imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Automotive grade

Automotive IPS

High side AUIPS72211R

LOW EMI PWM INTELLIGENT POWER HIGH SIDE SWITCH

Features

- Integrated bootstrap for 100kHz switching
- Optimized EMI switching
- Charge pump for DC operation
- Over temperature shutdown
- Over current shutdown
- 3.3V logic level
- Ground loss protection
- ESD protection

Applications

- 24V loads
- Injectors
- Valves
- DC motors

Description

The Device is a five terminal Intelligent Power Switch (IPS) for use in a high side configuration. It features short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. An integrated bootstrap diode allows fast switching.

Product Summary

 $\begin{array}{lll} \mbox{Rds(on)} & 35m\Omega\mbox{ max.} \\ \mbox{Vbr} & 75V\mbox{ min.} \\ \mbox{I shutdown} & 20A\mbox{ min.} \end{array}$

Package



Ordering Information

Base Part Number		Standard Pack		
Dase Fait Nulliber	Package Type	Form	Quantity	Complete Part Number
AUIPS72211R	D-Pak-5-Leads	Tube	75	AUIPS72211R
AUIF3/2211h	D-Fak-3-Leaus	Tape and reel left	3000	AUIPS72211RTRL

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. (Tj= -40°C..150°C, Vcc=6..60V unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vout	Maximum output voltage	Gnd-3	Vcc+0.3	
Vin	Maximum input voltage	-0.3	5.5	V
Vcc max.	Maximum Vcc voltage	—	65	
l in max.	Maximum input current	-3	10	mA
Pd	Maximum power dissipation (internally limited by thermal protection)			W
Pu	Rth=50°C/W 1"sqrt. footprint	_	2.5	vv
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient	50	_	°C/W
Rth2	Thermal resistance junction to case	1.2	_	0/11

Recommended Operating Conditions These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	2.7	5.5	V
VIL	Low level input voltage	0	0.9	v
Rin	Recommended resistor in series with IN pin	2(1)	10(2)	kΩ
Rdg	Recommended resistor in series with dg pin	2(1)	10(2)	K52
F max.	Max. switching frequency		100	kHz
Cboot	Bootstrap capacitor	30	50	nF

(1) Limited by the maximum input current

(2) Limited by the input capacitor

Static Electrical Characteristics

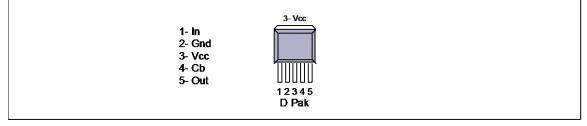
Tj=-40..150°C, Vcc=6..60V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C		30	35		Vin=5V, lout=5A
nus(on)	ON state resistance Tj=150°C		50	70	mΩ	Vin=5V, lout=5A
Vcc op.	Operating voltage range with short circuit protection	6	_	60	V	
Icc Off	Supply current when Sleep mode		0.2	5		During sleep mode
lout Off	Output leakage current	—	0.2	5	μA	Vin=0V, Vout=0V Tj=25°C, Vcc=28V
Icc On	Supply current when On	_	4	10	mA	Vin=5V Tj=25°C, Vcc=28V
lout On	Output current when Off		10	_	mA	Vin=0V Tj=25°C, Vcc=28V
Vih	Input high threshold voltage		1.9	2.2		
Vil	Input low threshold voltage	1	1.6	—	V	
In hyst.	Input hysteresis	0.1	0.3	0.5		
l in, on	Input current when the part is on		15	30	μΑ	Vin=5V
Vin, off	Input voltage when the part is in fault mode	_	0.1	0.4	V	l in=5mA

Switching Electrical Characteristics Vcc=28V, Resistive load= 2Ω , Vin=5V, Tj= $25^{\circ}C$

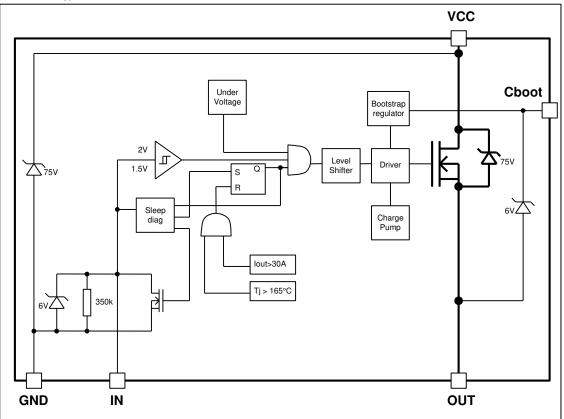
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time to 20%	-	1	-		
Tr	Rise time from 20% to 80% of Vcc	-	0.8	-		
Tdoff	Turn-off delay time to 80%	-	2.2	-	μs	
Tf	Fall time from 80% to 20% of Vcc	-	0.4	-		

