

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

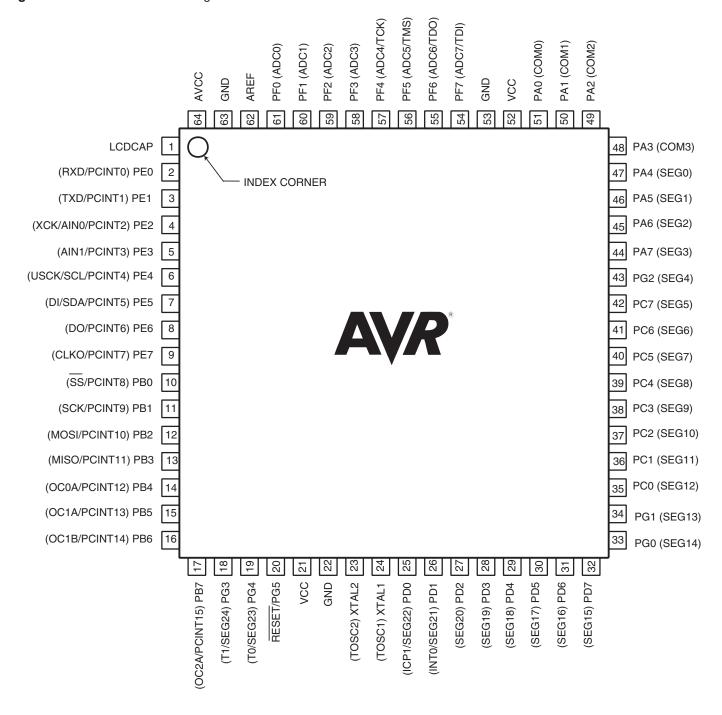
- High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 130 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20MIPS Throughput at 20MHz
 - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
 - In-System Self-programmable Flash Program Memory
 - 32KBytes
 - EEPROM
 - 1Kbytes
 - Internal SRAM
 - 2Kbytes

 - Write/Erase cyles: 10,000 Flash/100,000 EEPROM
 Data retention: 20 years at 85°C/100 years at 25°C(1)
 Optional Boot Code Section with Independent Lock Bits

 In-System Programming by On-chip Boot Program
 True Read-While-Write Operation
- Programming Lock for Software Security
 JTAG (IEEE std. 1149.1 compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
- Extensive On-chip Debug Support
 Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - 4 x 25 Segment LCD Driver (ATmega329P
 - 4 x 40 Segment LCD Driver (ATmega3290P)
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - **Four PWM Channels**
 - 8-channel, 10-bit ADC
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Universal Serial Interface with Start Condition Detector
 - Programmable Watchdog Timer with Separate On-chip Oscillator

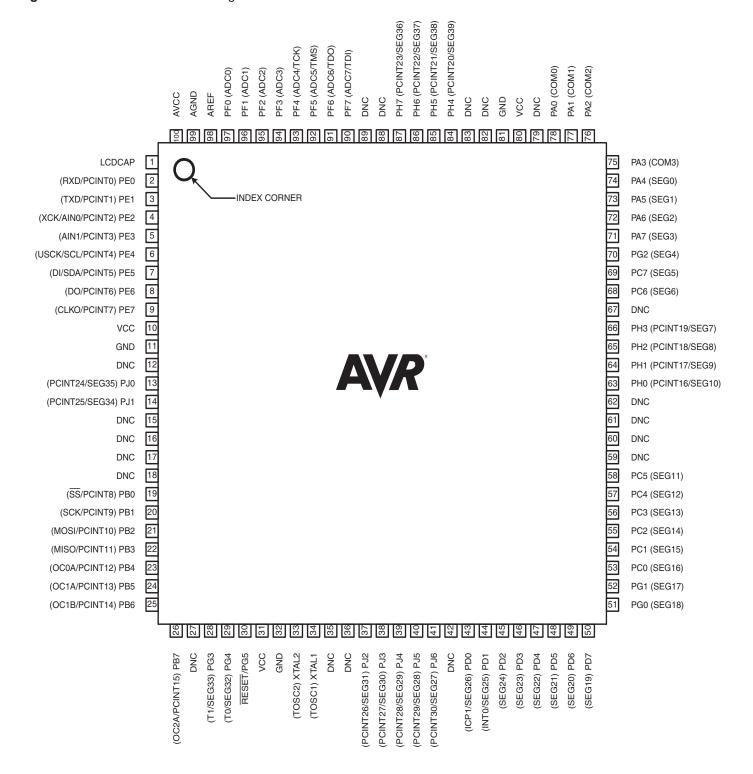
 - On-chip Analog Comparator
 Interrupt and Wake-up on Pin Change
- **Special Microcontroller Features**
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
- Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
 - 54/69 Programmable I/O Lines
 - 64/100-lead TQFP, 64-pad QFN/MLF
- · Speed Grade:
 - ATmega329P/ATmega3290P:
 0 16MHz @ 1.8 5.5V,
 0 20MHz @ 2.7 5.5V
- Temperature range:
 -40°C to 85°C Industrial
- **Ultra-Low Power Consumption**
 - Active Mode:
 - 420µA at 1MHz, 1.8V
 - Power-down Mode: 40nA at 1.8V
 - Power-save Mode:
 - 750nA at 1.8V

