: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- High Performance, Low Power AVR ${ }^{\circledR}$ 8-Bit Microcontroller
- Advanced RISC Architecture
- 120 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 20 MIPS Througput at 20 MHz
- High Endurance Non-volatile Memory segments
- 1K Bytes of In-System Self-programmable Flash program memory
- 64 Bytes EEPROM
- 64 Bytes Internal SRAM
- Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
- Data retention: 20 Years at $85^{\circ} \mathrm{C} / 100$ Years at $25^{\circ} \mathrm{C}$ (see page 6)
- Programming Lock for Self-Programming Flash \& EEPROM Data Security
- Peripheral Features
- One 8-bit Timer/Counter with Prescaler and Two PWM Channels
- 4-channel, 10-bit ADC with Internal Voltage Reference
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Special Microcontroller Features
- debugWIRE On-chip Debug System
- In-System Programmable via SPI Port
- External and Internal Interrupt Sources
- Low Power Idle, ADC Noise Reduction, and Power-down Modes
- Enhanced Power-on Reset Circuit
- Programmable Brown-out Detection Circuit with Software Disable Function
- Internal Calibrated Oscillator
- I/O and Packages
- 8-pin PDIP/SOIC: Six Programmable I/O Lines
- 10-pad MLF: Six Programmable I/O Lines
- 20-pad MLF: Six Programmable I/O Lines
- Operating Voltage:
- 1.8 - 5.5 V
- Speed Grade:
- 0-4 MHz @ 1.8-5.5V
- 0-10 MHz @ 2.7-5.5V
- 0-20 MHz @ 4.5-5.5V
- Industrial Temperature Range
- Low Power Consumption
- Active Mode:
- $190 \mu \mathrm{~A}$ at 1.8 V and 1 MHz
- Idle Mode:
- $24 \mu \mathrm{~A}$ at 1.8 V and 1 MHz

1. Pin Configurations

Figure 1-1. Pinout of ATtiny 13 A

NOTE: Bottom pad should be soldered to ground.
DNC: Do Not Connect

NOTE: Bottom pad should be soldered to ground.
DNC: Do Not Connect

1.1 Pin Description

1.1.1 VCC

Supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB5:PB0)

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny $13 A$ as listed on page 55.

1.1.4 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 18-4 on page 120. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

2. Overview

The ATtiny13A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny 13 A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny13A provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, Internal and External Interrupts, a 4channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny 13A AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Evaluation kits.

3. About

3.1 Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

3.3 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at $85^{\circ} \mathrm{C}$ or 100 years at $25^{\circ} \mathrm{C}$.

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O Registers within the address range $0 \times 00-0 \times 1 \mathrm{~F}$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.ome of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.

