imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Atmel M90E26

Atmel

Single-Phase High-Performance Wide-Span Energy Metering IC

DATASHEET

FEATURES

Metering Features

- Metering features fully in compliance with the requirements of IEC62052-11, IEC62053-21 and IEC62053-23; applicable in class 1 or class 2 single-phase watthour meter or class 2 single-phase var-hour meter.
- Accuracy of 0.1% for active energy and 0.2% for reactive energy over a dynamic range of 5000:1.
- Temperature coefficient is 15 ppm/ ℃ (typical) for on-chip reference voltage
- Single-point calibration over a dynamic range of 5000:1 for active energy; no calibration needed for reactive energy.
- Energy Meter Constant doubling at low current to save verification time.
- Electrical parameters measurement: less than $\pm 0.5\%$ fiducial error for Vrms, Irms, mean active/ reactive/ apparent power, frequency, power factor and phase angle.
- Forward/ reverse active/ reactive energy with independent energy registers. Active/ reactive energy can be output by pulse or read through energy registers to adapt to different applications.
- Programmable startup and no-load power threshold.
- Dedicated ADC and different gains for L line and N line current sampling circuits. Current sampled over shunt resistor or current transformer (CT); voltage sampled over resistor divider network or potential transformer (PT).
- Programmable L line and N line metering modes: anti-tampering mode (larger power), L line mode (fixed L line), L+N mode (applicable for single-phase three-wire system) and flexible mode (configure through register).
- Programmable L line and N line power difference threshold in anti-tampering mode.

Other Features

- 3.3V single power supply. Operating voltage range: 2.8~3.6V. Metering accuracy guaranteed within 3.0V~3.6V. 5V compatible for digital input.
- Built-in hysteresis for power-on reset.
- Selectable UART interface and SPI interface (four-wire SPI interface or simplified three-wire SPI interface with fixed 24 cycles for all registers operation).
- Parameter diagnosis function and programmable interrupt output of the IRQ interrupt signal and the WarnOut signal.
- Programmable voltage sag detection and zero-crossing output.
- Channel input range
 - Voltage channel (when gain is '1'): 120µVrms~600mVrms.
 - L line current channel (when gain is '24'): 5μVrms~25mVrms.
 - N line current channel (when gain is '1'): 120µVrms~600mVrms.
- Programmable L line current gain: 1, 4, 8, 16, 24; Programmable N line gain: 1, 2, 4.
- Support L line and N line offset compensation.
- CF1 and CF2 output active and reactive energy pulses respectively which can be used for calibration or energy accumulation.
- Crystal oscillator frequency: 8.192 MHz.

- Green SSOP28 package.
- Operating temperature: -40 $^\circ\!\!\!C$ ~ +85 $^\circ\!\!\!C$.

APPLICATION

The M90E26 is used for active and reactive energy metering for single-phase two-wire (1P2W), single-phase three-wire (1P3W) or anti-tampering energy meters. With the measurement function, the M90E26 can also be used in power instruments which need to measure voltage, current, etc.

DESCRIPTION

The M90E26 is a high-performance wide-span energy metering chip. The ADC and DSP technology ensure the chip's long-term stability over variations in grid and ambient environmental conditions.

