

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









Automotive grade

## **Automotive IPS**

Low side AUIPS1025R

## INTELLIGENT POWER LOW SIDE SWITCH

#### **Features**

- Over temperature shutdown
- Over current shutdown
- Active clamp
- Up to 50kHz
- Logic level input
- ESD protection

## **Description**

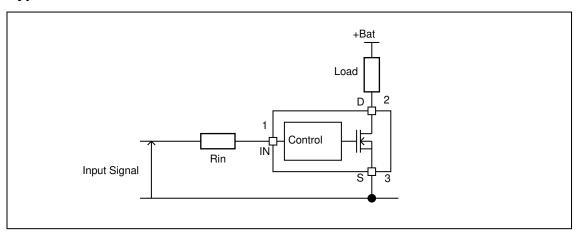
The AUIPS1025R is a three terminal Intelligent Power Switch (IPS) that features a low side MOSFET with overcurrent, over-temperature, ESD protection and drain to source active clamp. This device offers protections and the high reliability required in harsh environments. The switch provides efficient protection by turning OFF the power MOSFET when the temperature exceeds 170°C or when the drain current reaches 22A. The device restarts once the input is cycled. The avalanche capability is significantly enhanced by the active clamp and covers most inductive load demagnetizations.

### **Product Summary**

 $\begin{array}{ll} Rds(on) & 35m\Omega\ (max.) \\ Vclamp & 39V \\ Ishutdown & 15A\ (min.) \end{array}$ 

#### **Package**




D-Pak AUIPS1025R

## **Ordering Information**

| Base Part Number | Standard Pack |                    |          |                      |
|------------------|---------------|--------------------|----------|----------------------|
| base Fait Number | Package Type  | Form               | Quantity | Complete Part Number |
| AUIPS1025R       | D-Pak-3-Lead  | Tube               | 75       | AUIPS1025R           |
| AUIF31025h       | D-Pak-3-Leau  | Tape and reel left | 3000     | AUIPS1025RTRL        |



# **Typical Connection**





**Absolute Maximum Ratings** 

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. (Tambient=25°C unless otherwise specified).

| Symbol    | Parameter                                                                                                    | Min. | Max. | Units |
|-----------|--------------------------------------------------------------------------------------------------------------|------|------|-------|
| Vds       | Maximum drain to source voltage                                                                              | -0.3 | 36   | V     |
| Vds cont. | Maximum continuous drain to source voltage                                                                   | _    | 28   | V     |
| Vin       | Maximum input voltage                                                                                        | -0.3 | 6    | V     |
| Isd cont. | Max. diode continuous current (limited by thermal dissipation)                                               | _    | 4.5  | Α     |
| Pd        | Maximum power dissipation (internally limited by thermal protection) Rth=50°C/W AUIPS1025R 1" sqr. footprint | _    | 2.5  | W     |
| Tį max.   | Maximum operating junction temperature                                                                       | -40  | 150  | °C    |
| ijillax.  | Maximum storage temperature                                                                                  | -55  | 150  | C     |

### **Thermal Characteristics**

| Symbol | Parameter                                                      | Тур. | Max. | Units |
|--------|----------------------------------------------------------------|------|------|-------|
| Rth1   | Thermal resistance junction to ambient D-Pak std. footprint    | 70   | _    |       |
| Rth2   | Thermal resistance junction to ambient D-Pak 1" sqr. footprint | 50   | _    | °C/W  |
| Rth3   | Thermal resistance junction to case D-Pak                      | 2.6  |      |       |

## **Recommended Operating Conditions**

These values are given for a guick design.

