 000CH										
15	14	13	12	11	10	9	8			
-	-	-	-	-	-	-	-			
7	6	5	4	3	2	1	0			
-	-	SagEn	SagWo	-	RevPEn	-	-			
Bit	Name			Descri	ption					
15 - 6	-	Reserved.								
5	SagEn	This bit determines v 0: disable (default) 1: enable	whether to enabl	e the voltage sag	g interrupt.					
4	SagWo	This bit determines v 0: disable (default) 1: enable	This bit determines whether to enable voltage sag to be reported by the WarnOut pin. 0: disable (default) 1: enable							
3	-	Reserved.								
2	RevPEn	This bit determines v 0: disable 1: enable (default)	This bit determines whether to enable the direction change interrupt of active energy.): disable : enable (default)							
1 - 0	-	Reserved.								

SagTh Voltage Sag Threshold

Address: 03H Type: Read/Write Default Value: 1D6AH											
15 14		13	12	11	10	9	8				
SagTh15	5 SagTh1	4 SagTh13	SagTh12	SagTh11	SagTh10	SagTh9	SagTh8				
7	6	5	4	3	2	1	0				
SagTh7	SagThe	6 SagTh5	SagTh4	SagTh3	SagTh2	SagTh1	SagTh0				
Bit	Name	Description									
15 - 0	SagTh[15:0]	Voltage sag threshold configuration. Data format is XXX.XX. Unit is V. The power-on value of SagTh is 1D6AH, which is calculated by 22000*sqrt(2)*0.78/(4*Ugain/32768) For details, please refer to application note 46101.									

SmallPMod Small-Power Mode

A Ty D	Address: 04H Type: Read/Write Default Value: 0000H										
_	15		14		13	12	11	10	9	8	
	SmallPMod1 Smal		SmallPMo 4	od1	SmallPMod1 3	SmallPMod1 2	SmallPMod1 1	SmallPMod1 0	SmallPMod9	SmallPMod8	
	7		6		5	4	3	2	1	0	
	SmallPMoo	d7	SmallPMod6		SmallPMod5	SmallPMod4	SmallPMod3	SmallPMod2	SmallPMod1	SmallPMod0	
	Bit		Name				Descri	ption			
	15 - 0	: N	Small-power mode command. A987H: small-power mode. The relationship between the register value of L line and N line active por in small-power mode and normal mode is: Mod[15:0] Mod[15:0] Power in normal mode = power in small-power mode *10*lgain*Ugain /2^42 Others: Normal mode. Small-power mode is mainly used in the power offset calibration.						N line active power		

LastSPIData Last Read/Write SPI Value

A	ddress: 06H										
T	ype: Read										
D	Default Value: 0000H										
15		14		13	12	11	10	9	8		
	LastSPIData	a1 LastSPID	ata1	LastSPIData1	LastSPIData1	LastSPIData1	LastSPIData1				
	5	4		3	2	1	0	LastSPIData9	LastSPIData8		
L											
	7	6		5	4	3	2	1	0		
	LastSPIData	a7 LastSPID	ata6	LastSPIData5	LastSPIData4	LastSPIData3	LastSPIData2	LastSPIData1	LastSPIData0		
Bit Name Description					ption						
15 - 0 LastSPI- This register stores the data Data[15:0] Table-8.					the data that is	just read or writt	en through the	SPI interface. Re	efer to Table-7 and		
L											

5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION

5.3.1 METERING CALIBRATION AND CONFIGURATION REGISTER

CalStart

Calibration Start Command

Address: 20H Type: Read/Write Default Value: 6886H									
15	14	13	12	11	10	9	8		
CalStart1	5 CalStart	14 CalStart13	CalStart12	CalStart11	CalStart10	CalStart9	CalStart8		
7	6	5	4	3	2	1	0		
CalStart7	' CalStart	6 CalStart5	CalStart4	CalStart3	CalStart2	CalStart1	CalStart0		
Bit	Name	Description							
15 - 0	CalStart[15:0]	Metering calibration 6886H: Power-on va 5678H: Metering cal resume to the of the correctr IRQ pins do n 8765H: Check the co ing function is report warning Others: Metering fun pins report wa	start command: lue. Metering fur ibration startup of ir power-on valu- ness of diagnosis of report any wa prrectness of the s disabled, the C g/interrupt. ction is disabled arning/interrupt.	nction is disabled command. After es. The M90E25 s. The CalErr[1:0 rming/interrupt. 21H-2BH registe CalErr[1:0] bits (\$. The CalErr[1:0]	I. 5678H is written starts to meter a] bits (SysStatus ers. If correct, no SysStatus, 01H) bits (SysStatus,	to this register, nd output energ , 01H) are not se rmal metering. If are set and the 01H) are set an	registers 21H-2BH y pulses regardless tt and the WarnOut/ not correct, meter- WarnOut/IRQ pins d the WarnOut/IRQ		

PLconstH High Word of PL_Constant

Ado Typ Def	Address: 21H Type: Read/Write Default Value: 0015H										
	15 14		14		13	12	11	10	9	8	
	PLconstH15 PLconst		_constH	114	PLconstH13	PLconstH12	PLconstH11	PLconstH10	PLconstH9	PLconstH8	
	7		6		5	4	3	2	1	0	
	PLconstH7		Lconst	-16	PLconstH5	PLconstH4	PLconstH3	PLconstH2	PLconstH1	PLconstH0	
	Bit	Nar	me		Description						
	15 - 0	PLc stH[1	on- 15:0]	The PL_C inver chip, then It is s curre Note For c	The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively. PL_Constant is a constant which is proportional to the sampling ratios of voltage and current, and inversely proportional to the Meter Constant. PL_Constant is a threshold for energy calculated inside the chip, i.e., energy larger than PL_Constant will be accumulated in the corresponding energy registers and then output on CF1. It is suggested to set PL_constant as a multiple of 4 so as to double or redouble Meter Constant in low current state to save verification time. Note: PLconstH takes effect after PLconstL are configured. For details, please refer to application note 46101.						