BLOCK DIAGRAM

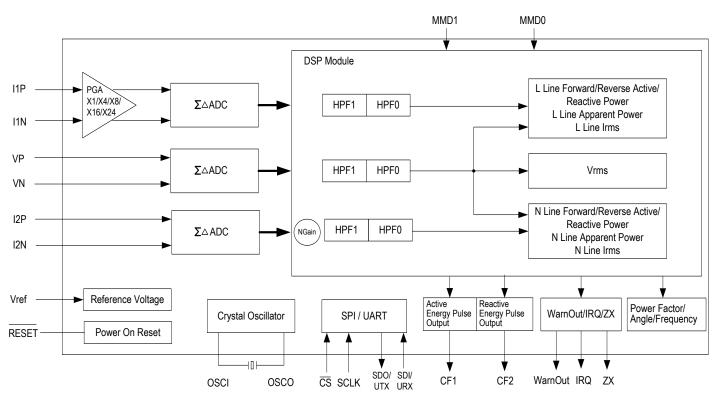


Figure-1 M90E26 Block Diagram

Table of Contents

	eatures	
A	pplication	2
D	escription	2
B	lock Diagram	2
1	Pin Assignment	7
2	Pin Description	
3	Functional Description	
	3.1 Dynamic Metering Range	
	3.2 Startup and No-Load Power	
	3.3 Energy Registers	
	3.4 N Line Metering and Anti-Tampering	
	3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration	
	3.4.2 Anti-Tampering Mode	
	3.5 Measurement and Zero-Crossing	
	3.5.1 Measurement	
	3.5.2 Zero-Crossing	
	3.6 Calibration	
	3.7 Reset	
4	Interface	
	4.1 SPI Interface	
	4.1.1 Four-Wire Mode	
	4.1.2 Three-Wire Mode	
	4.2 UART Interface	
	4.2.1 Byte Level Timing	
	4.2.2 Write Transaction	
	4.2.3 Read transaction	19
	4.2.4 Checksum	
	4.3 WarnOut Pin for Fatal Error Warning	
	4.4 Low Cost Implementation in Isolation with MCU	
5	Register	
	5.1 Register List	21
	5.2 Status and Special Register	
	5.3 Metering/ Measurement Calibration and Configuration	
	5.3.1 Metering Calibration and Configuration Register	
	5.3.2 Measurement Calibration Register	
	5.4 Energy Register	
	5.5 Measurement Register	

6	Electrical Specification	51
	6.1 Electrical Specification	
	6.2 SPI Interface Timing	
	6.3 Power On Reset Timing	
	6.4 Zero-Crossing Timing	55
	6.5 Voltage Sag Timing	55
	6.6 Pulse Output	.56
	6.7 Absolute Maximum Rating	
Or	dering Information	57
	ackaging Drawings	
	evision History	

List of Tables

Pin Description	8
Active Energy Metering Error	. 10
Reactive Energy Metering Error	. 10
Threshold Configuration for Startup and No-Load Power	. 10
Energy Registers	. 11
Metering Mode	. 12
The Measurement Format	
Read / Write Result in Four-Wire Mode	. 17
Read / Write Result in Three-Wire Mode	. 17
Register List	. 21
Power On Reset Specification	. 54
Zero-Crossing Specification	. 55
Voltage Sag Specification	. 56
	Active Energy Metering Error Reactive Energy Metering Error Threshold Configuration for Startup and No-Load Power Energy Registers Metering Mode The Measurement Format Read / Write Result in Four-Wire Mode

List of Figures

M90E26 Block Diagram	2
Pin Assignment (Top View)	7
Write Sequence in Four-Wire Mode	15
Read Sequence in Three-Wire Mode	16
Write Sequence in Three-Wire Mode	16
UART Byte Level Timing	18
Write Transaction	18
Read Transaction	19
4-Wire SPI Timing Diagram	53
Power On Reset Timing Diagram	54
Output Pulse Width	56
	M90E26 Block Diagram Pin Assignment (Top View) Read Sequence in Four-Wire Mode Write Sequence in Three-Wire Mode Write Sequence in Three-Wire Mode UART Byte Level Timing Write Transaction Read Transaction 4-Wire SPI Timing Diagram 3-Wire SPI Timing Diagram Power On Reset Timing Diagram Zero-Crossing Timing Diagram Voltage Sag Timing Diagram Output Pulse Width

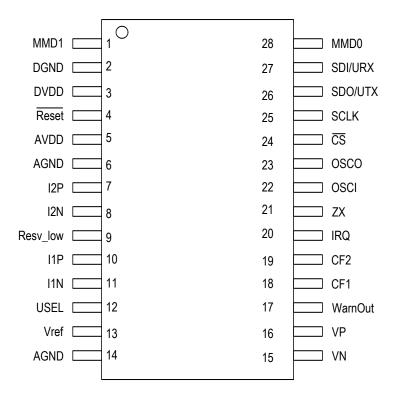


Figure-2 Pin Assignment (Top View)

2 **PIN DESCRIPTION**

Table-1 Pin Description

Name	Pin No.	I/O note 1	Туре	Description
Reset	4	I	LVTTL	Reset : Reset Pin (active low) This pin should connect to ground through a 0.1μ F filter capacitor. In application it can also directly connect to one output pin from microcontroller (MCU).
DVDD	3	I	Power	DVDD: Digital Power Supply This pin provides power supply to the digital part. It should be decoupled with a 10μ F electrolytic capacitor and a 0.1μ F capacitor.
DGND	2		Power	DGND: Digital Ground
AVDD	5	I	Power	AVDD: Analog Power Supply This pin provides power supply to the analog part. It should be decoupled with a 0.1μ F capacitor.
Vref	13	0	Analog	Vref: Output Pin for Reference Voltage This pin should be decoupled with a 1μ F capacitor and a 1nF capacitor.
AGND	6, 14	I	Power	AGND: Analog Ground
I1P I1N	10 11	I	Analog	I1P: Positive Input for L Line Current I1N: Negative Input for L Line Current These pins are differential inputs for L line current. Input range is 5μVrms~25mVrms when gain is '24'.
I2P I2N	7 8	I	Analog	I2P: Positive Input for N Line Current I2N: Negative Input for N Line Current These pins are differential inputs for N line current. Input range is 120μVrms~600mVrms when gain is '1'.
VP VN	16 15	I	Analog	VP: Positive Input for Voltage VN: Negative Input for Voltage These pins are differential inputs for voltage. Input range is 120μVrms~600mVrms.
USEL	12	I	LVTTL	USEL: UART/SPI Interface Selection High: UART interface Low: SPI interface Note: This pin should not change after reset.
CS	24	I	LVTTL	CS: Chip Select (Active Low) of SPI In 4-wire SPI mode, this pin must be driven from high to low for each read/write operation, and maintain low for the entire operation. In 3-wire SPI mode, this pin must be low all the time. Refer to section 4.1. In UART interface, this pin should be connected to VDD.
SCLK	25	I	LVTTL	SCLK: Serial Clock of SPI This pin is used as the clock for the SPI interface. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. In UART interface, this pin should be connected to ground.