| Symbol    | Parameter                                                                                            | Min. | Max. | Units |
|-----------|------------------------------------------------------------------------------------------------------|------|------|-------|
| Vin_On    | High level input voltage                                                                             | 4.5  | 5.5  | 1/    |
| Vin_Off   | Low level input voltage                                                                              | 0    | 0.5  | V     |
| lds       | Continuous drain current, Tambient=85°C, Tj=150°C, Vin=5V<br>Rth=50°C/W AUIPS1025R 1" sqr. footprint |      | 4.9  | Α     |
| Max F     | Max. frequency                                                                                       | _    | 50   | kHz   |
| Rin       | Recommended resistor in series with IN pin (1)                                                       | 10   | 1000 | Ω     |
| Max Tr_in | Max. input rising time (from 10% to 90%) (2)                                                         | _    | 50   | ns    |

<sup>(1)</sup> Input signal of the pulse generator not the voltage on the IN pin of the device. Do not connect any other component on the input.

<sup>(2)</sup> Max. Tr\_in is for the input signal of the pulse generator not on the IN pin voltage of the device.



#### **Static Electrical Characteristics**

Tj= -40..150°C, Vcc=6..28V (unless otherwise specified), typical value are given for Tj=25°C

| Symbol    | Parameter                            | Min. | Тур. | Max. | Units | Test Conditions             |
|-----------|--------------------------------------|------|------|------|-------|-----------------------------|
| Rds(on)   | ON state resistance Tj=25°C          | _    | 28   | 35   |       | Vin=5V, Ids=10A             |
| nus(on)   | ON state resistance Tj=150°C (2)     | _    | 47   | 55   | mΩ    | VIII=5V, IUS=TUA            |
| ldss1     | Drain to source leakage current      | _    | 15   | 25   | μА    | Vcc=14V, Vin=0V,<br>Tj=25°C |
| ldss2     | Drain to source leakage current      | _    | 45   | 60   | μΑ    | Vcc=28V, Vin=0V,<br>Tj=25°C |
| V clamp1  | Drain to source clamp voltage 1      | 36   | 39   | _    |       | Id=20mA                     |
| V clamp2  | Drain to source clamp voltage 2      | _    | 39   | _    | V     | Id=2A                       |
| Vin clamp | IN to source pin clamp voltage       | 5.5  | 6.5  | 7    | V     | lin=1mA                     |
| Vth       | Input threshold voltage              | _    | 1.4  | _    |       | Vds-Vin=6V, Id=1mA          |
| lin, on   | ON state IN positive current         | 50   | 130  | 230  | μΑ    | Vin=5V,Rin=10Ω              |
| Tin_delay | Delay before turn ON by input signal | 1    | _    | _    | ms    | Vdrain>6V                   |

## **Switching Electrical Characteristics**

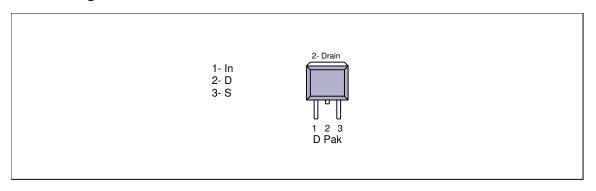
Tj= -40..150°C, Vcc=14V (unless otherwise specified), typical value are given for Tj=25°C Resistive load= $2\Omega$ . Rinput= $10\Omega$ . Vin=5V

| Symbol | Parameter                  | Min. | Тур. | Max. | Units | Test Conditions |
|--------|----------------------------|------|------|------|-------|-----------------|
| Tdon   | Turn-on delay time to 10%  | _    | 100  | 450  |       |                 |
| Tr     | Rise time 10% to 90%       | _    | 250  | 900  | no    | See figure 2    |
| Tdoff  | Turn-off delay time to 90% | _    | 500  | 1650 | ns    | See ligure 2    |
| Tf     | Fall time 90% to 10%       | _    | 300  | 1000 |       |                 |

Tj= -40..150°C, Vcc=14V (unless otherwise specified), typical value are given for Tj=25°C Resistive load=20. Rinput=10000. Vin=5V

