imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

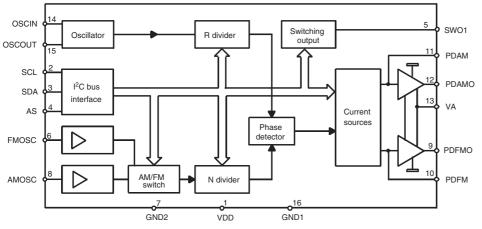
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

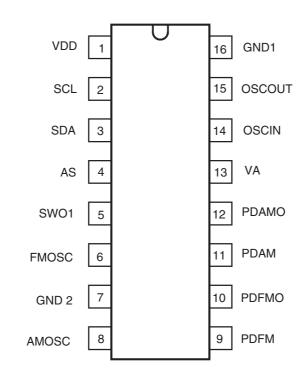
Features


- Reference Oscillator up to 15 MHz
- Two Programmable 16-bit Dividers Adjustable from 2 to 65535
- Fine Tuning Steps
 - AM \geq 1 kHz
 - FM \geq 2 kHz
- Loop-push-pull Stage for AM/FM
- High Signal/Noise Ratio

1. Description

The ATR4289 is an integrated circuit in BiCMOS technology for frequency synthesizers. It performs all the functions of a PLL radio tuning system and is controlled by a 2-wire bus. The device is designed for all frequency synthesizer applications in radio receivers, as well as for radio data system (RDS) applications.

AM/FM PLL with 1 Switch


ATR4289

Rev. 4885A-AUDR-09/05

2. Pin Configuration

inning SO16
inning SO16

Table 2-1.	Pin Descrip	ption
Pin	Symbol	Function
1	VDD	Supply voltage
2	SCL	Bus clock
3	SDA	Bus data
4	AS	Address selection
5	SWO1	Switching output
6	FMOSC	FM oscillator input
7	GND2	Ground 2 (analog)
8	AMOSC	AM oscillator input
9	PDFM	FM current output
10	PDFMO	FM analog output
11	PDAM	AM current output
12	PDAMO	AM analog output
13	VA	Analog supply voltage
14	OSCIN	Oscillator input
15	OSCOUT	Oscillator output
16	GND1	Ground 1 (digital)

ATR4289

2

3. Functional Description

The ATR4289 is controlled via the 2-wire bus. One module-address byte, two subaddress bytes and five data bytes enable programming.

The module address contains a programmable address bit A 1, which (along with address select input AS, pin 4), enables the operation of two ATR4289 devices in one system. If bit A 1 is identical with the status of the address select input AS, the chip is selected.

The subaddress determines which of the data bytes is transmitted first. If the subaddress of the R divider is transmitted, the sequence of the next data bytes is DB 0 (Status), DB 1 and DB 2. If the subaddress of the N divider is transmitted, the sequence of the next data bytes is DB 3 and DB 4. The bit organization of the module address, subaddress and 5 data bytes is shown in Table 7-1 on page 8.

Each transmission on the bus begins with the *START* condition and has to be ended by the *STOP* condition (see Table 8-1 on page 8, "Transmission Protocol").

The integrated circuit ATR4289 has two separate inputs for the AM and FM oscillators. Preamplified AM and FM signals are fed to the 16-bit R divider via the AM/FM switch. The AM/FM switch is software controlled. Tuning steps can be selected by the 16-bit R divider.

Furthermore, the device provides a digital memory phase detector and two separate current sources for the AM and FM amplifier (charge pump) as given in the Table "Electrical Characteristics" on page 5. It allows independent gain adjustment, providing high current for high-speed tuning and low current for stable tuning.

	8

4. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

	-			
Parameters	Pins	Symbol	Value	Unit
Supply voltage	1	V _{DD}	-0.3 to +6	V
Input voltage	2, 3, 4, 6, 8, 14, 15	V	-0.3 to V _{DD} + 0.3	V
Output current	3, 5	Ι _ο	-1 to +5	mA
Output drain voltage	5	V _{OD}	15	V
Analog supply voltage with 220Ω serial resistance 2 minutes ⁽¹⁾	13	V _A V _A	6 to 15 24	V V
Output current	9, 12	I _{AO}	-1 to +20	mA
Ambient temperature range		T _{amb}	-30 to +85	°C
Storage temperature range		T _{stg}	-40 to +125	°C
Junction temperature		T _j	125	°C
Electrostatic handling (modified MIL STD 883 D method 3015.7: all supply pins connected together)		±V _{ESD}	1000	V