Table-1 Pin Description (Continued)

Name	Pin No.	I/O ^{note 1}	Туре	Description	
				SDO: Serial Data Output of SPI This pin is used as the data output for the SPI interface. Data on this pin is shifted out of the chip on the falling edge of SCLK.	
SDO/UTX	26	ΟZ	LVTTL	UTX: UART Data Transmit This pin is used to transmit data for the UART interface. This pin needs to be pulled up to VDD by a $10k\Omega$ resistor."	
				Note: UART and SPI interface is selected by the USEL pin.	
				SDI: Serial Data Input of SPI This pin is used as the data input for the SPI interface. Address and data on this pin is shifted into the chip on the rising edge of SCLK.	
SDI/URX	27	I	LVTTL	URX: UART Data Receive	
				This pin is used to receive data for the UART interface.	
				Note: UART and SPI interface is selected by the USEL pin.	
MMD1 MMD0	1 28	I	LVTTL	MMD1/0: Metering Mode Configuration 00: anti-tampering mode (larger power); 01: L line mode (fixed L line); 10: L+N mode (applicable for single-phase three-wire system);	
				11: flexible mode (line specified by the LNSel bit (MMode, 2BH))	
OSCI	22	I	LVTTL	OSCI: External Crystal Input An 8.192 MHz crystal is connected between OSCI and OSCO. In applica- tion, this pin should be connected to ground through a 12pF capacitor.	
osco	23	0	LVTTL	OSCO: External Crystal Output An 8.192 MHz crystal is connected between OSCI and OSCO. In applica- tion, this pin should be connected to ground through a 12pF capacitor.	
CF1 CF2	18 19	0	LVTTL	CF1: Active Energy Pulse Output CF2: Reactive Energy Pulse Output These pins output active/reactive energy pulses.	
ZX 21 O		0	LVTTL	ZX: Voltage Zero-Crossing Output This pin is asserted when voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing or all zero- crossing by the Zxcon[1:0] bits (MMode, 2BH).	
IRQ	20	0	LVTTL	IRQ: Interrupt Output This pin is asserted when one or more events in the SysStatus register (01H) occur. It is deasserted when there is no bit set in the SysStatus regis- ter (01H).	
WarnOut	17	0	LVTTL	WarnOut: Fatal Error Warning This pin is asserted when there is metering parameter calibration error or voltage sag. Refer to section 4.3.	
Resv_Low	9	I	LVTTL	Reserved For normal operation, these pins should be connected to ground.	

3 FUNCTIONAL DESCRIPTION

3.1 DYNAMIC METERING RANGE

Accuracy is 0.1% for active energy metering and 0.2% for reactive energy metering over a dynamic range of 5000:1 (typical). Refer to Table-2 and Table-3.

Table-2 Active Energy Metering Error

Current	Power Factor	Error (%)		
$20 \text{mA} \leq \text{I} < 50 \text{mA}$	1.0	±0.2		
$50 \text{mA} \leqslant \text{I} \leqslant 100 \text{A}$	1.0	±0.1		
$50 \text{mA} \leq I < 100 \text{mA}$	0.5 (Inductive)	±0.2		
$100 \text{mA} \leq \text{I} \leq 100 \text{A}$	0.8 (Capacitive)	±0.1		
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6 Ω .				

Table-3 Reactive Energy Metering Error

Current	sinφ (Inductive or Capacitive)	Error (%)		
$20 \text{mA} \leq I < 50 \text{mA}$	1.0	±0.4		
$50 \text{mA} \leqslant \text{I} \leqslant 100 \text{A}$	1.0	±0.2		
50mA ≤ I < 100mA	0.5	±0.4		
$100 \text{mA} \leq \text{I} \leq 100 \text{A}$	0.0	±0.2		
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6 Ω .				

3.2 STARTUP AND NO-LOAD POWER

Startup and no-load power thresholds are programmable, both for active and reactive power. The related registers are listed in Table-4.

Table-4 Threshold Configuration for Startup and No-Load Power

Threshold	Register
Threshold for Active Startup Power	PStartTh, 27H
Threshold for Active No-load Power	PNoITh, 28H
Threshold for Reactive Startup Power	QStartTh, 29H
Threshold for Reactive No-load Power	QNoITh, 2AH

The M90E26 will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less than the corresponding power of 20mA when power factor or sin_{ϕ} is 1.0.