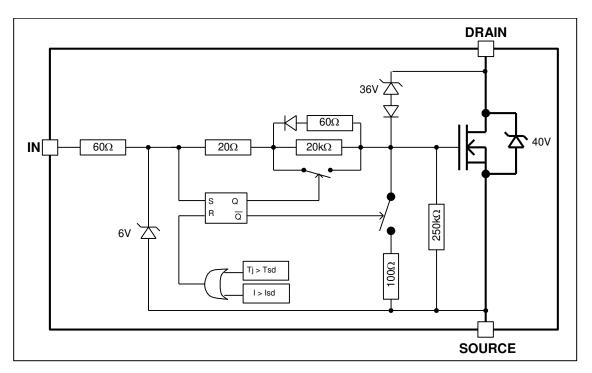
| Symbol | Parameter                  | Min. | Тур. | Max.  | Units | Test Conditions |
|--------|----------------------------|------|------|-------|-------|-----------------|
| Tdon   | Turn-on delay time to 10%  | _    | 750  | 2500  |       |                 |
| Tr     | Rise time 10% to 90%       | _    | 1400 | 4700  | 20    | See figure 2    |
| Tdoff  | Turn-off delay time to 90% | _    | 3800 | 12000 | ns    | See ligure 2    |
| Tf     | Fall time 90% to 10%       | _    | 2200 | 7000  |       |                 |

#### **Protection Characteristics**


Ti= -40..150°C, Vcc=6..28V (unless otherwise specified), typical value are given for Tj=25°C

| Symbol | Parameter                     | Min. | Тур. | Max. | Units | Test Conditions |
|--------|-------------------------------|------|------|------|-------|-----------------|
| Tsd    | Over temperature threshold    | 150  | 170  |      | ô     | See figure 1    |
| Isd    | Over current threshold        | 15   | 22   | 32   | Α     | See figure 1    |
| Vreset | IN protection reset threshold | 1    | 2    | 3    | V     |                 |
| Treset | Time to reset protection      | 5    | 30   | 200  | μs    | Vin=0V          |

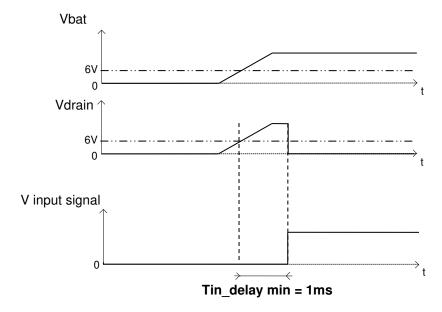
<sup>(3)</sup> Guaranteed by design




## **Lead Assignments**

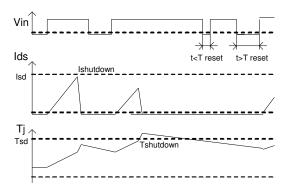


## **Functional Block Diagram**


All values are typical






**Tin\_delay explanation**The voltage in Drain pin of AUIPS1025R is must be above 6V more than 1ms before turning ON the part by applying the

Otherwise the part could be latched.





All curves are typical values..



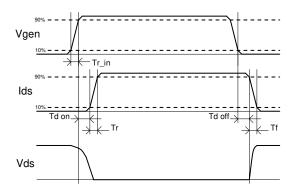
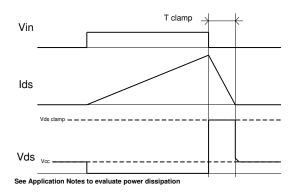




Figure 1 - Timing diagram

Figure 2 - IN rise time & switching definitions



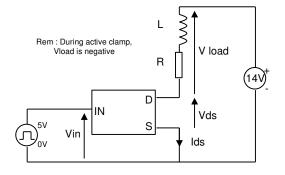
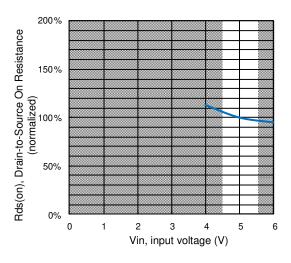




