: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- Core
- ARM ${ }^{\circledR}$ Cortex $^{\circledR}$-M3 revision 2.0 running at up to 64 MHz
- Memory Protection Unit (MPU)
- Thumb ${ }^{\circledR}-2$ instruction set
- Pin-to-pin compatible with AT91SAM7S legacy products (48- and 64-pin versions)
- Memories
- From 64 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator, single plane
- From 16 to 48 Kbytes embedded SRAM
- 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines
- 8-bit Static Memory Controller (SMC): SRAM, PSRAM, NOR and NAND Flash support
- Memory Protection Unit (MPU)
- System
- Embedded voltage regulator for single supply operation
- Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation
- Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure Detection and optional low power 32.768 kHz for RTC or device clock
- High precision $\mathbf{8 / 1 2} \mathbf{~ M H z}$ factory trimmed internal RC oscillator with 4 MHz default frequency for device startup. In-application trimming access for frequency adjustment
- Slow Clock Internal RC oscillator as permanent low-power mode device clock
- Two PLLs up to 130 MHz for device clock and for USB
- Temperature Sensor
- Up to 22 peripheral DMA (PDC) channels
- Low Power Modes
- Sleep and Backup modes, down to $3 \mu \mathrm{~A}$ in Backup mode
- Ultra low power RTC
- Peripherals
- USB 2.0 Device: 12 Mbps, 2668 byte FIFO, up to 8 bidirectional Endpoints. On-Chip Transceiver
- Up to 2 USARTs with ISO7816, IrDA ${ }^{\circledR}$, RS-485, SPI, Manchester and Modem Mode
- Two 2-wire UARTs
- Up to 2 Two Wire Interface (I2C compatible), 1 SPI, 1 Serial Synchronous Controller (I2S), 1 High Speed Multimedia Card Interface (SDIO/SD Card/MMC)
- Up to 6 Three-Channel 16-bit Timer/Counter with capture, waveform, compare and PWM mode. Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
- 4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time Generator Counter for Motor Control
- 32-bit Real-time Timer and RTC with calendar and alarm features
- Up to 15-channel, 1Msps ADC with differential input mode and programmable gain stage
- One 2-channel 12-bit 1Msps DAC
- One Analog Comparator with flexible input selection, Selectable input hysteresis
- 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)
- I/O
- Up to 79 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and on-die Series Resistor Termination
- Three 32-bit Parallel Input/Output Controllers, Peripheral DMA assisted Parallel Capture Mode

- Packages

- 100-lead LQFP, $14 \times 14 \mathrm{~mm}$, pitch $0.5 \mathrm{~mm} / 100$-ball LFBGA, $9 \times 9 \mathrm{~mm}$, pitch 0.8 mm
- 64-lead LQFP, $10 \times 10 \mathrm{~mm}$, pitch $0.5 \mathrm{~mm} / 64-\mathrm{pad}$ QFN $9 \times 9 \mathrm{~mm}$, pitch 0.5 mm
- 48-lead LQFP, $7 \times 7 \mathrm{~mm}$, pitch $0.5 \mathrm{~mm} / 48$-pad QFN $7 \times 7 \mathrm{~mm}$, pitch 0.5 mm

NOTE: This is a summary document. The complete document is available on the Atmel website at www.atmel.com.

1. SAM3S Description

Atmel's SAM3S series is a member of a family of Flash microcontrollers based on the high performance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 64 MHz and features up to 256 Kbytes of Flash and up to 48 Kbytes of SRAM. The peripheral set includes a Full Speed USB Device port with embedded transceiver, a High Speed MCI for SDIO/SD/MMC, an External Bus Interface featuring a Static Memory Controller providing connection to SRAM, PSRAM, NOR Flash, LCD Module and NAND Flash, $2 x$ USARTs, $2 x$ UARTs, $2 x$ TWIs, $3 x$ SPI, an I2S, as well as 1 PWM timer, $6 x$ general-purpose 16 -bit timers, an RTC, an ADC, a 12-bit DAC and an analog comparator.