The M90E26 has no-load status bits, the Pnoload/Qnoload bit (EnStatus, 46H). The M90E26 will not output any active pulse (CF1) in active no-load state. The M90E26 will not output any reactive pulse (CF2) in reactive no-load state.

3.3 ENERGY REGISTERS

The M90E26 provides energy pulse output CFx (CF1/CF2) which is proportionate to active/reactive energy. Energy is usually accumulated by adding the CFx pulses in system applications. Alternatively, the M90E26 provides energy registers. There are forward (inductive), reverse (capacitive) and absolute energy registers for both active and reactive energy. Refer to Table-5.

Table-5 Energy Registers

Energy	Register
Forward Active Energy	APenergy, 40H
Reverse Active Energy	ANenergy, 41H
Absolute Active Energy	ATenergy, 42H
Forward (Inductive) Reactive Energy	RPenergy, 43H
Reverse (Capacitive) Reactive Energy	RNenergy, 44H
Absolute Reactive Energy	RTenergy, 45H

Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy pulse.

3.4 N LINE METERING AND ANTI-TAMPERING

3.4.1 METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION

The M90E26 has two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0 pins are used to configure the metering mode. Refer to Table-6.

Table-6 Metering Mode

MMD1	MMD0 Metering Mode		CFx (CF1 or CF2) Output	
0	0	Anti-tampering Mode (larger power)	CFx represents the larger energy line. Refer to section 3.4.2.	
0	1	L Line Mode (fixed L line)	CFx represents L line energy all the time.	
1	0	L+N Mode (applicable for single-phase three-wire sys- tem)	energy	
1	1	Flexible Mode (line specified by the LNSel bit (MMode, 2BH))	CFx represents energy of the specified line.	

The M90E26 has two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.

3.4.2 ANTI-TAMPERING MODE

Threshold

In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%, 3.125% and 1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the default value is 3.125%. The threshold is applicable for active energy. The metering line of the reactive energy follows that of the active energy.

Compare Method

In anti-tampering mode, the compare method is as follows:

If current metering line is L line and

NLine Active Power - L Line Active Power L Line Active Power * 100% > Threshold

N line is switched as the metering line, otherwise L line keeps as the metering line.

If current metering line is N line and

 $\frac{\text{L Line Active Power - N Line Active Power}}{\text{N Line Active Power}} * 100\% > \text{Threshold}$

L line is switched as the metering line, otherwise N line keeps as the metering line.

This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.

Special Treatment at Low Power

When power is low, general factors such as the quantization error or calibration difference between L line and N line might cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is adopted:

The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the startup power but higher than the startup power.

3.5 MEASUREMENT AND ZERO-CROSSING

3.5.1 MEASUREMENT

The M90E26 has the following measurements:

- voltage rms
- current rms (L line/N line)
- mean active power (L line/N line)
- mean reactive power (L line/N line)
- voltage frequency
- power factor (L line/N line)
- phase angle between voltage and current (L line/N line)
- mean apparent power (L line/N line)

The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:

$$Fiducial_E rror = \frac{U_{mea} - U_{real}}{U_{FV}} * 100\%$$

Where U_{mea} is the measured voltage, U_{real} is the actual voltage and U_{FV} is the fiducial value.

Table-7 The Measurement Format

Measurement	Fiducial Value (FV)	M90E26 Defined Format	Range	Comment
Voltage rms	Un	XXX.XX	0~655.35V	
Current rms ^{note 1, note 2}	lmax as 4lb	XX.XXX	0~65.535A	
Active/ Reactive Power ^{note 1}	maximum power as Un*4Ib	XX.XXX	-32.768~+32.767 kW/kvar	Complement, MSB as the sign bit
Apparent Power ^{note 1}	Un*4lb	XX.XXX	0~+32.767 kVA	Complement, MSB always '0'
Frequency	fn	XX.XX	45.00~65.00 Hz	
Power Factor ^{note 3}	1.000	X.XXX	-1.000~+1.000	Signed, MSB as the sign bit
Phase Angle ^{note 4}	180°	XXX.X	-180°~+180°	Signed, MSB as the sign bit

Note 1: All registers are of 16 bits. For cases when the current and active/reactive/apparent power goes beyond the above range, it is suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the M90E26, the actual active/reactive/ apparent power is also twice of that of the M90E26.

Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at I_{FV} of 5A and fiducial accuracy of 0.5%.

Note 3: Power factor is obtained by active power dividing apparent power

Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small current.

3.5.2 ZERO-CROSSING

The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.

The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical smart meter applications.

3.6 CALIBRATION

Calibration includes metering and measurement calibration.

Metering Calibration

The M90E26 design methodology guarantees the accuracy over the entire dynamic range, after metering calibration at one specific current, i.e. the basic current of I_b.