8-bit Atmel Microcontroller with 32KBytes **In-System Programmable Flash**


ATmega329P ATmega3290P

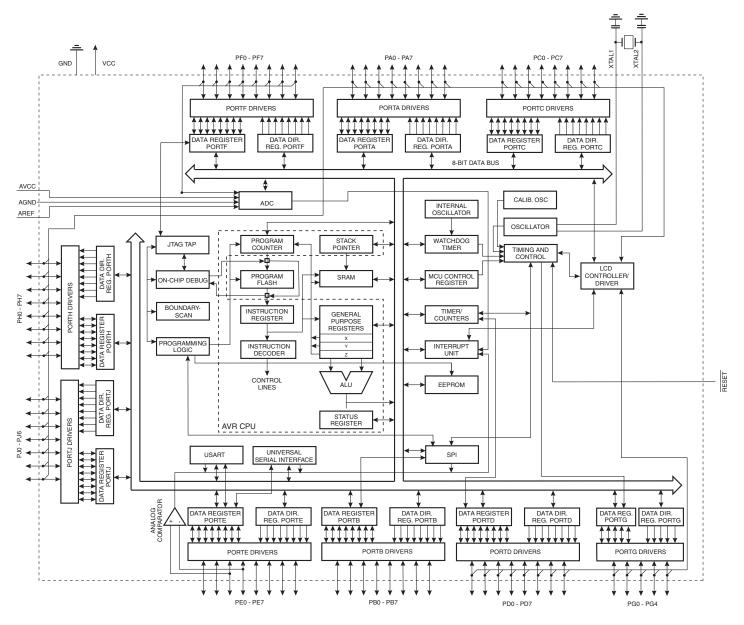
Preliminary Summary

1. Pin Configurations


Figure 1-1. MLF/ Pinout ATmega329P

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

Figure 1-2. TQFP / Pinout ATmega3290P



2. Overview

The ATmega329P/3290P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega329P/3290P achieves throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The Atmel® AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The

resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmel®AVR® ATmega329P/3290P provides the following features: 32K bytes of In-System Programmable Flash with Read-While-Write capabilities, 1Kbytes EEPROM, 2Kbyte SRAM, 54/69 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, a complete On-chip LCD controller with internal contrast control, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer and the LCD controller continues to run, allowing the user to maintain a timer base and operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip In-System re-Programmable (ISP) Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega329P/3290P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega329P/3290P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison between ATmega329P, and ATmega3290P.

The ATmega329P, and ATmega3290P differ only in pin count and pinout. Table 2-1 on page 5 summarizes the different configurations for the four devices.

Table 2-1. Configuration Summary

Device	Flash	EEPROM	RAM	LCD Segments	General Purpose I/O Pins
ATmega329P	32Kbytes	1Kbytes	2Kbytes	4 x 25	54
ATmega3290P	32Kbytes	1Kbytes	2Kbytes	4 x 40	69

2.3 Pin Descriptions

The following section describes the I/O-pin special functions.

2.3.1 V_{CC}

Digital supply voltage.

