mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Frequency Range 4.9 GHz to 5.9 GHz
- Supply-voltage 2.7 V to 3.6 V
- 3.5% EVM at 19 dBm Output Power at 54 Mbit/s OFDM
- 25.5 dBm P_{1dB}
- On-chip Power Detector with 25 dBm Dynamic Range
- Power-down Mode and Biasing Control
- + Low Profile Lead-free Plastic Package QFN16 (4 \times 4 \times 0.9 mm)

Applications

- IEEE 802.11a OFDM WLAN
- Hiperlan2 WLAN
- PC Cards, PCMCIA
- 5 GHz ISM Band Application

Electrostatic sensitive device. Observe precautions for handling.

Description

Process

The 5-GHz power amplifier is designed in Atmel's advanced Silicon-Germanium (SiGe) process and provides excellent linearity and noise performance as well as good power-added efficiency.

Circuitry

The PA consists of a two-stage amplifier with a P_{1db} of 25.5 dBm. The output stage was realized using an open-collector structure. Power-up/down and output level are controlled at bias control pin 6 (VCTL). An on-chip power detector provides a voltage proportional to the output power.

Figure 1. Block Diagram

5-GHz WLAN Power Amplifier for 802.11a

ATR3515

Preliminary

Rev. 4514I-WLAN-07/04

Pin Configuration

Figure 2. Pinning QFN16

Pin Description

Pin	Symbol	Function
1	GND	Ground
2	NC	Not connected
3	RFIN	RF input
4	GND	Ground
5	GND	Ground
6	VCTL	Power-up/biasing control voltage
7	VDET_OUT	Power detector output voltage
8	GND	Ground
9	GND	Ground
10	RFOUT	RF output
11	RFOUT	RF output
12	GND	Ground
13	VCC2	Supply voltage for PA stage
14	GND	Ground
15	VCC1	Supply voltage for driver stage
16	VCC_CTL	Supply voltage for biasing control
Paddel	_	Ground

ATR3515 [Preliminary]

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	V _{CC}	3.9	V
Supply current	I _{CC}	800	mA
Junction temperature	Tj	150	°C
Storage temperature	T _{Stg}	-40 to +125	°C
Input RF power	P _{IN}	12	dBm
Control voltage power up/down and biasing	V _{CTL}	0 to 2.0	V

Note: The part may not survive all maximums applied simultaneously.

Operating Range

Parameters	Symbol	Value	Unit
Supply voltage range	V _{CC}	2.7 to 3.6	V
Ambient temperature range	T _{amb}	-25 to +75	°C

Electrical Characteristics

No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
1.0	Supply voltage		V _{CC}	2.7	3.3	3.6	V
1.1	Frequency range		f	4.9		5.9	GHz
1.2	Control voltago rango	PA operating mode	V _{CTL}	1.25		1.6	V
1.3	Control voltage range	Power down mode	V _{CTL}			0.2	V
1.4	Control current	PA Operation	I _{CTL}			200	μA
1.5	Current consumption	Quiescent	lcq		110		mA
1.6	Current consumption	Power down mode	lpd			10	μA
1.7	Turn on/off time	ON is the time that ICC returns to normal and OFF is the time the current needs to decrease to 10% of normal mode	t _{on/off}		0.5	0.6	μs
1.8	Input and output return loss	With external matching			-12	-8	dB
1.9		At ±11 MHz offset from carrier				-22	dBr
1.10	Spectrum mask ⁽¹⁾	At ±20 MHz offset from carrier				-30	dBr
1.11		At ±30 MHz offset from carrier				-42	dBr

Note: 1. OFDM signal according to 802.11a specification with Pout = 21 dBm at 54 Mbps.

Electrical Characteristics - Unmodulated Carrier

Test Conditions (unless otherwise stated): V_{CC} = 3.3 V, Frequency = 5.25 GHz, T_{amb} = 25°C

No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
2.0	Saturated output power	For reference	Psat		26.5		dBm
2.1	P1dB output power		P1dB		25.5		dBm
2.3	Small signal gain	lcq = 180 mA, small signal condition	GL		18		dB
2.4	Gain deviation	Within 200 MHz frequency band	Gd	-1		+1	dB
2.5	Reverse isolation		ISOr	30	36		dB

Electrical Characteristics - 54 Mbps OFDM-modulation

Test Conditions (unless otherwise stated): $V_{CC} = 3.3 \text{ V}$, Frequency = 5.25 GHz, $T_{amb} = 25^{\circ}$ C, IEEE802.11a conform 54 Mbps OFDM modulation, EVM measurement equipment noise floor is included in EVM measurement result.

No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
3.0	Error vector magnitude	P _{OUT} = 19 dBm	EVM		3.5		%
3.1	Linear power gain	P _{OUT} = 19 dBm	GL		18		dB
3.2	Current consumption	P _{OUT} = 19 dBm	I _{cc}		240		mA

Electrical Characteristics - Power Detector

Test Conditions (unless otherwise stated): V_{CC} = 3.3 V, Frequency = 5.25 GHz, T_{amb} = 25°C.

No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
4.0	Detector voltage range	P _{OUT} = 2 to 27 dBm	V _{DET}	0		1.7	V
4.2	Settling time		tset		0.5		μs

Figure 3. Application Circuit

Ordering Information

Extended Type Number	Package	Remarks
ATR3515-PEP	QFN16 - 4x4	Taped and reeled, MOQ 1500
ATR3515-PEQ	QFN16 - 4x4	Taped and reeled, MOQ 6000

Package Information

Package: QFN 16 - 4x4 Exposed pad 2.1x2.1 (acc. JEDEC OUTLINE No. MO-220) Dimensions in mm

technical drawings according to DIN specifications

Drawing-No.: 6.543-5090.01-4 Issue: 2; 24.01.03

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved.

Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be the trademarks of others.