The calibration procedure includes the following steps:

- 1. Calibrate gain at unity power factor;
- 2. Calibrate phase angle compensation at 0.5 inductive power factor.

Generally, line current sampling is susceptible to the circuits around the sensor when shunt resistor is employed as the current sensor in L line. For example, the transformer in the energy meter's power supply may conduct interference to the shunt resistor. Such interference will cause perceptible metering error, especially at low current conditions. The total interfere is at a statistically constant level. In this case, the M90E26 provides the power offset compensation feature to improve metering performance.

L line and N line need to be calibrated sequentially. Reactive energy does not need to be calibrated after active energy calibration completed.

Measurement Calibration

Measurement calibration includes gain calibration for voltage rms and current rms.

Considering the possible nonlinearity around zero caused by external components, the M90E26 also provides offset compensation for voltage rms, current rms, mean active power and mean reactive power.

The M90E26 design methodology guarantees automatic calibration for frequency, phase angle and power factor measurement.

3.7 RESET

The M90E26 has an on-chip power supply monitor circuit with built-in hysteresis. The M90E26 only works within the voltage range.

The M90E26 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their default value after reset.

Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.

Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over 200µs.

Software Reset: Software Reset is initiated when '789AH' is written to the software reset register (SoftReset, 00H).

4 INTERFACE

The M90E26 supports both Serial Peripheral Interface (SPI) and UART interface. The selection is made by the USEL pin. When the USEL pin is low, SPI interface is selected. When the USEL pin is high, UART interface is selected. Note that the USEL pin should not change after reset.

4.1 SPI INTERFACE

SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire mode, four pins are used: \overline{CS} , SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. The LastData register (06H) stores the 16-bit data that is just read or written.

4.1.1 FOUR-WIRE MODE

In four-wire mode, the \overline{CS} pin must be driven low for the entire read or write operation. The first bit on SDI defines the access type and the lower 7-bit is decoded as address.

Read Sequence

As shown in Figure-3, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.

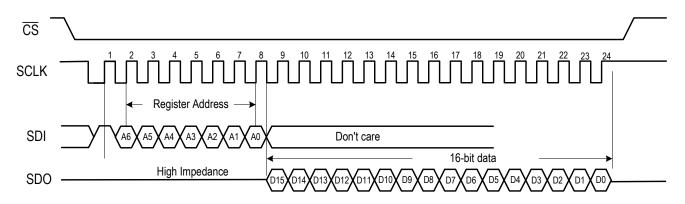
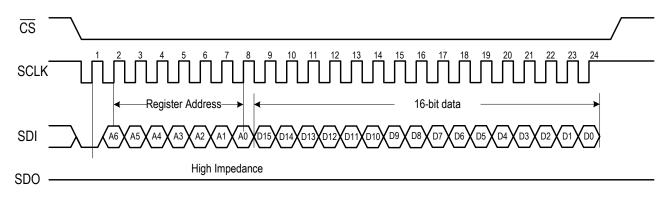



Figure-3 Read Sequence in Four-Wire Mode

Write Sequence

As shown in Figure-4, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then shifted into the chip on SDI. A complete write operation contains 24 cycles.

4.1.2 THREE-WIRE MODE

In three-wire mode, \overline{CS} is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or write operation is triggered if SCLK is consistently low for at least 400 μ s. The subsequent read or write operation is similar to that in four-wire mode. Refer to Figure-5 and Figure-6.

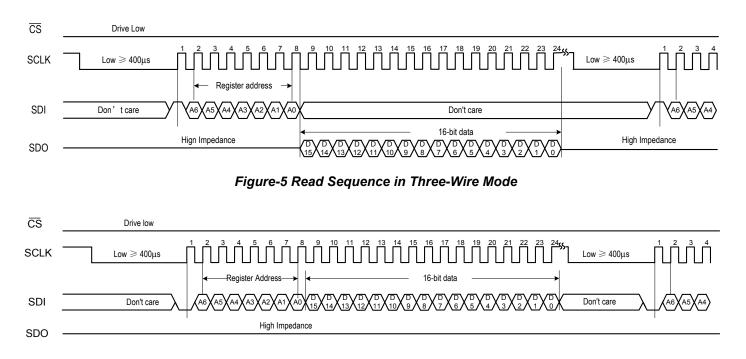


Figure-6 Write Sequence in Three-Wire Mode

4.1.3 TIMEOUT AND PROTECTION

Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write operation is aborted.

If there are more than 24 SCLK cycles when \overline{CS} is driven low in four-wire mode or between two starts in three-wire mode, writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the valid ones. However, the reading result might not be the intended one.

A read access to an invalid address returns all zero. A write access to an invalid address is discarded.

Table-8 and Table-9 list the read or write result in different conditions.