2.3.2 GND

Ground.

2.3.3 Port A (PA7...PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega329P/3290P as listed on page 71.

2.3.4 Port B (PB7...PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega329P/3290P as listed on page 72.

2.3.5 Port C (PC7...PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega329P/3290P as listed on page 75.

2.3.6 Port D (PD7...PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega329P/3290P as listed on page 76.

2.3.7 Port E (PE7...PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega329P/3290P as listed on page 78.

2.3.8 Port F (PF7...PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.3.9 Port G (PG5...PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega329P/3290P as listed on page 82.

2.3.10 Port H (PH7...PH0)

Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port H also serves the functions of various special features of the ATmega3290P as listed on page 84.

2.3.11 Port J (PJ6...PJ0)

Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port J also serves the functions of various special features of the ATmega3290P as listed on page 87.

2.3.12 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in "System and Reset Characteristics" on page 336. Shorter pulses are not guaranteed to generate a reset.

2.3.13 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.3.14 XTAL2

Output from the inverting Oscillator amplifier.

2.3.15 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

2.3.16 AREF

This is the analog reference pin for the A/D Converter.

2.3.17 LCDCAP

An external capacitor (typical > 470nF) must be connected to the LCDCAP pin as shown in Figure 23-2, if the LCD module is enabled and configured to use internal power. This capacitor acts as a reservoir for LCD power (V_{LCD}). A large capacitance reduces ripple on V_{LCD} but increases the time until V_{LCD} reaches its target value.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

6. Register Summary

Note: Registers with bold type only available in ATmega3290P.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	LCDDR19	SEG339	SEG338	SEG337	SEG336	SEG335	SEG334	SEG333	SEG332	247
(0xFE)	LCDDR18	SEG331	SEG330	SEG329	SEG328	SEG327	SEG326	SEG325	SEG324	247
(0xFD)	LCDDR17	SEG323	SEG322	SEG321	SEG320	SEG319	SEG318	SEG317	SEG316	247
(0xFC)	LCDDR16	SEG315	SEG314	SEG313	SEG312	SEG311	SEG310	SEG309	SEG308	247
(0xFB)	LCDDR15	SEG307	SEG306	SEG305	SEG304	SEG303	SEG302	SEG301	SEG300	247
(0xFA)	LCDDR14	SEG239	SEG238	SEG237	SEG236	SEG235	SEG234	SEG233	SEG232	247
(0xF9)	LCDDR13	SEG231	SEG230	SEG229	SEG228	SEG227	SEG226	SEG225	SEG224	247
(0xF8)	LCDDR12	SEG223	SEG222	SEG221	SEG220	SEG219	SEG218	SEG217	SEG216	247
(0xF7)	LCDDR11	SEG215	SEG214	SEG213	SEG212	SEG211	SEG210	SEG209	SEG208	247
(0xF6)	LCDDR10	SEG207	SEG206	SEG205	SEG204	SEG203	SEG202	SEG201	SEG200	247
(0xF5)	LCDDR09	SEG139	SEG138	SEG137	SEG136	SEG135	SEG134	SEG133	SEG132	247
(0xF4)	LCDDR08	SEG131	SEG130	SEG129	SEG128	SEG127	SEG126	SEG125	SEG124	247
(0xF3)	LCDDR07	SEG123	SEG122	SEG121	SEG120	SEG119	SEG118	SEG117	SEG116	247
(0xF2)	LCDDR06	SEG115	SEG114	SEG113	SEG112	SEG111	SEG110	SEG109	SEG108	247
(0xF1)	LCDDR05	SEG107	SEG106	SEG105	SEG104	SEG103	SEG102	SEG101	SEG100	247
(0xF0)	LCDDR04	SEG039	SEG038	SEG037	SEG036	SEG035	SEG034	SEG033	SEG032	247
(0xEF)	LCDDR03	SEG031	SEG030	SEG029	SEG028	SEG027	SEG026	SEG025	SEG024	247
(0xEE)	LCDDR02	SEG023	SEG022	SEG021	SEG020	SEG019	SEG018	SEG017	SEG016	247
(0xED)	LCDDR01	SEG015	SEG014	SEG013	SEG012	SEG011	SEG010	SEG009	SEG008	247
(0xEC)	LCDDR00	SEG007	SEG006	SEG005	SEG004	SEG003	SEG002	SEG001	SEG000	247
(0xEB)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	LCDCCR	LCDDC2	LCDDC1	LCDDC0	LCDMDT	LCDCC3	LCDCC2	LCDCC1	LCDCC0	245
(0xE6)	LCDFRR	-	LCDPS2	LCDPS1	LCDPS0	-	LCDCD2	LCDCD1	LCDCD0	243
(0xE5)	LCDCRB	LCDCS	LCD2B	LCDMUX1	LCDMUX0	LCDPM3	LCDPM2	LCDPM1	LCDPM0	242
(0xE4)	LCDCRA	LCDEN	LCDAB	-	LCDIF	LCDIE	LCDBD	LCDCCD	LCDBL	241
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	PORTJ	-	PORTJ6	PORTJ5	PORTJ4	PORTJ3	PORTJ2	PORTJ1	PORTJ0	93
(0xDC)	DDRJ	-	DDJ6	DDJ5	DDJ4	DDJ3	DDJ2	DDJ1	DDJ0	93
(0xDB)	PINJ	-	PINJ6	PINJ5	PINJ4	PINJ3	PINJ2	PINJ1	PINJ0	93
(0xDA)	PORTH	PORTH7	PORTH6	PORTH5	PORTH4	PORTH3	PORTH2	PORTH1	PORTH0	92
(0xD1)	DDRH	DDH7	DDH6	DDH5	DDH4	DDH3	DDH2	DDH1	DDH0	93
(0xD8)	PINH	PINH7	PINH6	PINH5	PINH4	PINH3	PINH2	PINH1	PINH0	93
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xD7) (0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD3) (0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD4) (0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2) (0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD1) (0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA) (0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
, ,	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	UDR0					ata Register				189
(0xC6)	UBRR0H				OSAITIO D	ala i legistei	USARTO Raud D	ate Register High		193
(0xC5)	ODITION						JOANNO DAUG R	are register might		193