5．Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\＃Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd，Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z，C，N，V，H	1
ADC	Rd，Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z，C，N，V，H	1
ADIW	RdI，K	Add Immediate to Word	Rdh：Rdl \leftarrow Rdh：Rdl＋K	Z，C，N，，，S	2
SUB	Rd，Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z，C，N，V，H	1
SUBI	Rd，K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z，C，N，V，H	1
SBC	Rd，Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z，C，N，V，H	1
SBCI	Rd，K	Subtract with Carry Constant from Reg．	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z，C，N，V，H	1
SBIW	Rdı，K	Subtract Immediate from Word	Rdh：Rdl \leftarrow Rdh：Rdl -K	Z，C，N，V，S	2
AND	Rd，Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \cdot \mathrm{Rr}$	Z，N，V	1
ANDI	Rd，K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z，N，V	1
OR	Rd，Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{Rr}$	Z，N，V	1
ORI	Rd，K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{K}$	Z，N，V	1
EOR	Rd，Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z，N，V	1
COM	Rd	One＇s Complement	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}-\mathrm{Rd}$	Z，C，N，V	1
NEG	Rd	Two＇s Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z，C，N，V，H	1
SBR	Rd，K	Set Bit（s）in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \mathrm{v}$ K	Z，N，V	1
CBR	Rd，K	Clear Bit（s）in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 x F F-K)$	Z，N，V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z，N，V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z，N，V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z，N，V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z，N，V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \times \mathrm{FFF}$	None	1
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to（Z）	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to（Z）	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd， Rr	Compare，Skip if Equal	if（ $\mathrm{Rd}=\mathrm{Rr}$ ） $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
CP	Rd， Rr	Compare	$\mathrm{Rd}-\mathrm{Rr}$	Z，N，V，C，H	1
CPC	Rd， Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z，N，V，C，H	1
CPI	Rd，K	Compare Register with Immediate	Rd－K	Z，N，V，C，H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
SBIC	P，b	Skip if Bit in I／O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1／2／3
SBIS	P，b	Skip if Bit in I／O Register is Set	if $(P(b)=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
BRBS	s，k	Branch if Status Flag Set	if（SREG（s）$=1$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRBC	s，k	Branch if Status Flag Cleared	if（SREG（s）$=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BREQ	k	Branch if Equal	if $(Z=1)$ then $P C \leftarrow P C+k+1$	None	1／2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $P C \leftarrow P C+k+1$	None	1／2
BRCS	k	Branch if Carry Set	if $(C=1)$ then $P C \leftarrow P C+k+1$	None	1／2
BRCC	k	Branch if Carry Cleared	if（ $\mathrm{C}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRSH	k	Branch if Same or Higher	if（ $\mathrm{C}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRLO	k	Branch if Lower	if（ $C=1$ ）then $P C \leftarrow P C+k+1$	None	1／2
BRMI	k	Branch if Minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRPL	k	Branch if Plus	if $(\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRGE	k	Branch if Greater or Equal，Signed	if（ $\mathrm{N} \oplus \mathrm{V}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRLT	k	Branch if Less Than Zero，Signed	if $(\mathrm{N} \oplus \mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRHS	k	Branch if Half Carry Flag Set	if（ $\mathrm{H}=1$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRHC	k	Branch if Half Carry Flag Cleared	if（ $\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRTS	k	Branch if T Flag Set	if $(T=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRTC	k	Branch if T Flag Cleared	if（ $\mathrm{T}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRIE	k	Branch if Interrupt Enabled	if $(\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRID	k	Branch if Interrupt Disabled	if $(1=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BIT AND BIT－TEST INSTRUCTIONS					
SBI	P，b	Set Bit in I／O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P，b	Clear Bit in I／O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \operatorname{Rd}(0) \leftarrow 0$	Z，C，N，V	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z，C，N，V	1
ROL	Rd	Rotate Left Through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z，C，N，V	1

-

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow \mathrm{C}, \operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N, V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3 . .0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to Register	$\mathrm{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$C \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$\mathrm{N} \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	I	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	X + , Rr	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1,(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	Y + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	Z + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Z}) \leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Z}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Z}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z_{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	$(\mathrm{z}) \leftarrow \mathrm{R} 1: \mathrm{R} 0$	None	
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

6. Ordering Information

Speed (MHz)	Power Supply (V)	Ordering Code ${ }^{(1)}$	Package ${ }^{(2)}$	Operation Range
20	1.8-5.5	ATtiny13A-PU ATtiny13A-SU ATtiny13A-SUR ATtiny13A-SH ATtiny13A-SHR ATtiny13A-SSU ATtiny13A-SSUR ATtiny13A-SSH ATtiny13A-SSHR ATtiny13A-MU ATtiny13A-MUR ATtiny $13 \mathrm{~A}-\mathrm{MMU}^{(3)}$ ATtiny13A-MMUR ${ }^{(3)}$	$\begin{gathered} \text { 8P3 } \\ 8 \mathrm{~S} 2 \\ 8 \mathrm{~S} 2 \\ 8 \mathrm{~S} 2 \\ 8 \mathrm{~S} 2 \\ 8 \mathrm{~S} 1 \\ 8 \mathrm{~S} 1 \\ 8 \mathrm{~S} 1 \\ 8 \mathrm{~S} 1 \\ 20 \mathrm{M} 1 \\ 20 \mathrm{M} 1 \\ 10 \mathrm{M} 1^{(3)} \\ 10 \mathrm{M} 1^{(3)} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)^{(4)} \end{gathered}$
		ATtiny13A-SN ATtiny13A-SNR ATtiny13A-SS7 ATtiny13A-SS7R	$\begin{aligned} & \text { 8S2 } \\ & \text { 8S2 } \\ & \text { 8S1 } \\ & 8 \mathrm{~S} 1 \end{aligned}$	Industrial $\left(-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)^{(5)}$
		ATtiny13A-SF ATtiny13A-SFR ATtiny13A-MMF ATtiny13A-MMFR	$\begin{gathered} 8 \mathrm{~S} 2 \\ 8 \mathrm{~S} 2 \\ 10 \mathrm{M} 1^{(3)} \\ 10 \mathrm{M} 1^{(3)} \end{gathered}$	Industrial $\left(-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)^{(6)}$