Figure 3 - Active clamp waveforms

Figure 4 - Active clamp test circuit





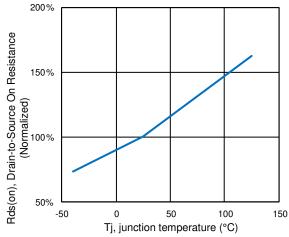
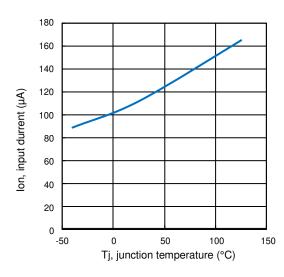
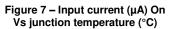





Figure 5 – Normalized Rds(on) (%) Vs Input voltage (V)







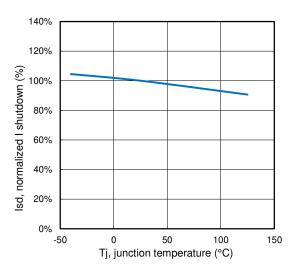



Figure 8 – Normalized I shutdown (%) Vs junction temperature (°C)



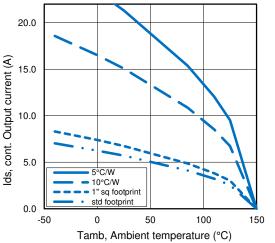
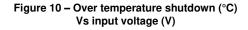
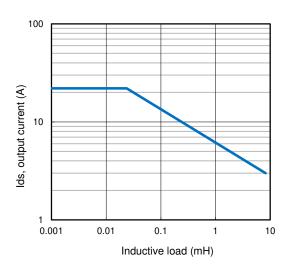





Figure 9 – Max. continuous output current (A) Vs Ambient temperature (°C)





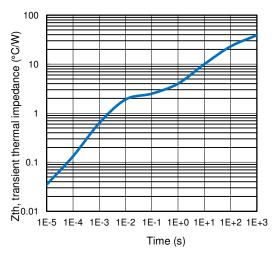
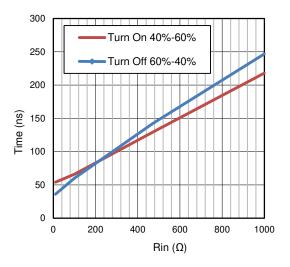
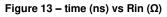





Figure 11 – Max. ouput current (A) Vs Inductive load (mH)

Figure 12 – Transient thermal impedance (°C/W) Vs time (s)







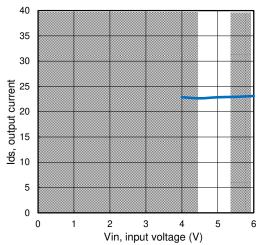
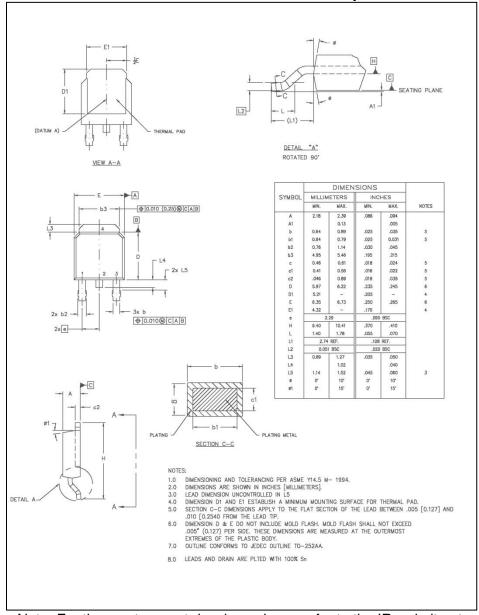
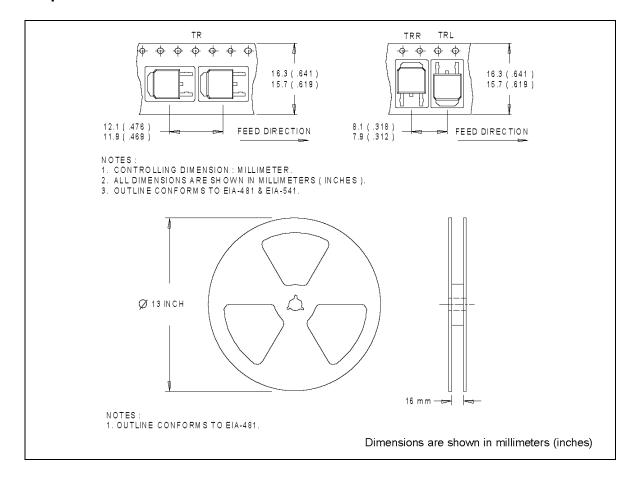