■ ATmega329P/3290P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xC4)	UBRR0L		-	<u> </u>	USART0 Baud F	Rate Register Low	!	!	!	193
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	UCSR0C	-	UMSEL0	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	191
(0xC1)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	190
(0xC0)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	189
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	Reserved	-	_	_	_	-	-	-	-	
(0xBC)	Reserved	-	-	-	-	-	-	-	-	
(0xBC)	Reserved	-	-	-	-	-	-	-	-	
	USIDR					a Register				206
(0xBA) (0xB9)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	206
(0xB9)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	207
, ,	Reserved	-	-	-	-	-	-	-	-	207
(0xB7)	ASSR	-	-	-	EXCLK	AS2	TCN2UB	OCR2UB	TCR2UB	157
(0xB6)										137
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	- T	-		-	-	-	457
(0xB3)	OCR2A			ıın		out Compare Regis	ter A			157
(0xB2)	TCNT2					Counter2	1	T	1	157
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	TCCR2A	FOC2A	WGM20	COM2A1	COM2A0	WGM21	CS22	CS21	CS20	155
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	=	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x9A) (0x99)	Reserved	-	-	-	-	-	-	-	-	
	Reserved	-	-	-	-	-	-	-	-	
(0x98) (0x97)	Reserved	-	-	-	-	-	-	-	-	
	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)		-		-	-	-			-	
(0x92)	Reserved		-				-	-		
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	OCR1BH					Compare Register	-			131
(0x8A)	OCR1BL					Compare Register				131
(0x89)	OCR1AH					Compare Register	-			131
(0x88)	OCR1AL			Time	r/Counter1 Output	Compare Register	A Low			131
(0x87)	ICR1H			Tin	ner/Counter1 Input	Capture Register	High			132
(0x86)	ICR1L			Tin	ner/Counter1 Input	Capture Register	Low			132