Notes: 1. Code indicators:

- H or 7: NiPdAu lead finish
- U, N or F: matte tin
- R: tape \& reel

2. All packages are Pb -free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
3. Topside marking for ATtiny13A:

> - 1st Line: T13
> - 2nd Line: Axx
> - 3rd Line: xxx
4. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
5. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny 13 A Specification at $105^{\circ} \mathrm{C}$.
6. For typical and Electrical characteristics for this device please consult Appendix B, ATtiny 13 A Specification at $125^{\circ} \mathrm{C}$.

Package Type	
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
$\mathbf{8 S 2}$	8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC)
$\mathbf{8 S 1}$	8-lead, 0.150 " Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)
20M1	20-pad, $4 \times 4 \times 0.8 \mathrm{~mm}$ Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)
10M1	10-pad, $3 \times 3 \times 1 \mathrm{~mm}$ Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)

7. Packaging Information

$7.1 \quad 8 \mathrm{P} 3$

Top View

End View

COMMON DIMENSIONS
(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
A			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
c	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
E	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
e	0.100 BSC			
eA	0.300 BSC			
L	0.115	0.130	0.150	2

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

01/09/02

7.28 S 2

TOP VIEW

SIDE VIEW

END VIEW

COMMON DIMENSIONS (Unit of Measure $=\mathrm{mm}$)				
SYMBOL MIN NOM MAX NOTE A 1.70 2.16 A1 0.05 0.25 b 0.35 0.48 4 C 0.15 0.35 4 D 5.13 5.35 E1 5.18 5.40 2 E 7.70 8.26 L 0.51 0.85 θ 0° 8° e 1.27 BSC				

Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.
2. Mismatch of the upper and lower dies and resin burrs aren't included.
3. Determines the true geometric position.
4. Values b, C apply to plated terminal. The standard thickness of the plating layer shall measure between 0.007 to .021 mm .

4/15/08

Package Drawing Contact: packagedrawings@atmel.com	TITLE 8S2, 8-lead, 0.208" Body, Plastic Small Outline Package (EIAJ)	$\begin{aligned} & \text { GPC } \\ & \text { STN } \end{aligned}$	DRAWING NO. 8S2	$\begin{gathered} \text { REV. } \\ \mathrm{F} \end{gathered}$

$7.3 \quad 8 \mathrm{~S} 1$

7.4 20M1

7.510 M 1

COMMON DIMENSIONS

(Unit of Measure $=$ mm $) ~$				
SYMBOL	MIN	NOM	MAX	NOTE
A	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D	2.90	3.00	3.10	
D1	1.40	-	1.75	
E	2.90	3.00	3.10	
E1	2.20	-	2.70	
e		0.50		
L	0.30	-	0.50	
y	-	-	0.08	
K	0.20	-	-	

Notes: 1. This package conforms to JEDEC reference MO-229C, Variation VEED-5.
2. The terminal \#1 ID is a Lasser-marked Feature.

2325 Orchard Parkway San Jose, CA 95131	TITLE 10M1, 10-pad, $3 \times 3 \times 1.0 \mathrm{~mm}$ Body, Lead Pitch 0.50 mm , 1.64×2.60 mm Exposed Pad, Micro Lead Frame Package	DRAWING NO. 10M1	REV.