The SAM3S series is ready for capacitive touch thanks to the QTouch library, offering an easy way to implement buttons, wheels and sliders

The SAM3S device is a medium range general purpose microcontroller with the best ratio in terms of reduced power consumption, processing power and peripheral set. This enables the SAM3S to sustain a wide range of applications including consumer, industrial control, and PC peripherals.

It operates from 1.62 V to 3.6 V and is available in 48 -, 64 - and 100 -pin QFP, 48 - and 64 -pin QFN, and 100 -pin BGA packages.
The SAM3S series is the ideal migration path from the SAM7S series for applications that require more performance. The SAM3S series is pin-to-pin compatible with the SAM7Sseries.

1.1 Configuration Summary

The SAM3S series devices differ in memory size, package and features list. Table 1-1 below summarizes the configurations of the device family

Table 1-1. Configuration Summary

Device	Flash	SRAM	Timer Counter Channels	GPIOs	UART/ USARTs	ADC	$\begin{aligned} & \text { 12-bit } \\ & \text { DAC } \\ & \text { Output } \end{aligned}$	External Bus Interface	HSMCI	Package
SAM3S4C	256 Kbytes single plane	48 Kbytes	6	79	$2 / 2^{(1)}$	16 ch.	2	8-bit data, 4 chip selects, 24-bit address	$\begin{aligned} & 1 \text { port } \\ & 4 \text { bits } \end{aligned}$	LQFP100 BGA100
SAM3S4B	256 Kbytes single plane	48 Kbytes	3	47	2/2	10 ch.	2	-	$\begin{aligned} & 1 \text { port } \\ & 4 \text { bits } \end{aligned}$	LQFP64 QFN 64
SAM3S4A	256 Kbytes single plane	48 Kbytes	3	34	2/1	8 ch.	-	-	-	$\begin{gathered} \text { LQFP48 } \\ \text { QFN } 48 \end{gathered}$
SAM3S2C	128 Kbytes single plane	32 Kbytes	6	79	$2 / 2^{(1)}$	16 ch.	2	8-bit data, 4 chip selects, 24-bit address	$\begin{aligned} & 1 \text { port } \\ & 4 \text { bits } \end{aligned}$	LQFP100 BGA100
SAM3S2B	128 Kbytes single plane	32 Kbytes	3	47	2/2	10 ch.	2	-	$\begin{aligned} & 1 \text { port } \\ & 4 \text { bits } \end{aligned}$	$\begin{gathered} \hline \text { LQFP64 } \\ \text { QFN } 64 \end{gathered}$
SAM3S2A	128 Kbytes single plane	32 Kbytes	3	34	2/1	8 ch.	-	-	-	$\begin{gathered} \text { LQFP48 } \\ \text { QFN } 48 \end{gathered}$
SAM3S1C	64 Kbytes single plane	16 Kbytes	6	79	$2 / 2^{(1)}$	16 ch.	2	8-bit data, 4 chip selects, 24-bit address	$\begin{aligned} & 1 \text { port } \\ & 4 \text { bits } \end{aligned}$	LQFP100 BGA100
SAM3S1B	64 Kbytes single plane	16 Kbytes	3	47	2/2	10 ch.	2	-	$\begin{aligned} & 1 \text { port } \\ & 4 \text { bits } \end{aligned}$	$\begin{gathered} \hline \text { LQFP64 } \\ \text { QFN } 64 \end{gathered}$
SAM3S1A	64 Kbytes single plane	16 Kbytes	3	34	2/1	8 ch.	-	-	-	$\begin{gathered} \hline \text { LQFP48 } \\ \text { QFN } 48 \end{gathered}$

Note: 1. Full Modem support on USART1.