Protection Characteristics


Tj=-40..150°C, Vcc=6..60V (unless otherwise specified)

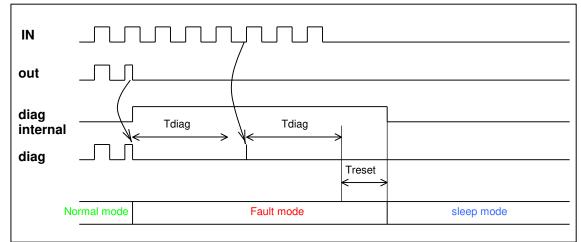
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
lsd on	Over current shutdown	20	30	40	Α	Vout=0V
Tsd	Over temperature threshold	150(3)	165		°C	
UV H	Under voltage during turn on	_	5	6.2	M	
UV L	Under voltage during turn off	-	4	5	v	
Tdiag	Diagnostic time	-	10	_		see figure 1
Tsleep	Time to enter in sleep mode	7	15	30	me	see figure 2
Treset	Time to enter in sleep mode and reset the fault	_	5	_	ms	see figure 1
Twkp	Time to leave the sleep mode	-	0.05	0.5		Rin=4k7
Tpw on rst	Power on reset duration	4	8	12	μs	see figure 2 & 3

(3) Guaranteed by design



Lead Assignments

Functional Block Diagram


All values are typical

Sleep_mode / Diagnostic

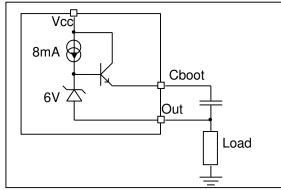
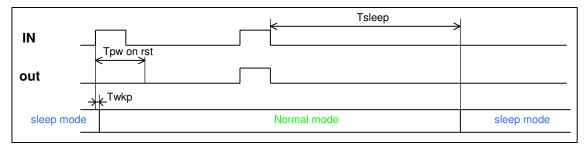

Sleep_mode block manages the diagnostic and the sleep_mode. The device enters in sleep mode if input is inactive during a delay higher than Tsleep.

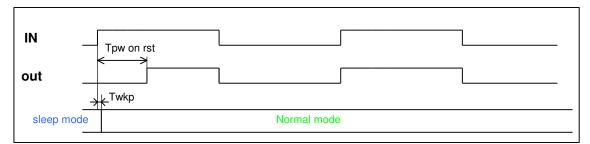
Figure 1

Bootstrap

The AUIPS7221 integrates a bootstrap regulator to maintain a fixed voltage on the bootstrap capacitor for any battery voltage. The regulator is off during the sleep mode to reduce the current consumption.


Figure 2

The 8mA current source flows permanently on the output when the output is off and the part is not in sleep mode. In case of an open load condition, the output voltage will be at Vcc-6V.



Wake up sequence

To wake up the part from the sleep mode, the input must be activated at least during Twkp, then the boostrap regulator is switched on and the boostrap capacitor is charged. The output will be not activated during Tpw on rst.

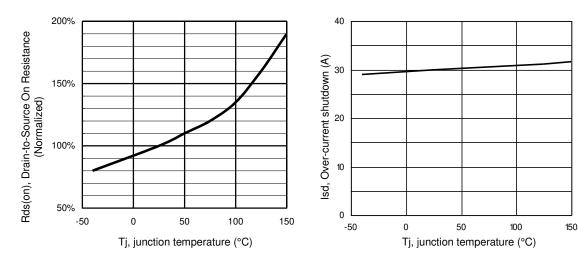
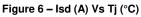
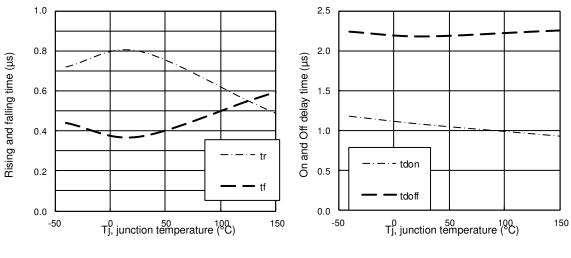
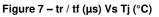
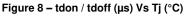