8. Errata

The revision letters in this section refer to the revision of the ATtiny 13A device.

8.1 ATtiny13A Rev. G-H

- EEPROM can not be written below 1.9 Volt

1. EEPROM can not be written below 1.9 Volt

Writing the EEPROM at V_{CC} below 1.9 volts might fail.
Problem Fix/Workaround
Do not write the EEPROM when V_{CC} is below 1.9 volts.

8.2 ATtiny13A Rev. E - F

These device revisions were not sampled.

8.3 ATtiny13 Rev. A - D

These device revisions were referred to as ATtiny13/ATtiny13V.

9. Datasheet Revision History

Please note that page numbers in this section refer to the current version of this document and may not apply to previous versions.

9.1 Rev. 8126F - 05/12

1. Updated Table 10-5 on page 57.
2. Updated order codes on page 11.

9.2 Rev. 8126E - 07/10

1. Updated description in Section 6.4.2 "CLKPR - Clock Prescale Register" on page 28.
2. Adjusted notes in Table 18-1, "DC Characteristics, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$," on page 117.
3. Updated plot order in Section 19. "Typical Characteristics" on page 124, added some plots, also some headers and figure titles adjusted.
4. Updated Section 6. "Ordering Information" on page 11, added extended temperature part numbers, as well tape \& reel part numbers. Notes adjusted.
5. Updated bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

9.3 Rev. 8126D - 11/09

1. Added note "If the RSTDISPL fuse is programmed..." in Startup-up Times Table 6-5 and Table 6-6 on page 26 .
2. Added addresses in all Register Description tables and cross-references to Register Summary.
3. Updated naming convention for -COM bits in tables from Table 11-2 on page 70 to Table 11-7 on page 72.
4. Updated value for $t_{\text {wd_erase }}$ in Table 17-8, "Minimum Wait Delay Before Writing the Next Flash or EEPROM Location," on page 108.
5. Added NiPdAU note for -SH and -SSH in Section 6. "Ordering Information" on page 11.

9.4 Rev. 8126C - 09/09

1. Added EEPROM errata for rev. G - H on page 17.
2. Added a note about topside marking in Section 6. "Ordering Information" on page 11.
9.5 Rev. 8126B - 11/08
3. Updated order codes on page 11 to reflect changes in material composition.
4. Updated sections:

- "DIDRO - Digital Input Disable Register 0" on page 81
- "DIDR0 - Digital Input Disable Register 0" on page 95

3. Updated "Register Summary" on page 7.

9.6 Rev. 8126A - 05/08

1. Initial revision, created from document $2535 \mathrm{I}-04 / 08$.
2. Updated characteristic plots of section "Typical Characteristics", starting on page 124.
3. Updated "Ordering Information" on page 11.
4. Updated section:

- "Speed" on page 118

5. Update tables:

- "DC Characteristics, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ " on page 117
- "Calibration Accuracy of Internal RC Oscillator" on page 119
- "Reset, Brown-out, and Internal Voltage Characteristics" on page 120
- "ADC Characteristics, Single Ended Channels. $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ " on page 121
- "Serial Programming Characteristics, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ " on page 122

6. Added description of new function, "Power Reduction Register":

- Added functional description on page 31
- Added bit description on page 34
- Added section "Supply Current of I/O Modules" on page 124
- Updated Register Summary on page 7

7. Added description of new function, "Software BOD Disable":

- Added functional description on page 31
- Updated section on page 32
- Added register description on page 33
- Updated Register Summary on page 7

8. Added description of enhanced function, "Enhanced Power-On Reset": - Updated Table 18-4 on page 120, and Table 18-5 on page 120

Headquarters

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600

International
Atmel Asia Limited
Unit 01-5 \& 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581

Product Contact

Web Site	Technical Support	Sales Contact
www.atmel.com	avr@atmel.com	www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2012 Atmel Corporation. All rights reserved.

Atme ${ }^{\circledR}$, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