2. SAM3S Block Diagram

Figure 2-1. SAM3S 100-pin Version Block Diagram

Figure 2-2. SAM3S 64-pin Version Block Diagram

Figure 2-3. SAM3S 48-pin Version Block Diagram

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.
Table 3-1. \quad Signal Description List

Signal Name	Function	Type	Active Level	Voltage reference	Comments
Power Supplies					
VDDIO	Peripherals I/O Lines and USB transceiver Power Supply	Power			1.62 V to 3.6V
VDDIN	Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply	Power			1.8 V to $3.6 \mathrm{~V}^{(4)}$
VDDOUT	Voltage Regulator Output	Power			1.8V Output
VDDPLL	Oscillator and PLL Power Supply	Power			1.62 V to 1.95 V
VDDCORE	Power the core, the embedded memories and the peripherals	Power			1.62 V to 1.95 V
GND	Ground	Ground			
Clocks, Oscillators and PLLs					
XIN	Main Oscillator Input	Input		VDDIO	Reset State: - PIO Input - Internal Pull-up disabled - Schmitt Trigger enabled ${ }^{(1)}$
XOUT	Main Oscillator Output	Output			
XIN32	Slow Clock Oscillator Input	Input			
XOUT32	Slow Clock Oscillator Output	Output			
PCK0 - PCK2	Programmable Clock Output	Output			Reset State: - PIO Input - Internal Pull-up enabled - Schmitt Trigger enabled ${ }^{(1)}$
Serial Wire/JTAG Debug Port - SWJ-DP					
TCK/SWCLK	Test Clock/Serial Wire Clock	Input		VDDIO	Reset State: - SWJ-DP Mode - Internal pull-up disabled - Schmitt Trigger enabled ${ }^{(1)}$
TDI	Test Data In	Input			
TDO/TRACESWO	Test Data Out / Trace Asynchronous Data Out	Output			
TMS/SWDIO	Test Mode Select /Serial Wire Input/Output	Input / I/O			
JTAGSEL	JTAG Selection	Input	High		Permanent Internal pull-down
Flash Memory					
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	Reset State: - Erase Input - Internal pull-down enabled - Schmitt Trigger enabled ${ }^{(1)}$
Reset/Test					
NRST	Synchronous Microcontroller Reset	I/O	Low	VDDIO	Permanent Internal pull-up
TST	Test Select	Input			Permanent Internal pull-down

Table 3－1．\quad Signal Description List（Continued）

Signal Name	Function	Type	Active Level	Voltage reference	Comments
Universal Asynchronous Receiver Transmitter－UARTx					
URXDx	UART Receive Data	Input			
UTXDx	UART Transmit Data	Output			
PIO Controller－PIOA－PIOB－PIOC					
PAO－PA31	Parallel IO Controller A	I／O		VDDIO	Reset State： －PIO or System IOs ${ }^{(2)}$ －Internal pull－up enabled －Schmitt Trigger enabled ${ }^{(1)}$
PB0－PB14	Parallel IO Controller B	I／O			
PC0－PC31	Parallel IO Controller C	I／O			
PIO Controller－Parallel Capture Mode（PIOA Only）					
PIODC0－PIODC7	Parallel Capture Mode Data	Input		VDDIO	
PIODCCLK	Parallel Capture Mode Clock	Input			
PIODCEN1－2	Parallel Capture Mode Enable	Input			
External Bus Interface					
D0－D7	Data Bus	I／O			
A0－A23	Address Bus	Output			
NWAIT	External Wait Signal	Input	Low		
Static Memory Controller－SMC					
NCSO－NCS3	Chip Select Lines	Output	Low		
NRD	Read Signal	Output	Low		
NWE	Write Enable	Output	Low		
NAND Flash Logic					
NANDOE	NAND Flash Output Enable	Output	Low		
NANDWE	NAND Flash Write Enable	Output	Low		
High Speed Multimedia Card Interface－HSMCI					
MCCK	Multimedia Card Clock	I／O			
MCCDA	Multimedia Card Slot A Command	I／O			
MCDAO－MCDA3	Multimedia Card Slot A Data	I／O			
Universal Synchronous Asynchronous Receiver Transmitter USARTx					
SCKx	USARTx Serial Clock	I／O			
TXDx	USARTx Transmit Data	I／O			
RXDx	USARTx Receive Data	Input			
RTSx	USARTx Request To Send	Output			
CTSx	USARTx Clear To Send	Input			
DTR1	USART1 Data Terminal Ready	I／O			
DSR1	USART1 Data Set Ready	Input			
DCD1	USART1 Data Carrier Detect	Input			
RI1	USART1 Ring Indicator	Input			