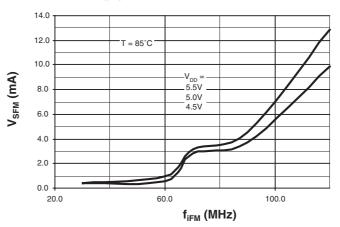
Note: 1. Corresponding to the application circuit (Figure 9-1 on page 9)

5. Thermal Resistance

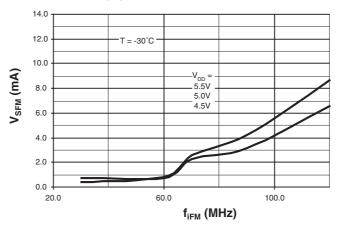
Parameters	Symbol	Value	Unit
Junction ambient	R _{thJA}	160	K/W

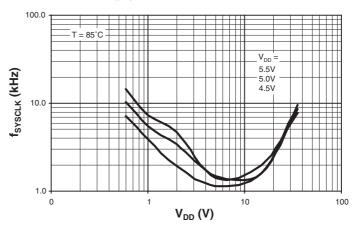
6. Electrical Characteristics

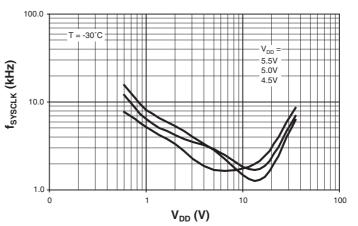
 V_{DD} = 5V, V_A = 10V, T_{amb} = 25°C, unless otherwise specified


Parameters	Test Conditions	Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage		1	V _{DD}	4.5	5.0	5.5	V
Quiescent supply current	AM mode/FM mode	1	I _{DD}		4.0	7.0	mA
FM input sensitivity,	$f_i = 70 \text{ MHz}$ to 120 MHz	6	V _{SFM}	40			mV _{rm}
$R_{G} = 50\Omega$, FMOSC	f _i = 160 MHz	6	V_{SFM}	150			mV _{rm}
AM input sensitivity, $R_{G} = 50\Omega$, AMOSC	$f_i = 0.6 \text{ MHz}$ to 35 MHz	8	V_{SAM}	40			mV _{rm}
Oscillator input sensitivity, $R_G = 50\Omega$, OSCIN	$f_i = 0.1 \text{ MHz}$ to 15 MHz	14	V _{SOSC}	100			mV _{rm}
Phase Detector PDFM							
Output current 1		10	±I _{PDFM}	1600	2000	2400	μA
Output current 2		10	±I _{PDFM}	400	500	600	μA
Leakage current		10	±I _{PDFML}			20	nA
Phase Detector PDAM				1	L	1	1
Output current 1		11	±I _{PDAM}	160	200	240	μA
Output current 2		11	±I _{PDAM}	40	50	60	μA
Leakage current		11	±I _{PDAML}			20	μA
Analog Output PDFMO, PDAMO				1	L	1	
Saturation voltage LOW	l = 15 mA	9, 12	V _{satL}		200	400	mW
Saturation voltage HIGH	l = 15 mA	9, 12	V _{satH}	9.5	9.95		V
Bus SCL, SDA, AS							
Input voltage HIGH		2, 3, 4	V _{iBUS}	3.0		V _{DD}	V
Input voltage LOW		2, 3, 4	V _{iBUS}	0		1.5	V
Output voltage acknowledge LOW	I _{SDA} = 3 mA	3	Vo			0.4	V
Clock frequency		2	f _{SCL}			100	kHz
Rise time SDA, SCL		2, 3	t _r			1	μs
Fall time SDA, SCL		2, 3	t _f			300	ns
Period of SCL HIGH		2	t _H	4.0			μs
Period of SCL LOW		2	tL	4.7			μs
Set-up Time				1	•		
Start condition			t _{sSTA}	4.7			μs
Data			t _{sDAT}	250			μs
Stop condition			t _{sSTOP}	4.7			μs
Time space ⁽¹⁾			t _{wSTA}	4.7			μs
Hold Time	1			1	ļ	1	1
Start condition			t _{hSTA}	4.0			μs
Data			t _{hDAT}	0			μs

Note: 1. This is a period of time where the bus must be free from data transmission before a new transmission can be started.