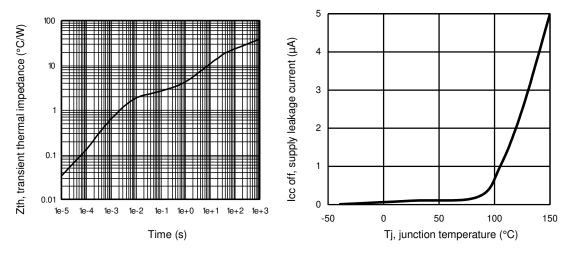
Figure 3

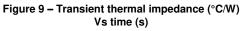


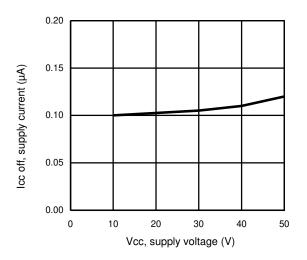

Figure 4

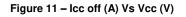
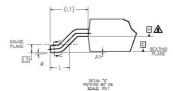


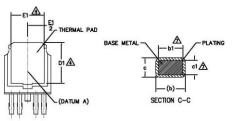


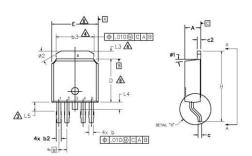







Figure 10 – Icc off (µA) Vs Tj (°C)



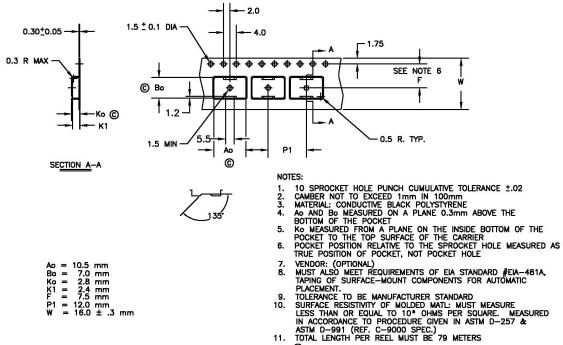
Case Outline 5 Lead – DPAK

VIEW A-A

SY		DIMEN	ISIONS		N
BO	MILLIM	ETERS	INC	HES	0 T
L	MIN.	MAX.	MIN.	MAX.	Ē
A	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
b	0.56	0.79	.022	.031	
b1	.056	0.74	.022	.029	2
b2	0.65	0.89	.026	.035	
b3	4.95	5.46	.195	.215	2
c	0.46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	2
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	3
D1	5.21	-	.205	-	
E	6.35	6.73	.250	.265	3
E1	4.32	-	.170	-	
e	1.14	BSC	.045	BSC	1
н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0.51	BSC	.020	BSC	1
L3	0.89	1.27	.035	.050	
L4		1.02	-	.040	
L5	1.14	1.52	.045	.060	
ø	0"	10"	0.	10"	
ø1	0*	15*	0.	15*	
ø2	28*	32*	28*	32*	

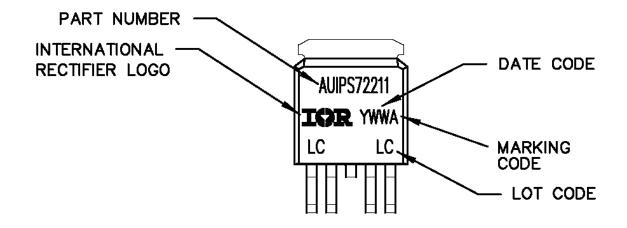
NOTES:

1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994


2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].

ALLEAD DIMENSION UNCONTROLLED IN L5.

- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- 8.- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252.
- 10. LEADS AND DRAIN ARE PLATED WITH 100% Sn


Tape & Reel 5 Lead – DPAK

12. C CRITICAL DIMENSION

Part Marking Information

Qualification Information

Qualification Leve	el	Automotive (per AEC-Q100) Comments: This family of ICs has passed an Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.			
Moisture Sensitiv	rity Level	DPAK-5L	MSL1, 260°C (per IPC/JEDEC J-STD-020)		
	Machine Model		Class M2 (150V) (per AEC-Q100-003)		
ESD	ESD Human Body Model		ss H1A (500V) AEC-Q100-002)		
Charged Device Model		Class C4 (1000V) (per AEC-Q100-011)			
IC Latch-Up Test			ass II, Level A AEC-Q100-004)		
RoHS Compliant		(201	Yes		

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2016 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Revision History

Revision	Date	Notes/Changes
A	August 4th, 2011	Initial release
Rev 1.1	March 6th, 2017	'Part Marking information' updated