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Voltage reference	Comments
Synchronous Serial Controller - SSC					
TD	SSC Transmit Data	Output			
RD	SSC Receive Data	Input			
TK	SSC Transmit Clock	I/O			
RK	SSC Receive Clock	I/O			
TF	SSC Transmit Frame Sync	I/O			
RF	SSC Receive Frame Sync	1/O			
Timer/Counter - TC					
TCLKx	TC Channel x External Clock Input	Input			
TIOAx	TC Channel x I/O Line A	I/O			
TIOBx	TC Channel x I/O Line B	I/O			
Pulse Width Modulation Controller- PWMC					
PWMHx	PWM Waveform Output High for channel x	Output			
PWMLx	PWM Waveform Output Low for channel x	Output			only output in complementary mode when dead time insertion is enabled
PWMFIO	PWM Fault Input	Input			
Serial Peripheral Interface - SPI					
MISO	Master In Slave Out	I/O			
MOSI	Master Out Slave In	I/O			
SPCK	SPI Serial Clock	I/O			
SPI_NPCS0	SPI Peripheral Chip Select 0	I/O	Low		
SPI_NPCS1 - SPI_NPCS3	SPI Peripheral Chip Select	Output	Low		
Two-Wire Interface- TWI					
TWDx	TWIx Two-wire Serial Data	I/O			
TWCKx	TWIx Two-wire Serial Clock	I/O			
Analog					
ADVREF	ADC, DAC and Analog Comparator Reference	Analog			
Analog-to-Digital Converter - ADC					
AD0-AD14	Analog Inputs	Analog, Digital			
ADTRG	ADC Trigger	Input		VDDIO	
12-bit Digital-to-Analog Converter - DAC					
DAC0 - DAC1	Analog output	Analog, Digital			
DACTRG	DAC Trigger	Input		VDDIO	

Table 3-1. \quad Signal Description List (Continued)

| Signal Name | Function | Type | Active
 Level | Voltage
 reference | Comments |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |

Notes: 1. Schmitt Triggers can be disabled through PIO registers.
2. Some PIO lines are shared with System IOs.
3. Refer to the USB sub section in the product Electrical Characteristics Section for Pull-down value in USB Mode.
4. See Section 5.3 "Typical Powering Schematics" for restriction on voltage range of Analog Cells.

4. Package and Pinout

4.1 SAM3S4/2/1C Package and Pinout

Figure 4-2 shows the orientation of the 100 -ball LFBGA Package
4.1.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100 -lead LQFP Package

4.1.2 100-ball LFBGA Package Outline

The 100-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are $9 \times 9 \times 1.1 \mathrm{~mm}$.

Figure 4-2. Orientation of the 100-BALL LFBGA Package

4.1.3 100-Lead LQFP Pinout

Table 4-1. $\quad 100$-lead LQFP SAM3S4/2/1C Pinout

1	ADVREF
2	GND
3	PB0/AD4
4	PC29/AD13
5	PB1/AD5
6	PC30/AD14
7	PB2/AD6
8	PC31
9	PB3/AD7
10	VDDIN
11	VDDOUT
12	PA17/PGMD5/AD0
13	PC26
14	PA18/PGMD6/AD1
15	PA21/PGMD9/AD8
16	VDDCORE
17	PC27
18	PA19/PGMD7/AD2
19	PC15/AD11
20	PA22/PGMD10/AD9
21	PC13/AD10
22	PA23/PGMD1
23	PC12/AD12
24	PA20/PGMD8/AD3
25	PC0

26	GND
27	VDDIO
28	PA16/PGMD4
29	PC7
30	PA15/PGMD3
31	PA14/PGMD2
32	PC6
33	PA13/PGMD1
34	PA24/PGMD12
35	PC5
36	VDDCORE
37	PC4
38	PA25/PGMD13
39	PA26/PGMD14
40	PC3
41	PA12/PGMD0
42	PA11/PGMM3
43	PC2
44	PA10/PGMM2
45	GND
46	PA9/PGMM1
47	PC1
48	PA8/XOUT32/ PGMMO
49	PA7/XIN32/ PGMNVALID
50	VDDIO

