imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- High-power-added Efficient Power Amplifier (Pout Typically 29 dBm)
- Controlled Output Power
- Low-noise Preamplifier (NF Typically 1.5 dB)
- Few External Components
- PSSO20 Plastic Package with Down-set Paddle

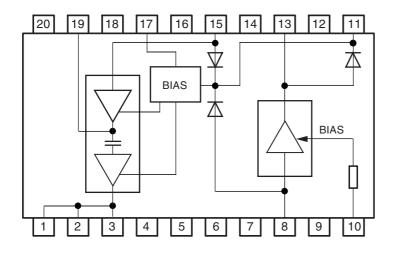
Electrostatic sensitive device. Observe precautions for handling.

ead Free

GE

SL

UHF SiGe Front-end IC

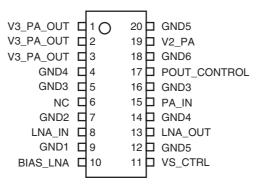

ATR0981

Preliminary

1. Description

The ATR0981 is a monolithic IC manufactured using Atmel's advanced SiGe technology. The IC performs a transmit and receive front-end function, dedicated for a frequency range of 300 MHz to 500 MHz. It consists of a Low-Noise Amplifier (LNA) and a Power Amplifier (PA) with good Power-added Efficiency (PAE).

Figure 1-1. Block Diagram


Rev. 4862A-SIGE-09/05

2. Pin Configuration

Figure 2-1. Pinning PSSO20 with Down Set Paddle

Table 2-1.Pin Description

	= • • • • •	
Pin	Symbol	Function
1	V3_PA_OUT	Matching network for power amplifier output
2	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
3	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
4	GND4	Ground
5	GND3	Ground
6	NC	Not connected
7	GND2	Ground
8	LNA_IN	Low-noise amplifier input
9	GND1	Ground
10	BIAS_LNA	Resistor to V_S sets the LNA current
11	VS_CTRL	Supply voltage for control of power amplifier
12	GND5	Ground
13	LNA_OUT	Low-noise amplifier output and supply voltage
14	GND4	Ground
15	PA_IN	Power amplifier input
16	GND3	Ground
17	POUT_CONTROL	Power amplifier control input
18	GND6	Ground
19	V2_PA	Supply voltage for power amplifier
20	GND5	Ground

3. Absolute Maximum Ratings

All voltages are referred to GND (Pins 7, 9, 16, 18, 20, Slug)

Parameters	Symbol	Min.	Max.	Unit
Supply voltage PA, TX, pins 1, 2, 3, 11, 19			5	V
Supply voltage LNA, RX, pin 13	V _S _LNA		2.8	V
PA control voltage, TX, pin 17	V _{CNTL}		5	V
Junction temperature	T _{jmax}		150	°C
Storage temperature	T _{Stg}	-55	+125	°C
Electrostatic handling HMB, all RF pins	V _{ESD}		200	V
Electrostatic handling HMB, all control pins	V _{ESD}		2	kV

4. Operating Range

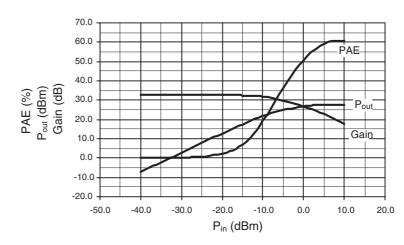
All voltages are referred to GND (Pins 7, 9, 16, 18, 20, Slug). The following table represents the sum of all supply currents into the mentioned pins.

Parameters	Test Conditions/Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage PA	TX, pins 1, 2, 3, 11, 19	V _S _PA	3.0	3.6	4.5	V
Supply voltage LNA	RX, pin 13	V _S _LNA	2.4	2.5	2.6	V
Supply current PA	TX, pins 1, 2, 3, 11, 19	I _S _PA		400		mA
Supply current LNA	Pins 10, 13	I _S _LNA		2.5		mA
Ambient temperature		T _{amb}	-30	+25	+60	°C

5. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R_{thJA}	19	K/W

6. Electrical Characteristics


Test conditions (unless otherwise specified) : V_S_PA = 3.6V, T_{amb} = 25° C.

Parameters	Test Conditions/Pins	Symbol	Min.	Тур.	Max.	Unit
Power Amplifier ⁽¹⁾						
Supply voltage	TX, pins 1, 2, 3, 11, 19	V _S _PA	3.0	3.6	4.5	V
Supply current	TX, pins 1, 2, 3, 11, 19	I _S _PA		400	550	mA
Frequency range	ТХ	f	300		500	MHz
Power gain	TX, pin 15 to pins 1, 2, 3	Gp	30	34		dB
Output power control range	ТХ	∆Pout	±1		±3	dB
	TX, output power (maximum), pin 17			2.0	2.5	V
Control voltage	TX, output power (minimum), pin 17			0.7		V
Control current	Pin 17		0		400	μA
Shut down mode	Control voltage ⊴0.1V, pins 1, 2, 3, 11, 19	I _S _PA		10	20	μA
Power added efficiency	TX at 466 MHz	PAE	50	55		%
Saturated output power	TX, input power 3 dBm	Psat	27.5	29	30.5	dBm
Harmonics	TX, input power 3 dBm	2 fo		-20		dBc
Harmonics	TX, input power 3 dBm	3 fo		-20		dBc
Low-noise Amplifier						
Supply voltage	RX, pins 10, 13	V _S _LNA	2.4	2.5	2.6	V
Supply current	RX, pins 10, 13	I _s _LNA		2.5	3.5	mA
Frequency range	RX	f	300		500	MHz
Power gain	RX at R1 = 5.6 k Ω , I _S = 2.5 mA	Gp	17.5	19	20.5	dB
Noise figure ⁽²⁾	RX at R1 = 5.6 k Ω , I _S = 2.5 mA	NF		1.5	2.0	dB
Isolation	RX at R1 = 5.6 k Ω , I _S = 2.5 mA	ISO		20		dB
Third-order input interception point	RX at R1 = 5.6 kΩ, I _S = 2.5 mA	IIP3	-13	-10		dBm