Figure 6-1. FM Input Sensitivity, $T_{amb} = +85^{\circ}C$


Figure 6-2. FM Input Sensitivity, $T_{amb} = -30^{\circ}C$

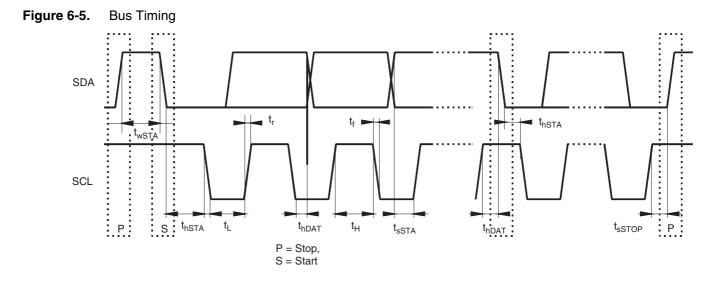


Figure 6-3. AM Input Sensitivity, $T_{amb} = +85^{\circ}C$

Figure 6-4. AM Input Sensitivity, $T_{amb} = -30^{\circ}C$

7. Bit Organization

Table 7-1.Bit Organization

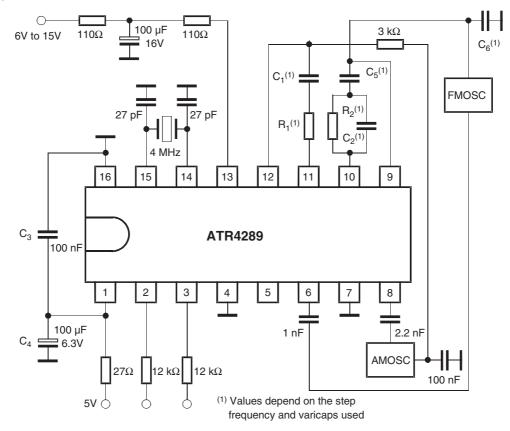
	MSB							LSB
Module address	1	1	0	0	1	0	0/1	0
Module address	A7	A6	A5	A4	A3	A2	A1	A0
Subaddress (R-divider)	X	Х	Х	0	0	1	Х	Х
Subaddress (N-divider)	X	Х	Х	Х	1	1	Х	Х
	SWO1				AM/FM	PD - ANA	PD - POL	PD - CUR
Data byte 0 (Status)	D7	D6	D5	D4	D3	D2	D1	D0
Data byte 1	2 ¹⁵		1	R di	vider			2 ⁸
Data byte 2	2 ⁷			R di	vider			2 ⁰
Data byte 3	2 ¹⁵	N divider						
Data byte 4	2 ⁷	N divider						

Table 7-2.Function Mode

Bit Description	Mode	LOW	HIGH
D3	AM/FM	FM operation	AM operation
D2	PD - ANA	PD analog	TEST
D1	PD - POL	Negative polarity	Positive polarity
D0	PD - CUR	Output current 2	Output current 1

8. Transmission Protocol

Table 8-1.Transmission Protocol

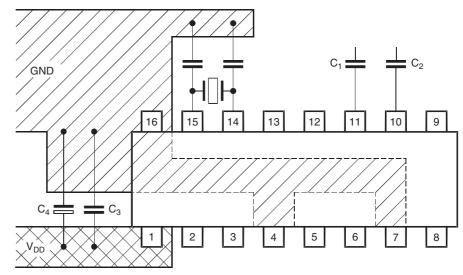

	MSB	LSB										
S	Add	ress	Α	Subaddress	Α	Data 0	Α	Data 1	Α	Data 2	Α	Р
	A0	A7		R divider								

	MSB	LSB								
S	Add	ress	Α	Subaddress	Α	Data 3	Α	Data 4	Α	Р
	A0	A7		N divider						

Note: S = Start, P = Stop, A = Acknowledge

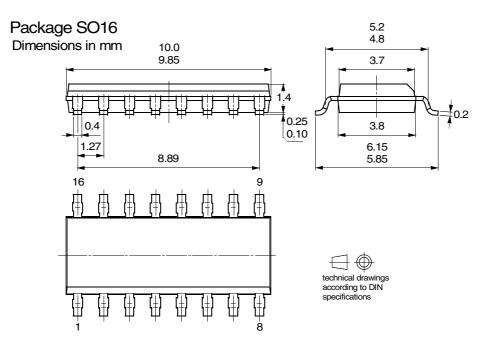
9. Application

Figure 9-1. Application Circuit



9.1 Recommendations for Applications

- $C_3 = 100 \text{ nF}$ should be very close to pin 1 (V_{DD}) and pin 16 (GND1)
- GND2 (pin 7, analog ground) and GND1 (pin 16, digital ground) must be connected as shown in Figure 9-1
- 4 MHz crystal must be very close to pin 14 and pin 15
- Components of the charge pump (C₁ / R₁ for AM and C₂ / R₂ for FM) should be very close to pin 11 with respect to pin 10.



10. Ordering Information

Extended Type Number	Package	Remarks
ATR4289-TBSY	SO16 plastic	Pb-free
ATR4289-TBQY	SO16 plastic	Taping according to IEC-286-3, Pb-free

11. Package Information

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

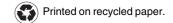
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