51	TDI/PB4
52	PA6/PGMNOE
53	PA5/PGMRDY
54	PC28
55	PA4/PGMNCMD
56	VDDCORE
57	PA27/PGMD15
58	PC8
59	PA28
60	NRST
61	TST
62	PC9
63	PA29
64	PA30
65	PC10
66	PA3
67	PA2/PGMEN2
68	PC11
69	VDDIO
70	GND
71	PC14
72	PA1/PGMEN1
73	PC16
74	PAO/PGMENO
75	PC17

76	TDO/TRACESWO/PB 5
77	JTAGSEL
78	PC18
79	TMS/SWDIO/PB6
80	PC19
81	PA31
82	PC20
83	TCK/SWCLK/PB7
84	PC21
85	VDDCORE
86	PC22
87	ERASE/PB12
88	DDM/PB10
89	DDP/PB11
90	PC23
91	VDDIO
92	PC24
93	PB13/DAC0
94	PC25
95	GND
96	PB8/XOUT
97	PB9/PGMCK/XIN
98	VDDIO
99	PB14/DAC1
100	VDDPLL

4.1.4 100-ball LFBGA Pinout

Table 4-2. 100 -ball LFBGA SAM3S4/2/1C Pinout

A1	PB1/AD5
A2	PC29
A3	VDDIO
A4	PB9/PGMCK/XIN
A5	PB8/XOUT
A6	PB13/DAC0
A7	DDP/PB11
A8	DDM/PB10
A9	TMS/SWDIO/PB6
A10	JTAGSEL
B1	PC30
B2	ADVREF
B3	GNDANA
B4	PB14/DAC1
B5	PC21
B6	PC20
B7	PA31
B8	PC19
B9	PC18
B10	TDO/TRACESWO/ PB5 PB5
C1	PB2/AD6
C2	VDDPLL
C3	PC25
C4	PC23
C5	ERASE/PB12

C6	TCK/SWCLK/PB7
C7	PC16
C8	PA1/PGMEN1
C9	PC17
C10	PAO/PGMEN0
D1	PB3/AD7
D2	PB0/AD4
D3	PC24
D4	PC22
D5	GND
D6	GND
D7	VDDCORE
D8	PA2/PGMEN2
D9	PC11
D10	PC14
E1	PA17/PGMD5/AD0
E2	PC31
E3	VDDIN
E4	GND
E5	GND
E6	NRST
E7	PA29/AD13
E8	PA30/AD14
E9	PC10
E10	PA3

F1	PA18/PGMD6/AD1
F2	PC26
F3	VDDOUT
F4	GND
F5	VDDIO
F6	PA27/PGMD15
F7	PC8
F8	PA28
F9	TST
F10	PC9
G1	PA21/PGMD9/AD8
G2	PC27
G3	PA15/PGMD3
G4	VDDCORE
G5	VDDCORE
G6	PA26/PGMD14
G7	PA12/PGMD0
G8	PC28
G9	PA4/PGMNCMD
G10	PA5/PGMRDY
H1	PA19/PGMD7/AD2
H2	PA23/PGMD11
H3	PC7
H4	PA14/PGMD2
H5	PA13/PGMD1

H6	PC4
H7	PA11/PGMM3
H8	PC1
H9	PA6/PGMNOE
H10	TDI/PB4
J1	PC15/AD11
J2	PC0
J3	PA16/PGMD4
J4	PC6
J5	PA24/PGMD12
J6	PA25/PGMD13
J7	PA10/PGMM2
J8	GND
J9	VDDCORE
J10	VDDIO
K1	PA22/PGMD10/AD9
K2	PC13/AD10
K3	PC12/AD12
K4	PA20/PGMD8/AD3
K5	PC5
K6	PC3
K7	PC2
K8	PA9/PGMM1
K9	PA8/XOUT32/PGMM0
K10	PA7/XIN32/
PGMNVALID	

4.2 SAM3S4/2/1B Package and Pinout

Figure 4-3. Orientation of the 64-pad QFN Package

Figure 4-4. Orientation of the 64-lead LQFP Package

A11血

4.2.1 64-Lead LQFP and QFN Pinout

64-pin version SAM3S devices are pin-to-pin compatible with AT91SAM7S legacy products. Furthermore, SAM3S products have new functionalities shown in italic in Table 4-3.