Table-8 Read / Write Result in Four-Wire Mode

	Condition	Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastData Register Update
	note 2	>=24	Normal Read	Yes
Read	note 2	<24	Partial Read	No
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

Note 2: '-' stands for Don't Care.

Table-9 Read / Write Result in Three-Wire Mode

	Condition	Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastData Register Update
	No	>=24 ^{note 2}	Normal Read	Yes
	Timeout after 24 cycles	>24	Normal Read	Yes
	Timeout before 24 cycles	note 3	Partial Read	No
Read	Timeout at 24 cycles	=24	Normal Read	Yes
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

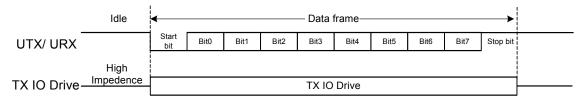
Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any. Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK cycles in the next operation is counted into this operation. In this case, data is corrupted. Note 3: '-' stands for Don't Care.

4.2 UART INTERFACE

The UART interface is of 8-bit data only, with no parity checking features.

A read/write transaction is composed of 6 bytes' transfer, starting always from the host transmitting the first byte 'FEH'. The second byte is referenced as RW_ADDRESS, which has a R/W bit (bit7) and 7 address bits (bit6-0).

Upon receiving commands from the host, the M90E26 will send data and/or checksum bytes back to the host within 5ms if the checksum is confirmed to be correct. Interval between successive UART bytes from the M90E26 is 5 bits maximum.


The M90E26 will time out the current transaction if the host byte interval (idling time between two successive bytes) is greater than 20ms. Once transaction timeout or checksum failure, the M90E26 will abort the current transaction and wait for the starting byte 'FEH' of the new transaction and ignore other data that received. The host needs to have a timeout scheme to detect transaction failure. In addition, host needs to wait at least 20ms to start a new transaction to allow the M90E26 to recover from a failure condition.

UART baud rate is determined by the host, and it can be auto-detected by the M90E26. The baud rates supported are 2400 and 9600. The first byte (FEH) is used in detecting the baud-rate. The baud-rate of a transaction shall be kept unchanged. For a new transaction, host may change the baud rate. However, it is suggested that boad rate remain the same in application.

The 8-bit data in TX/RX pin is shifted in a LSB (bit0) first manner.

4.2.1 BYTE LEVEL TIMING

The timing for each byte is as shown in Figure-7.

Note: The UTX pin will be in high impedance state when not transmitting

Figure-7 UART Byte Level Timing

4.2.2 WRITE TRANSACTION

A complete write transaction is composed of six bytes, five from the host and one from the M90E26 as shown in Figure-8.

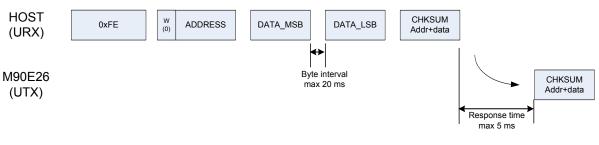
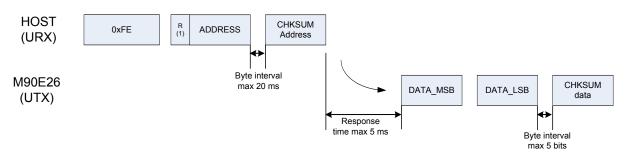



Figure-8 Write Transaction

4.2.3 READ TRANSACTION

A complete read transaction is composed of six bytes, three from the host and three from the M90E26 as shown in Figure-9.

Figure-9 Read Transaction

4.2.4 CHECKSUM

Checksum is done by adding the bytes as unsigned numbers, dropping the overflow bits, and taking the result as the checksum.

Checksum is calculated with address, data or address+data, depending on the transaction type:

Write Transaction:

Host Checksum = RW_Address+DATA_MSB+DATA_LSB

M90E26 Checksum = RW_Address+DATA_MSB+DATA_LSB

Read Transaction:

Host Checksum = RW_Address

M90E26 Checksum = DATA_MSB + DATA_LSB

4.3 WARNOUT PIN FOR FATAL ERROR WARNING

Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.

Calibration Error

The M90E26 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of pulses during power-on or any abnormal situation upon incorrect parameters.

Voltage Sag

Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.

When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register (02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large capacitor in traditional rectifier circuit, and can detect voltage sag earlier.

4.4 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU

The following functions can be achieved at low cost when the M90E26 is isolated from the MCU:

SPI/UART: MCU can perform read and write operations through low speed optocoupler (e.g. PS2501) when the M90E26 is isolated from the MCU. For the SPI interface, it can be either of 3-wire or 4-wire.

Energy Pulses CFx: Energy can be accumulated by reading values in corresponding energy registers. CFx can also connect to the optocoupler and the energy pulse light can be turned on by CFx.

Fatal Error WarnOut: Fatal error can be acquired by reading the CalErr[1:0] bits (SysStatus, 01H).

IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).

Reset: The M90E26 is reset when '789AH' is written to the software reset register (SoftReset, 00H).

5 **REGISTER**

5.1 REGISTER LIST

Table-10 Register List

Register Address	Read/Write Register Name Type Functional Description		Page	
		Status and Sp	ecial Register	
00H	SoftReset	W	Software Reset	P 22
01H	SysStatus	R/C	System Status	P 23
02H	FuncEn	R/W	Function Enable	P 24
03H	SagTh	R/W	Voltage Sag Threshold	P 24
04H	SmallPMod	R/W	Small-Power Mode	P 25
06H	LastData	R	Last Read/Write SPI/UART Value	P 25
	Me	etering Calibration and	I Configuration Register	
08H	LSB	R/W	RMS/Power 16-bit LSB	P 26
20H	CalStart	R/W	Calibration Start Command	P 26
21H	PLconstH	R/W	High Word of PL_Constant	P 27
22H	PLconstL	R/W	Low Word of PL_Constant	P 27
23H	Lgain	R/W	L Line Calibration Gain	P 28
24H	Lphi	R/W	L Line Calibration Angle	P 28
25H	Ngain	R/W	N Line Calibration Gain	P 28
26H	Nphi	R/W	N Line Calibration Angle	P 29
27H	PStartTh	R/W	Active Startup Power Threshold	P 29
28H	PNolTh	R/W	Active No-Load Power Threshold	P 29
29H	QStartTh	R/W	Reactive Startup Power Threshold	P 30
2AH	QNolTh	R/W	Reactive No-Load Power Threshold	P 30
2BH	MMode	R/W	Metering Mode Configuration	P 31
2CH	CS1	R/W	Checksum 1	P 33
		Measurement Cal	ibration Register	
30H	AdjStart	R/W	Measurement Calibration Start Command	P 34
31H	Ugain	R/W	Voltage rms Gain	P 34
32H	IgainL	R/W	L Line Current rms Gain	P 35
33H	IgainN	R/W	N Line Current rms Gain	P 35
34H	Uoffset	R/W	Voltage Offset	P 35
35H	loffsetL	R/W	L Line Current Offset	P 36
36H	loffsetN	R/W	N Line Current Offset	P 36
37H	PoffsetL	R/W	L Line Active Power Offset	P 36
38H	QoffsetL	R/W	L Line Reactive Power Offset	P 37
39H	PoffsetN	R/W	N Line Active Power Offset	P 37
3AH	QoffsetN	R/W	N Line Reactive Power Offset	P 37
3BH	CS2	R/W	Checksum 2	P 38
		Energy I	Register	
40H	APenergy	R/C	Forward Active Energy	P 39
41H	ANenergy	R/C	Reverse Active Energy	P 40
42H	ATenergy	R/C	Absolute Active Energy	P 40
43H	RPenergy	R/C	Forward (Inductive) Reactive Energy	P 41

Table-10 Register List (Continued)

RegisterRead/WriteAddressRegister NameTypeFund		Functional Description	Page	
44H	RNenergy	R/C	Reverse (Capacitive) Reactive Energy	P 41
45H	RTenergy	R/C	Absolute Reactive Energy	P 42
46H	EnStatus	R	Metering Status	P 43
		Measure	ment Register	
48H	Irms	R	L Line Current rms	P 44
49H	Urms	R	Voltage rms	P 44
4AH	Pmean	R	L Line Mean Active Power	P 45
4BH	Qmean	R	L Line Mean Reactive Power	P 45
4CH	Freq	R	Voltage Frequency	P 46
4DH	PowerF	R	L Line Power Factor	P 46
4EH	Pangle	R	Phase Angle between Voltage and L Line Current	P 47
4FH	Smean	R	L Line Mean Apparent Power	P 47
68H	Irms2	R	N Line Current rms	P 48
6AH	Pmean2	R	N Line Mean Active Power	P 48
6BH	Qmean2	R	N Line Mean Reactive Power	P 49
6DH	PowerF2	R	N Line Power Factor	P 49
6EH	Pangle2	R	Phase Angle between Voltage and N Line Current	P 50
6FH	Smean2	R	N Line Mean Apparent Power	P 50

5.2 STATUS AND SPECIAL REGISTER

SoftReset Software Reset

Address: 00 Type: Write Default Valu		0H							
15		14		13	12	11	10	9	8
SoftRes	et15	SoftReset	:14	SoftReset13	SoftReset12	SoftReset11	SoftReset10	SoftReset9	SoftReset8
7		6		5	4	3	2	1	0
SoftRes	set7	SoftRese	t6	SoftReset5	SoftReset4	SoftReset3	SoftReset2	SoftReset1	SoftReset0
Bit	Bit Name Description								
15 - 0	SoftR	eset[15:0]	Softw	are reset regist	er. The M90E26	resets if only 78	9AH is written to	this register.	