Notes: 1. Power amplifier should be unconditionally stable, maximum duty cycle 100%, true cw operation, maximum load mismatch 10:1 for 5s at 3.6V

2. Ensured by design

7. Typical Characteristics

Figure 7-1. Power Sweep

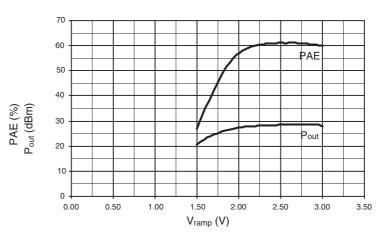
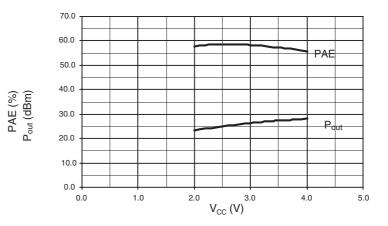
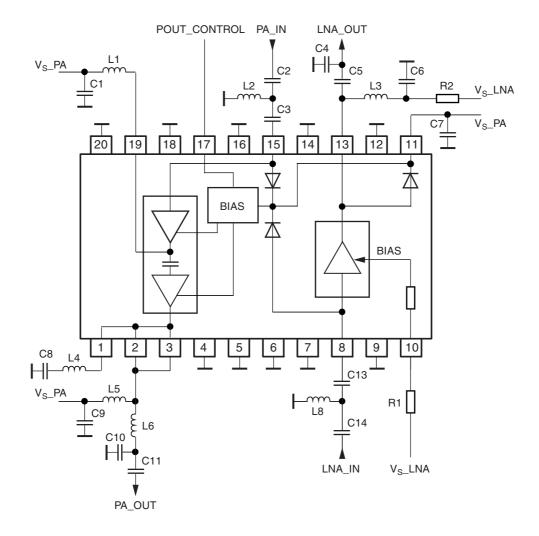



Figure 7-3. V_{CC} Sweep

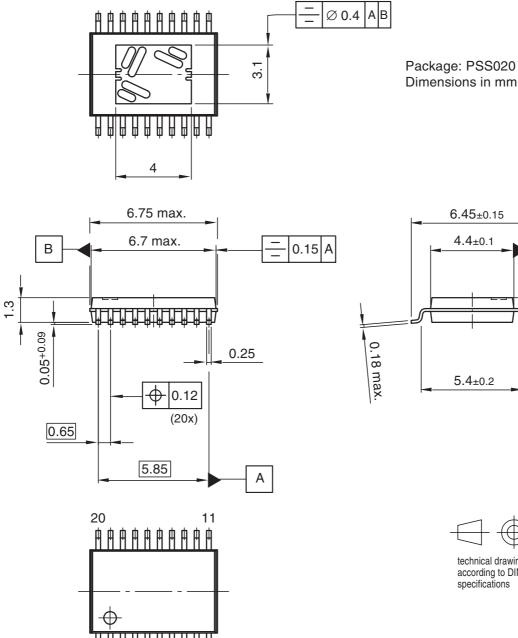


8. Application Circuit

Figure 8-1. Typical Application Circuit

Part No.	Description	Part Value	Package	Vendor
C1	Capacitor	1 nF	0603	Standard
C2, C3, C7, C9, C11, C13	Capacitor	100 pf	0603	Standard
C4	Capacitor	n.c.	0603	Standard
C5	Capacitor	3.9 pF	0603	Standard
C6	Capacitor	220 pF	0603	Standard
C8	Capacitor	2.7 pF	0604	Standard
C10	Capacitor	12 pF	0603	Standard
C14	Capacitor	8.2 pF	0603	Standard
L1	Inductor	1.5 nH	0805	Standard
L2	Inductor	39 nH	0805	Standard
L3, L5, L8	Inductor	22 nH	0805	Standard
L4	Inductor	6.8 nH	0805	Standard
L6	Inductor	3.9 nH	0805	Standard
R2	Resistor	0	0603	Standard

Table 8-1.	Bill of Materials for 460 MHz Applications


9. Ordering Information

Extended Type Number	Package	Remarks
ATR0981-TRUY	PSSO20	Tube
ATR0981-TRHY	PSSO20	Taped and reeled

10. Package Information

6.45±0.15

 4.4 ± 0.1

5.4±0.2

С

0.575

technical drawings according to DIN specifications

Drawing-No.: 6.543-5071.01-4 Issue: 1; 23.08.00

Ш

Ш Ш Ш Ħ 10

Ш

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

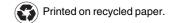
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