Table 4-3. 64-pin SAM3S4/2/1B Pinout

1	ADVREF
2	GND
3	PB0/AD4
4	PB1/AD5
5	PB2/AD6
6	PB3/AD7
7	VDDIN
8	VDDOUT
9	PA17/PGMD5/ AD0
10	PA18/PGMD6/ AD1
12	PA21/PGMD9/ AD8
13	PA19/PGMDCR AD2
14	PA22/PGMD10/ AD9
16	PA20/PGMD8/ AD3
16	

17	GND
18	VDDIO
19	PA16/PGMD4
20	PA15/PGMD3
21	PA14/PGMD2
22	PA13/PGMD1
23	PA24/PGMD12
24	VDDCORE
25	PA25/PGMD13
26	PA26/PGMD14
27	PA12/PGMD0
28	PA11/PGMM3
29	PA10/PGMM2
30	PA9/PGMM1
31	$\begin{gathered} \text { PA8/XOUT32/ } \\ \text { PGMM0 } \end{gathered}$
32	PA7/XIN32/ PGMNVALID

33	TDI/PB4
34	PA6/PGMNOE
35	PA5/PGMRDY
36	PA4/PGMNCMD
37	PA27/PGMD15
38	PA28
39	NRST
40	TST
41	PA29
42	PA30
43	PA3
44	PA2/PGMEN2
45	VDDIO
46	GND
47	PA1/PGMEN1
48	

49	TDO/TRACESWO/PB5
50	JTAGSEL
51	TMS/SWDIO/PB6
52	PA31
53	TCK/SWCLK/PB7
54	VDDCORE
55	ERASE/PB12
56	DDM/PB10
57	DDP/PB11
58	VDDIO
59	PB13/DAC0
60	GNDD
61	XIN/PGMCK/PB9
64	PB14/DAC1
62	

Note: The bottom pad of the QFN package must be connected to ground.

4.3 SAM3S4/2/1A Package and Pinout

Figure 4-5. Orientation of the 48-pad QFN Package

Figure 4-6. Orientation of the 48-lead LQFP Package

4.3.1 48-Lead LQFP and QFN Pinout

Table 4-4. $\quad 48$-pin SAM3S4/2/1A Pinout

1	ADVREF
2	GND
3	PB0/AD4
4	PB1/AD5
5	PB2/AD6
6	PB3/AD7
7	VDDIN
8	VDDOUT
9	PA17/PGMD5/ AD0
10	PA18/PGMD6/ AD1
11	PA19/PGMD7/ AD2
12	PA20/AD3

13	VDDIO
14	PA16/PGMD4
15	PA15/PGMD3
16	PA14/PGMD2
17	PA13/PGMD1
18	VDDCORE
19	PA12/PGMD0
20	PA11/PGMM3
21	PA10/PGMM2
22	PA9/PGMM1
23	PA8/XOUT32/ PGMM0
24	PA7/XIN32/ PGMNVALID

25	TDI/PB4
26	PA6/PGMNOE
27	PA5/PGMRDY
28	PA4/PGMNCMD
29	NRST
30	TST
31	PA3
32	PA2/PGMEN2
33	VDDIO
34	GND
35	PA1/PGMEN1
36	PA0/PGMEN0

37	TDO/TRACESWO/ PB5
38	JTAGSEL
39	TMS/SWDIO/PB6
40	TCK/SWCLK/PB7
41	VDDCORE
42	ERASE/PB12
43	DDM/PB10
44	DDP/PB11
45	XOUT/PB8
46	XIN/PB9/PGMCK
47	VDDIO
48	VDDPLL

Note: \quad The bottom pad of the QFN package must be connected to ground.

5. Power Considerations

5.1 Power Supplies

The SAM3S product has several types of power supply pins:

- VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage ranges from 1.62 V and 1.95 V .
- VDDIO pins: Power the Peripherals I/O lines (Input/Output Buffers); USB transceiver; Backup part, 32 kHz crystal oscillator and oscillator pads; ranges from 1.62 V and 3.6 V
- VDDIN pin: Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply; Voltage ranges from 1.8 V to 3.6 V
- VDDPLL pin: Powers the PLLA, PLLB, the Fast RC and the 3 to 20 MHz oscillator; voltage ranges from 1.62 V and 1.95 V .