SysStatus System Status

ldress: 01H pe: Read/C efault Value	lear										
15	14	13	12	11	10	9	8				
CalErr1	CalEr	r0 AdjErr1	AdjErr0	-	-	-	-				
7	6	5	4	3	2	1	0				
LNchang	e RevQo	chg RevPchg	-	-	-	SagWarn	-				
Bit	Name			Descri	ption						
15 - 14	CalErr[1:0]	These bits indicate 00: CS1 checksum 11: CS1 checksum	correct (default)		Out pin is asser	ted.					
13 - 12	AdjErr[1:0]	00: CS2 checksum	These bits indicate CS2 checksum status. 00: CS2 checksum correct (default) 11: CS2 checksum error.								
11 - 8	-	Reserved.									
7	LNchange	This bit indicates w 0: metering line no 1: metering line cha	change (default)	y change of the r	metering line (L	line and N line).					
6	RevQchq	This bit indicates w 0: direction of react 1: direction of react This status is enabl	ive energy no cha ive energy change	inge (default) ed		active energy.					
5	RevPchg	This bit indicates w 0: direction of active 1: direction of active This status is enabl	e energy no chang e energy changed	ge (default)		ctive energy.					
4 - 2	-	Reserved.									
1	SagWarn This bit indicates the voltage sag status. 0: no voltage sag (default) 1: voltage sag Voltage sag is enabled by the SagEn bit (FuncEn, 02H). Voltage sag status can also be reported by the WarnOut pin. It is enabled by the SagWo bit(FuncEr 02H).										
0	- Reserved.										

FuncEn Function Enable

Address: 02H Type: Read/V Default Value	Vrite										
15	14	13	12	11	10	9	8				
-	-	-	-	-	-	-	-				
7	6	5	4	3	2	1	0				
_	-	SagEn	SagWo	RevQEn	RevPEn	-	-				
Bit	Name		Description								
15 - 6	-	Reserved.									
5	SagEn	This bit determines v 0: disable (default) 1: enable	vhether to enable	e the voltage sag	interrupt.						
4	SagWo	This bit determines v 0: disable (default) 1: enable	whether to enable	e voltage sag to l	be reported by th	e WarnOut pin.					
3	RevQEn	This bit determines v 0: disable 1: enable (default)									
2	RevPEn	This bit determines v 0: disable 1: enable (default)	vhether to enable	e the direction ch	ange interrupt of	f active energy.					
1 - 0	-	Reserved.									

SagTh Voltage Sag Threshold

Ту	dress: 03H pe: Read/W fault Value:	/rite								
	15 14		13	12	11	10	9	8		
	SagTh15	5 SagTh1	4 SagTh13	SagTh12	SagTh11	SagTh10	SagTh9	SagTh8		
	7	6	5	4	3	2	1	0		
	SagTh7	SagTh	6 SagTh5	SagTh4	SagTh3	SagTh2	SagTh1	SagTh0		
	Bit	Name			Descri	ption				
	15 - 0	SagTh[15:0]	The power-on value	oltage sag threshold configuration. Data format is XXX.XX. Unit is V. ne power-on value of SagTh is 1D6AH, which is calculated by 22000*sqrt(2)*0.78/(4*Ugain/32768) or details, please refer to related application note 46102.						

SmallPMod Small-Power Mode

Address: 04H Type: Read/Write Default Value: 0000H											
15	15 14		13	12	11	10	9	8			
SmallP 5		SmallPMo 4	od1 SmallPMod1 3	SmallPMod1 2	SmallPMod1 1	SmallPMod1 0	SmallPMod9	SmallPMod8			
7		6	5	4	3	2	1	0			
SmallP	SmallPMod7 SmallPM		od6 SmallPMod5	SmallPMod4	SmallPMod3	SmallPMod2	SmallPMod1	SmallPMod0			
Bit	N	lame			Descri	ption					
15 - 0 SmallPMod[15:0] Small-power mode command. A987H: small-power mode. The relationship between the register va power in small-power mode and normal mode is: power in normal mode = power in small-power mode *Igain*Ugain / Others: Normal mode. Small-power mode is mainly used in the power offset calibration.				*Igain*Ugain /(10		line active/reactive					

LastData Last Read/Write SPI/UART Value

Address: 0 Type: Rea Default Va	d)0H								
15	15 14		13	12	11	10	9	8		
LastDa	LastData15 LastData		14 LastData13	LastData12	LastData11	LastData10	LastData9	LastData8		
7		6	5	4	3	2	1	0		
LastD	ata7	LastData	a6 LastData5	LastData4	LastData3	LastData2	LastData1	LastData0		
	I									
Bit	N	lame	Description							
15 - 0	LastD	0ata[15:0]	This register stores and Table-9.	his register stores the data that is just read or written through the SPI/UART interface. Refer to Table-8 nd Table-9.						

