

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

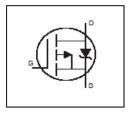
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Features

- Advanced Process Technology
- P-Channel MOSFET
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- Fast Switching
- · Fully Avalanche Rated
- · Repetitive Avalanche Allowed up to Timax
- · Lead-Free, RoHS Compliant
- Automotive Qualified *

V _{DSS}		-100V
R _{DS(on)}	max.	60mΩ
I _D		-38A

G	D	S
Gate	Drain	Source

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications..

Base next number	Dookogo Typo	Standard Pack Orderable Port Number		Ordershie Bert Number
Base part number	Package Type	Form Quantity		Orderable Part Number
ALUDES240C	D ² -Pak	Tube	50	AUIRF5210S
AUIRF5210S	D-Pak	Tape and Reel Left	800	AUIRF5210STRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V	-38		
$I_D @ T_C = 100$ °C Continuous Drain Current, $V_{GS} @ -10V$		-24	A	
I _{DM}	Pulsed Drain Current ①	-140		
P _D @T _A = 25°C	Maximum Power Dissipation	3.1	10/	
P _D @T _C = 25°C	Maximum Power Dissipation	170	W	
	Linear Derating Factor	1.3	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS} Single Pulse Avalanche Energy (Thermally Limited) ②		120	mJ	
I _{AR} Avalanche Current ①		-23	Α	
E _{AR}	Repetitive Avalanche Energy ①	17	mJ	
dv/dt	Peak Diode Recovery dv./dt ③	-7.4	V/ns	
T _J	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds (1.6mm from case)	300		

Thermal Resistance

Illelillai Kesistali	C C			
Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.75	°CAM
R _{e,IA}	Junction-to-Ambient (PCB Mount, steady state) ©		40	°C/W

HEXFET® is a registered trademark of Infineon.

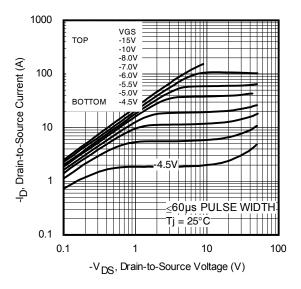
^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-100			V	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.11		V/°C	Reference to 25°C, I_D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			60	mΩ	$V_{GS} = -10V, I_{D} = -38A $ ④
$V_{GS(th)}$	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
gfs	Forward Trans conductance	9.5			S	$V_{DS} = -50V, I_{D} = -23A$
ı	Drain-to-Source Leakage Current			-50	μA	$V_{DS} = -100V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			-250	μΑ	$V_{DS} = -80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			-100	- Λ	V _{GS} = -20V
I _{GSS}	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-					
Q_g	Total Gate Charge	 150	230		$I_D = -23A$
Q_{gs}	Gate-to-Source Charge	 22	33	nC	$V_{DS} = -80V$
Q_{gd}	Gate-to-Drain Charge	 81	120		V _{GS} = -10V4
$t_{d(on)}$	Turn-On Delay Time	 14			$V_{DD} = -50V$
t _r	Rise Time	 63		ns	$I_D = -23A$
$t_{d(off)}$	Turn-Off Delay Time	 72		115	$R_G = 2.4\Omega$
t _f	Fall Time	 55			V _{GS} = -10V ④
L_D	Internal Drain Inductance	 4.5		nH	Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance	 7.5		ПП	from package and center of die contact
C_{iss}	Input Capacitance	 2780			$V_{GS} = 0V$
C _{oss}	Output Capacitance	 800		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance	 430			f = 1.0MHz, See Fig. 5


Diode Characteristics

Dioac oii	blode Ghardothionos					
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			-38		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-140		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25^{\circ}C, I_S = -23A, V_{GS} = 0V $ @
t _{rr}	Reverse Recovery Time		170	260	ns	$T_J = 25^{\circ}C$, $I_F = -23A$, $V_{DD} = -25V$
Q_{rr}	Reverse Recovery Charge		1180	1770	nC	di/dt = -100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	n time is	negligil	ble (turn-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- @ Limited by T_{Jmax} , starting T_J = 25°C, L = 0.46mH, R_G = 25 Ω , I_{AS} = -23A.(See Fig.12)
- $\label{eq:local_special} \ensuremath{ \Im } \quad I_{SD} \leq \mbox{ -23A, di/dt} \leq \mbox{ -650A/}\mu\mbox{s, $V_{DD}} \leq V_{(BR)DSS}, \mbox{ $T_J \leq 150$°C. }$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- S This is applied to D²Pak When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- ® R_θ is measured at T_J of approximately 90°C.