5.2 Voltage Regulator

The SAM3S embeds a voltage regulator that is managed by the Supply Controller.
This internal regulator is intended to supply the internal core of SAM3S. It features two different operating modes:

- In Normal mode, the voltage regulator consumes less than $700 \mu \mathrm{~A}$ static current and draws 80 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current. In Wait Mode quiescent current is only $7 \mu \mathrm{~A}$.
- In Backup mode, the voltage regulator consumes less than $1 \mu \mathrm{~A}$ while its output (VDDOUT) is driven internally to GND. The default output voltage is 1.80 V and the start-up time to reach Normal mode is inferior to $100 \mu \mathrm{~s}$.

For adequate input and output power supply decoupling/bypassing, refer to the Voltage Regulator section in the Electrical Characteristics section of the datasheet.

5.3 Typical Powering Schematics

The SAM3S supports a $1.62 \mathrm{~V}-3.6 \mathrm{~V}$ single supply mode. The internal regulator input connected to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

As VDDIN powers the voltage regulator, the ADC/DAC and the analog comparator, when the user does not want to use the embedded voltage regulator, it can be disabled by software via the SUPC (note that it is different from Backup mode).

Figure 5-1. Single Supply

Note: Restrictions
With Main Supply < 2.0 V, USB and ADC/DAC and Analog comparator are not usable. With Main Supply $\geq 2.0 \mathrm{~V}$ and $<3 \mathrm{~V}$, USB is not usable.
With Main Supply $\geq 3 \mathrm{~V}$, all peripherals are usable.
Figure 5-2. Core Externally Supplied

Note: Restrictions
With Main Supply < 2.0V, USB is not usable.
With VDDIN < 2.0V, ADC/DAC and Analog comparator are not usable.
With Main Supply $\geq 2.0 \mathrm{~V}$ and $<3 \mathrm{~V}$, USB is not usable.
With Main Supply and VDDIN ≥ 3 V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.

Figure 5-3. Backup Battery

Note: The two diodes provide a "switchover circuit" (for illustration purpose) between the backup battery and the main supply when the system is put in backup mode.

5.4 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.

5.5 Low Power Modes

The various low power modes of the SAM3S are described below:

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time ($<0.1 \mathrm{~ms}$). Total current consumption is $3 \mu \mathrm{~A}$ typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are off.

Backup mode is based on the Cortex-M3 deepsleep mode with the voltage regulator disabled.
The SAM3S can be awakened from this mode through WUP0-15 pins, the supply monitor (SM), the RTT or RTC wake-up event.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Control Register of the Cortex-M3 set to 1. (See the Power management description in The ARM Cortex M3 Processor section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake up events occurs:

- WKUPENO-15 pins (level transition, configurable debouncing)
- Supply Monitor alarm
- RTC alarm
- RTT alarm

5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than $10 \mu \mathrm{~s}$. Current Consumption in Wait mode is typically $15 \mu \mathrm{~A}$ (total current consumption) if the internal voltage regulator is used or $8 \mu \mathrm{~A}$ if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to wake-up the core (WFE). This is done by configuring the external lines WUP0-15 as fast startup wake-up pins (refer to Section 5.7 "Fast Startup"). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU (exit from WFE).

Entering Wait Mode:

- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
- Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM $=0$ in PMC_FSMR.

The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

5.5.4 Low Power Mode Summary Table

The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake up sources can be individually configured. Table 5-1 below shows a summary of the configurations of the low power modes.