Figure 14 – Current shutdown (A) Vs Input voltage (V)

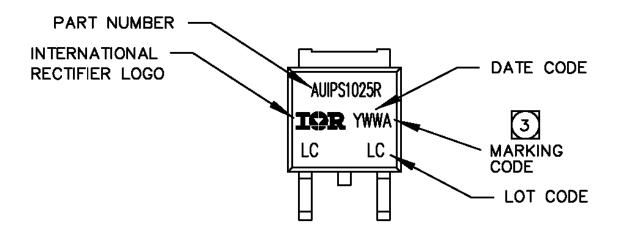



## Case Outline - D-Pak - Automotive Q100 PbF MSL1 qualified



Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/




## Tape & Reel - D-Pak



Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/



## **Part Marking Information**



### Qualification Information<sup>†</sup>

|                            | Qualification information |                                                                                                                                                                               |                                          |  |  |  |  |
|----------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
|                            |                           |                                                                                                                                                                               | Automotive                               |  |  |  |  |
|                            |                           | (per AEC-Q100)                                                                                                                                                                |                                          |  |  |  |  |
| Qualification Level        |                           | Comments: This family of ICs has passed an Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. |                                          |  |  |  |  |
| Moisture Sensitivity Level |                           | DPAK-3L                                                                                                                                                                       | MSL1, 260°C<br>(per IPC/JEDEC J-STD-020) |  |  |  |  |
|                            | Manahira Mandal           | Class M4 (+/-500V)                                                                                                                                                            |                                          |  |  |  |  |
|                            | Machine Model             | (per AEC-Q100-003)                                                                                                                                                            |                                          |  |  |  |  |
| ESD                        | Lluman Dady Madal         | Class 3A (+/-4500V)                                                                                                                                                           |                                          |  |  |  |  |
| ESD                        | Human Body Model          | (per AEC-Q100-002)                                                                                                                                                            |                                          |  |  |  |  |
|                            | Charged Device Model      | Class C5 (+/-1000V)                                                                                                                                                           |                                          |  |  |  |  |
| Charged Device Model       |                           | (per AEC-Q100-011)                                                                                                                                                            |                                          |  |  |  |  |
| IC Latch-Up Test           |                           | Class II Level A                                                                                                                                                              |                                          |  |  |  |  |
|                            |                           | (per AEC-Q100-004)                                                                                                                                                            |                                          |  |  |  |  |
| RoHS Co                    | mpliant                   | Yes                                                                                                                                                                           |                                          |  |  |  |  |

† Qualification standards can be found at International Rectifier's web site <a href="http://www.irf.com/">http://www.irf.com/</a>

## AUIPS1025R



Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

#### **IMPORTANT NOTICE**

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

#### WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.



# **Revision History**

| Revision | Date             | Notes/Changes                                  |
|----------|------------------|------------------------------------------------|
| Α        | October 10, 2015 | Initial release                                |
| Rev 1.1  | March 25, 2016   | Page 6 curve updated for Tin_delay explanation |