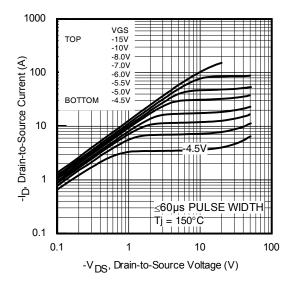


Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

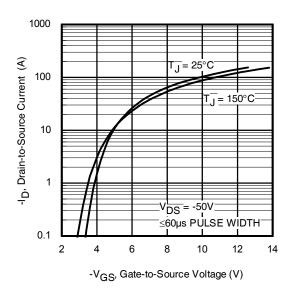
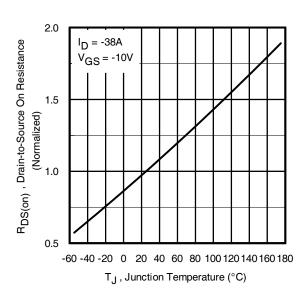
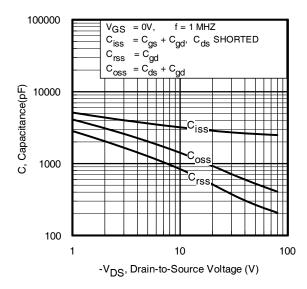




Fig. 3 Typical Transfer Characteristics

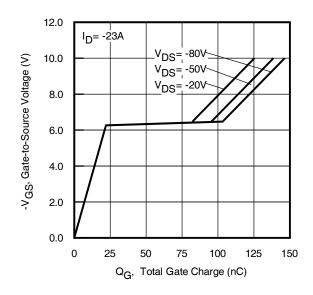


Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

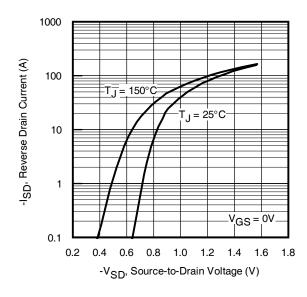


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

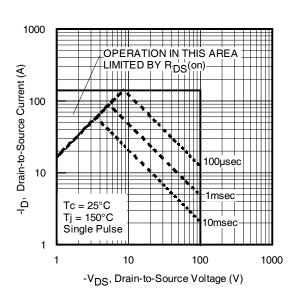


Fig 8. Maximum Safe Operating Area

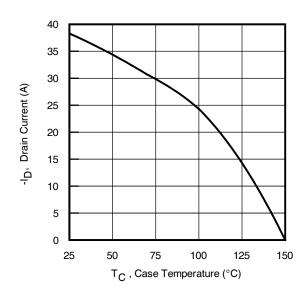


Fig 9. Maximum Drain Current vs. Case Temperature

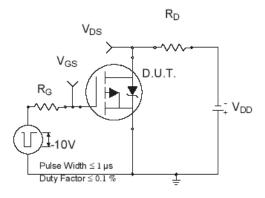


Fig 10a. Switching Time Test Circuit

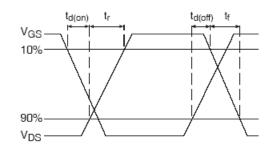


Fig 10b. Switching Time Waveforms

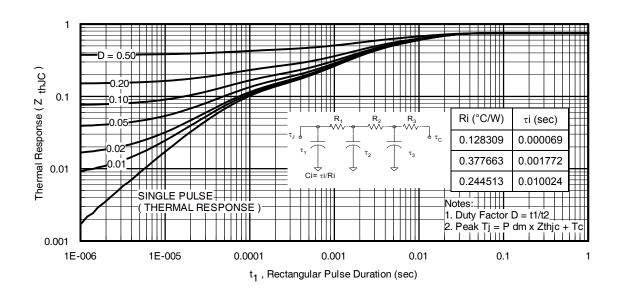


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

5 2015-9-30

Fig 12a. Unclamped Inductive Test Circuit

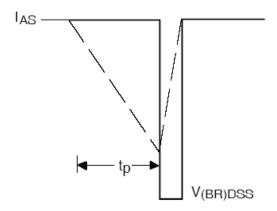


Fig 12b. Unclamped Inductive Waveforms

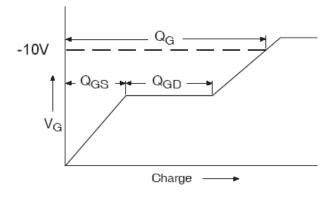


Fig 14a. Gate Charge Waveform

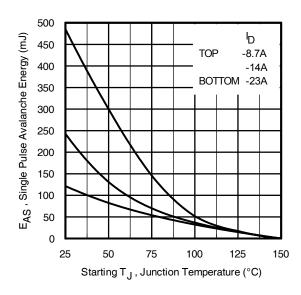
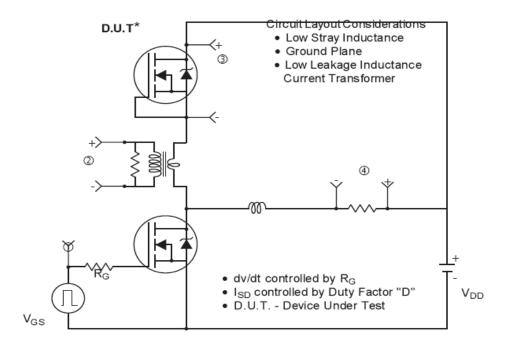



Fig 13. Maximum Avalanche Energy vs. Drain Current

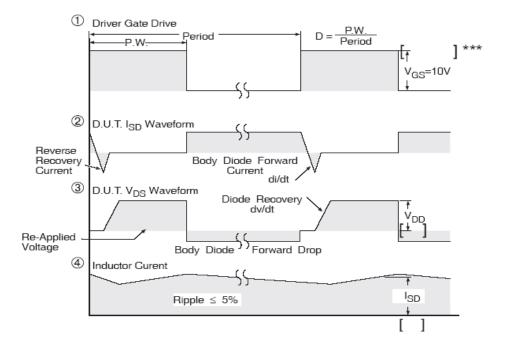
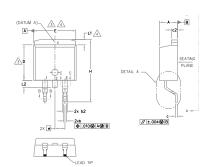
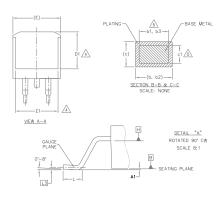


Fig 14b. Gate Charge Test Circuit

^{*} Reverse Polarity of D.U.T for P-Channel


*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices


Fig 15. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs

7 2015-9-30

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

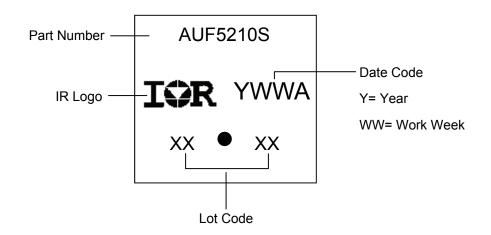
5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S Y M		N			
B	MILLIMETERS INCHES				
L	MIN.	MAX.	MIN.	MAX.	O T E S
А	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015 .023		5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245	_	4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	

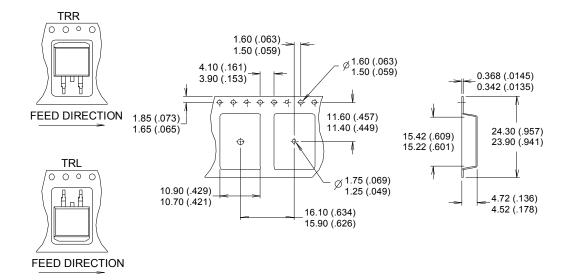
LEAD ASSIGNMENTS

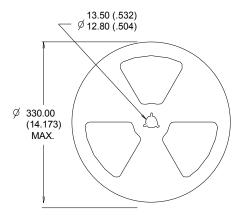
DIODES

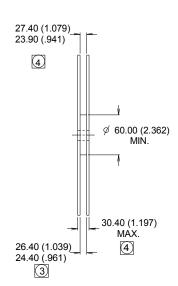

1.- ANODE (TWO DIE) / OPEN (ONE DIE)
2, 4.- CATHODE
3.- ANODE

HEXFET

1.- GATE 2, 4.- DRAIN 3.- SOURCE


IGBTs, CoPACK 2, 4.- COLLECTOR 3.- EMITTER


D²Pak (TO-263AB) Part Marking Information


D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

- COMFORMS TO EIA-418.
- CONTROLLING DIMENSION: MILLIMETER.
- 3
- DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Qualification Information

		Automotive				
		(per AEC-Q101)				
Qualificat	ion Level	Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture :	Sensitivity Level	D ² -Pak	MSL1			
			Class M4 (+/-425V) [†]			
	Machine Model	AEC-Q101-002				
	Harris Dada Madal	Class H2 (/-4000V) [†]				
ESD	Human Body Model		AEC-Q101-001			
	O	Class C5 (/-1125V) [†]				
Charged Device Model		AEC-Q101-005				
RoHS Compliant			Yes			

[†] Highest passing voltage.

Revision History

Date	Comments			
9/30/2015	Updated datasheet with corporate template			
9/30/2015	Corrected ordering table on page 1.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

10 2015-9-30