Table 5-1. Low Power Mode Configuration Summary

Mode	SUPC, 32 kHz Oscillator RTC RTT Backup Registers, POR (Backup Region)	Regulator	Core Memory Peripherals	Mode Entry	Potential Wake Up Sources	Core at Wake Up	PIO State while in Low Power Mode	PIO State at Wake Up	Consumption (2) (3)	Wake-up Time ${ }^{(1)}$
Backup Mode	ON	OFF	OFF (Not powered)	WFE +SLEEPDEEP bit $=1$	WUP0-15 pins SM alarm RTC alarm RTT alarm	Reset	Previous state saved	 PIOC Inputs with pull ups	$3 \mu \mathrm{Atyp}{ }^{(4)}$	$<0.1 \mathrm{~ms}$
Wait Mode	ON	ON	Powered (Not clocked)	WFE +SLEEPDEEP bit $=0$ + LPM bit = 1	Any Event from: Fast startup through WUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	$5 \mu \mathrm{~A} / 15 \mu \mathrm{~A}^{(5)}$	< $10 \mu \mathrm{~s}$
Sleep Mode	ON	ON	$\begin{aligned} & \text { Powered }^{(7)} \\ & \text { (Not clocked) } \end{aligned}$	$\begin{aligned} & \text { WFE or WFI } \\ & \text { +SLEEPDEEP } \\ & \text { bit }=0 \\ & + \text { LPM bit }=0 \end{aligned}$	Entry mode =WFI Interrupt Only; Entry mode =WFE Any Enabled Interrupt and/or Any Event from: Fast start-up through WUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	(6)	(6)

Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the $4 / 8 / 12 \mathrm{MHz}$ fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.
2. The external loads on PIOs are not taken into account in the calculation.
3. Supply Monitor current consumption is not included.
4. Total Current consumption.
5. $5 \mu \mathrm{~A}$ on VDDCORE, $15 \mu \mathrm{~A}$ for total current consumption (using internal voltage regulator), $8 \mu \mathrm{~A}$ for total current consumption (without using internal voltage regulator).
6. Depends on MCK frequency.
7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Source

SAM3S Summary

5.7 Fast Startup

The device allows the processor to restart in a few microseconds while the processor is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUPO to $15+$ SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast startup signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded $4 / 8 / 12 \mathrm{MHz}$ fast RC oscillator, switches the master clock on this 4 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Circuitry

6. Input/Output Lines

The SAM3S has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO) and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in IO mode or by the multiplexed peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these modes is performed independently for each I/O line through the PIO controller user interface. For more details, refer to the product PIO controller section.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.
The SAM3S embeds high speed pads able to handle up to 32 MHz for HSMCI (MCK/2), 45 MHz for SPI clock lines and 35 MHz on other lines. See AC Characteristics Section in the Electrical Characteristics Section of the datasheet for more details. Typical pull-up and pull-down value is $100 \mathrm{k} \Omega$ for all I / Os.

Each I/O line also embeds an ODT (On-Die Termination), see Figure 6-1. It consists of an internal series resistor termination scheme for impedance matching between the driver output (SAM3S) and the PCB trace impedance preventing signal reflection. The series resistor helps to reduce IOs switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or between boards. In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

6.2 System I/O Lines

System I/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few. Described below are the SAM3S system I/O lines shared with PIO lines:

These pins are software configurable as general purpose I/O or system pins. At startup the default function of these pins is always used.

Table 6-1. System I/O Configuration Pin List.

SYSTEM_IO bit number	Default function after reset	Other function	Constraints for normal start	Configuration
12	ERASE	PB12	Low Level at startup ${ }^{(1)}$	In Matrix User Interface Registers (Refer to the SystemIO Configuration Register in the Bus Matrix section of the product datasheet.)
10	DDM	PB10	-	
11	DDP	PB11	-	
7	TCK/SWCLK	PB7	-	
6	TMS/SWDIO	PB6	-	
5	TDO/TRACESWO	PB5	-	
4	TDI	PB4	-	
-	PA7	XIN32	-	See footnote ${ }^{(2)}$ below
-	PA8	XOUT32	-	
-	PB9	XIN	-	See footnote ${ }^{(3)}$ below
-	PB8	XOUT	-	

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode,
2. In the product Datasheet Refer to: Slow Clock Generator of the Supply Controller section.
3. In the product Datasheet Refer to: 3 to 20 MHZ Crystal Oscillator information in PMC section.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20 -pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 on page 6.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the Debug and Test Section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about $15 \mathrm{k} \Omega$ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the Debug and Test Section.