■ ATmega329P/3290P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x85)	TCNT1H	1		!	Timer/Cou	inter1 High	!			131
(0x84)	TCNT1L				Timer/Cou	unter1 Low				131
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	130
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	129
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	127
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D	212
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	229
(0x7D)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	225
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	211/228
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	227
(0x79)	ADCH				ADC Data F	Register High				228
(0x78)	ADCL				ADC Data F	Register Low				228
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	=	-	=	-	-	-	-	
(0x73)	PCMSK3	-	PCINT30	PCINT29	PCINT28	PCINT27	PCINT26	PCINT25	PCINT24	62
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	TIMSK2	-	-	-	=	-	-	OCIE2A	TOIE2	158
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	132
(0x6E)	TIMSK0	-	-	-	-	-	-	OCIE0A	TOIE0	139
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	62
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	62
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	62
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	-	-	-	-	-	-	ISC01	ISC00	59
(0x68)	Reserved	-	-	-	-	-	-	-	-	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL				Oscillator Calibratio	n Register [CAL7	.0]			35
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRR	-	-	-	PRLCD	PRTIM1	PRSPI	PSUSART0	PRADC	43
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	35
(0x60)	WDTCR	-	-	-	WDCE	WDE	WDP2	WDP1	WDP0	50
0x3F (0x5F)	SREG	I	Т	Н	S	V	N	Z	С	12
0x3E (0x5E)	SPH					inter High				14
0x3D (0x5D)	SPL				Stack Po	inter Low				14
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	- CDMIE	- RWWSB	-	- RWWSRE	- DI DOET	- DCWDT	- POEDS	- CDMEN	204
0x37 (0x57)	SPMCSR Reserved	SPMIE	UANAND	-	NVVVORE	BLBSET	PGWRT	PGERS	SPMEN	294
0x36 (0x56)	MCUCR	JTD	BODS	BODSE	PUD	-	-	IVSEL	IVCE	57/90/280
0x35 (0x55)	MCUCR	- 310	- 8008	- BODSE	JTRF	WDRF	BORF	EXTRF	PORF	57/90/280
0x34 (0x54)	SMCR	-	-	-	JIHF -	SM2	SM1	SM0	SE	42
0x33 (0x53)	Reserved	-	-	-	-	-	- SIVI I	- SIVIU	-	444
0x32 (0x52)	OCDR	IDRD/OCDR7	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDR0	253
0x31 (0x51)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	253
0x30 (0x50)	Reserved	AGD -	- ACBG	-	AOI	ACIE	AOIO	ACIST	- ACISU	211
0x2F (0x4F)	SPDR		-			Register				169
0x2E (0x4E)	SPSR	SPIF	WCOL	-	- SPI Data	- register	-	-	SPI2X	168
0x2D (0x4D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	167
0,000 (0, 10)		OFIE .	SFE	חטטט		se I/O Register	UFFIA	orn!	3FNU	26
0x2C (0x4C)		1			General Furpo	-				
0x2B (0x4B)	GPIOR2				Goneral Burns	so I/O Register				06
0x2B (0x4B) 0x2A (0x4A)	GPIOR1					se I/O Register				26
0x2B (0x4B)		-	-	-	General Purpo	se I/O Register	-	-	-	26

ATmega329P/3290P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x26 (0x46)	TCNT0				Timer/0	Counter0		!		138
0x25 (0x45)	Reserved	-	-	-	-	-	-	-	-	
0x24 (0x44)	TCCR0A	FOC0A	WGM00	COM0A1	COM0A0	WGM01	CS02	CS01	CS00	136
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSR2	PSR10	140/159
0x22 (0x42)	EEARH	-	-	-	-	-	-	EEPROM Addre	ess Register High	22
0x21 (0x41)	EEARL				EEPROM Addre	ess Register Low	•	•		22
0x20 (0x40)	EEDR				EEPROM D	ata Register				22
0x1F (0x3F)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	23
0x1E (0x3E)	GPIOR0				General Purpo	se I/O Register	1	'		26
0x1D (0x3D)	EIMSK	PCIE	PCIE2	PCIE1	PCIE0	-	-	-	INT0	60
0x1C (0x3C)	EIFR	PCIF3	PCIF2	PCIF1	PCIF0	-	-	-	INTF0	61
0x1B (0x3B)	Reserved	-	-	-	-	-	-	-	-	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	-	-	-	OCF2A	TOV2	159
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	133
0x15 (0x35)	TIFR0	-	-	-	-	-	-	OCF0A	TOV0	140
0x14 (0x34)	PORTG	-	-	-	PORTG4	PORTG3	PORTG2	PORTG1	PORTG0	92
0x13 (0x33)	DDRG	-	-	-	DDG4	DDG3	DDG2	DDG1	DDG0	92
0x12 (0x32)	PING	-	-	PING5	PING4	PING3	PING2	PING1	PING0	92
0x11 (0x31)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	92
0x10 (0x30)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	92
0x0F (0x2F)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	92
0x0E (0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	91
0x0D (0x2D)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	91
0x0C (0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	92
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	91
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	91
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	91
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	91
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	91
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	91
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	90
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	90
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	90
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	90
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	90
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	90

- Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
 - 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
 - 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega329P/3290P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

7. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
	OGIC INSTRUCTIONS	•	- Postanesi	1 11.90	
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \ v \ Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd v K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) \ll 1$	Z,C	2
BRANCH INSTRUC		I B L C L		L	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL ICALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$ $PC \leftarrow Z$	None None	3
CALL	k	Indirect Call to (Z) Direct Subroutine Call	PC ← k	None	4
RET	N N	Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V= 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
	1 .	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch i Hall Carry Flag Cleared	II (II = 0) then I = 0 T C T K T T	140110	
	k	Branch if T Flag Set	if $(T = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHC		, ,	1		

■ ATmega329P/3290P

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST	INSTRUCTIONS		•	·	
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None SPEC(s)	1 1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BST	S Rr, b	Flag Clear Bit Store from Register to T	$SREG(s) \leftarrow 0$ $T \leftarrow Rr(b)$	SREG(s)	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC	rid, b	Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	1←1	1	1
CLI		Global Interrupt Disable	1←0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	H	1
CLH	<u> </u>	Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I		Maria Baturana Bandatana	Dd. D.	I None	1 4
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$ $Rd+1:Rd \leftarrow Rr+1:Rr$	None	1 1
MOVW LDI	Rd, Rr Rd, K	Copy Register Word Load Immediate	Rd ← K	None None	1
LD	Rd, X	Load Infinediate Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST ST	- X, Rr Y, Rr	Store Indirect and Pre-Dec. Store Indirect	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$	None None	2 2
ST ST ST	- X, Rr Y, Rr Y+, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc.	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None None None	2 2 2
ST ST ST ST	- X, Rr Y, Rr Y+, Rr - Y, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None None None	2 2 2 2
ST ST ST ST STD	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$	None None None None None	2 2 2 2 2 2
ST	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$	None None None None None None None	2 2 2 2 2 2 2
ST ST ST ST STD ST ST	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect Store Indirect and Post-Inc.	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None None None None None None None None	2 2 2 2 2 2 2 2 2
ST ST ST ST STD ST ST ST	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2
ST	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr Z+q,Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$ $(Z + q) \leftarrow Rr$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2
ST ST ST ST STD ST ST ST	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$ $(Z + q) \leftarrow Rr$ $(k) \leftarrow Rr$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2
ST ST ST ST STD ST ST ST ST ST ST ST ST STD STS LPM	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr Z+q,Rr k, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Direct to SRAM Load Program Memory	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$ $(Z + q) \leftarrow Rr$ $(k) \leftarrow Rr$ $R0 \leftarrow (Z)$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ST ST ST ST ST STD ST	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr Z+q,Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect and Pre-Dec. Store Indirect with Displacement Store Direct to SRAM	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$ $(Z + q) \leftarrow Rr$ $(k) \leftarrow Rr$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ST ST ST ST ST STD ST ST ST ST ST ST ST LPM LPM	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr Z+q,Rr k, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect with Displacement Store Direct to SRAM Load Program Memory Load Program Memory	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$ $(Z + q) \leftarrow Rr$ $(k) \leftarrow Rr$ $R0 \leftarrow (Z)$ $Rd \leftarrow (Z)$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
ST ST ST ST STD ST ST ST ST ST ST LPM LPM LPM	- X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr Z+q,Rr k, Rr	Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect with Displacement Store Direct to SRAM Load Program Memory Load Program Memory Load Program Memory and Post-Inc	$X \leftarrow X - 1, (X) \leftarrow Rr$ $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ $(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$ $(Z + q) \leftarrow Rr$ $(k) \leftarrow Rr$ $R0 \leftarrow (Z)$ $Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z + 1$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3

■ ATmega329P/3290P

Mnemonics	Operands	Description	Operation	Flags	#Clocks
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	TRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Ordering Information

ATmega329P 8.1

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package Type ⁽¹⁾	Operational Range	
10	1.8 - 5.5V	ATmega329PV-10AU ATmega329PV-10AUR ⁽⁴⁾ ATmega329PV-10MU ATmega329PV-10MUR ⁽⁴⁾	64A 64A 64M1	Industrial	
20	2.7 - 5.5V	ATmega329P-20AU ATmega329P-20AUR ⁽⁴⁾ ATmega329P-20MU ATmega329P-20MUR ⁽⁴⁾	64A 64A 64M1 64M1	(-40°C to 85°C)	
20	1.8 - 5.5V	ATmega329P-20AN ATmega329P-20ANR ⁽⁴⁾ ATmega329P-20MN ATmega329P-20MNR ⁽⁴⁾	64A 64A 64M1 64M1	Extended (-40°C to 105°C) ⁽⁵⁾	

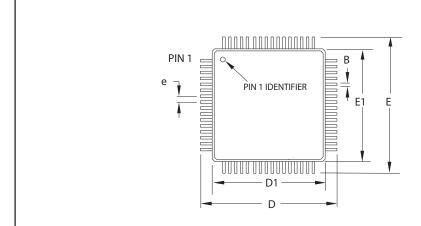
- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
 - 3. For Speed vs. V_{CC} see Figure 28-2 on page 334 and Figure 28-3 on page 334.
 - 4. Tape & Reel
 - 5. See Appendix A ATmega169PA/329P/3290P 105°C

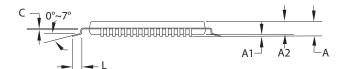
	Package Type					
64A	64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)					
64M1	64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)					

8.2 ATmega3290P

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package Type ⁽¹⁾	Operational Range	
10	1.8 - 5.5V	ATmega3290PV-10AU ATmega3290PV-10AUR ⁽⁴⁾	100A	Industrial	
20	2.7 - 5.5V	ATmega3290P-20AU ATmega3290P-20AUR ⁽⁴⁾	100A	(-40°C to 85°C)	
20	1.8 - 5.5V	ATmega3290P-20AN ATmega3290P-20ANR ⁽⁴⁾ ATmega3290P-20MN ATmega3290P-20MNR ⁽⁴⁾	64A 64A 64M1 64M1	Extended (-40°C to 105°C) ⁽⁵⁾	

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.


- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. For Speed vs. $V_{\rm CC}$ see Figure 28-2 on page 334 and Figure 28-3 on page 334.
- 4. Tape & Reel
- 5. See Appendix A ATmega169PA/329P/3290P 105°C


	Package Type
100A	100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

9. Packaging Information

9.1 64A

COMMON DIMENSIONS (Unit of measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	-	-	1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	15.75	16.00	16.25	
D1	13.90	14.00	14.10	Note 2
Е	15.75	16.00	16.25	
E1	13.90	14.00	14.10	Note 2
В	0.30-	0.45		
С	0.09	-	0.20	
L	0.45	_	0.75	
е		0.80 TYP		

Notes:

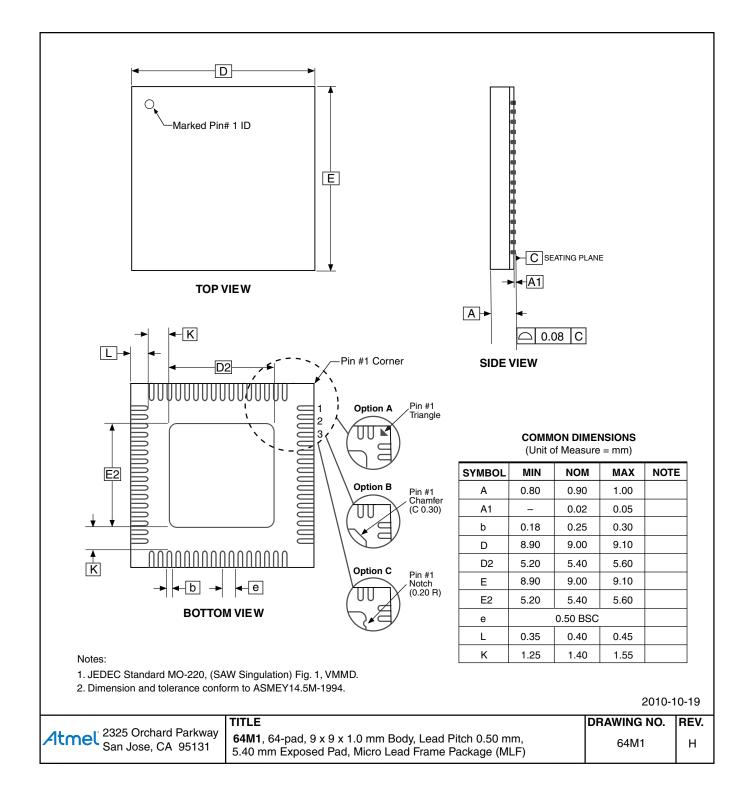
- 1. This package conforms to JEDEC reference MS-026, Variation AEB.
- Dimensions D1 and E1 do not include mold protrusion. Allowabl protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

TITLE

3. Lead coplanarity is 0.10mm maximum.

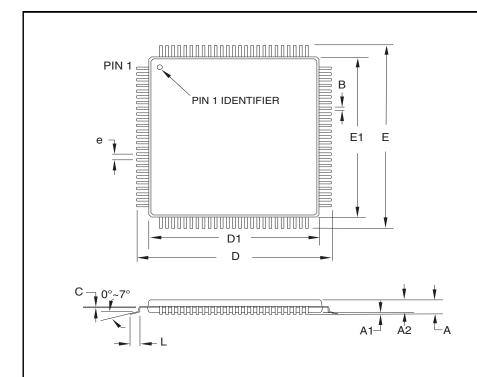
2010-10-20

Atmel


2325 Orchard Parkway San Jose, CA 95131

64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness,
0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFF

DRAWING NO.	REV.
64A	C



9.2 64M1

9.3 100A

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	15.75	16.00	16.25	
D1	13.90	14.00	14.10	Note 2
Е	15.75	16.00	16.25	
E1	13.90	14.00	14.10	Note 2
В	0.17	_	0.27	
С	0.09	_	0.20	
L	0.45	_	0.75	
е		0.50 TYP		

Notes

- 1. This package conforms to JEDEC reference MS-026, Variation AED.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.08mm maximum.

2014-02-05

	TITLE	DRAWING NO.	REV.
Atmet Package Drawlng Contact: packagedrawlngs@atmel.com	100A , 100-lead, 14 x 14mm Body Size, 1.0mm Body Thickness, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	100A	E

10. Errata

10.1 ATmega329P rev. A

- · Interrupts may be lost when writing the timer registers in the asynchronous timer
- · Using BOD disable will make the chip reset
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer. The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

2. Using BOD disable will make the chip reset

If the part enters sleep with the BOD turned off with the BOD disable option enabled, a BOD reset will be generated at wakeup and the chip will reset.

Problem Fix/Workaround

Do not use BOD disable

10.2 ATmega329P rev. B

- · Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer. The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

10.3 ATmega329P rev. C

- Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer. The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

10.4 ATmega3290P rev. A

- Interrupts may be lost when writing the timer registers in the asynchronous timer
- · Using BOD disable will make the chip reset
- Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

2. Using BOD disable will make the chip reset

If the part enters sleep with the BOD turned off with the BOD disable option enabled, a BOD reset will be generated at wakeup and the chip will reset.

Problem Fix/Workaround

Do not use BOD disable

10.5 ATmega3290P rev. B

- · Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer. The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

10.6 ATmega3290P rev. C

- Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer. The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11. Datasheet Revision History

Refer to the complete datasheet for revision history.

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-8021HS-AVR-ATmega329P-3290P Datasheet 07/2015.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], AVR[®] and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.