imall

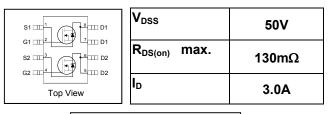
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


AUIRF7103Q

Features

- Advanced Planar Technology
- Dual N Channel MOSFET
- Low On-Resistance
- Logic Level Gate Drive
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

G	D	S
Gate	Drain	Source

Bass nort number	Deekege Type	Standard Pack		Orderable Part Number	
Base part number	Package Type	Form	Quantity	Orderable Part Number	
AUIRF7103Q	SO-8	Tape and Reel	4000	AUIRF7103QTR	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	3.0	
$I_D @ T_A = 70^{\circ}C$ Continuous Drain Current, $V_{GS} @ 4.5V$		2.5	А
I _{DM}	Pulsed Drain Current ①	25	
P _D @T _A = 25°C	Maximum Power Dissipation ③	2.4	W
	Linear Derating Factor	16	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ④	22	mJ
I _{AR}	Avalanche Current ①	See Fig.19,20, 16b, 16c	A
E _{AR}	Repetitive Avalanche Energy ©		mJ
dv/dt	Peak Diode Recovery dv/dt ©	12	V/ns
TJ	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JL}$	Junction-to-Drain Lead		20	°C \\ \ \
$R_{ ext{ heta}JA}$	Junction-to-Ambient @ ©		62.5	°C/W

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at <u>www.infineon.com</u>

AUIRF7103Q

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	50			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I_D = 1mA
D	Statia Drain ta Sauraa On Dasiatanaa			130		V _{GS} = 10V, I _D = 3.0A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance			200	mΩ	V _{GS} = 4.5V, I _D = 1.5A ②
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	3.4			S	V _{DS} = 15V, I _D = 3.0A
1	Drain-to-Source Leakage Current			2.0	μA	V _{DS} =40V, V _{GS} = 0V
I _{DSS}				25	μΑ	V _{DS} = 40V,V _{GS} = 0V,T _J =55°C
I _{GSS}	Gate-to-Source Forward Leakage			100	n A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-	-	-	-		
Q _g	Total Gate Charge	 10	15		I _D = 2.0A
Q_{gs}	Gate-to-Source Charge	 1.2		nC	V _{DS} = 40V
Q _{gd}	Gate-to-Drain Charge	 2.8			V _{GS} = 10V
t _{d(on)}	Turn-On Delay Time	 5.1			V _{DD} = 25V
t _r	Rise Time	 1.7			I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time	 15		ns	$R_{G} = 6.0\Omega$
t _f	Fall Time	 2.3			R _D = 25Ω ②
C _{iss}	Input Capacitance	 255			$V_{GS} = 0V$
Coss	Output Capacitance	 69		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance	 29			f = 1.0MHz
Diode Cha	racteristics				

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			3.0		MOSFET symbol
I _S	(Body Diode)			3.0	•	showing the
	Pulsed Source Current			— 12	,	integral reverse
I _{SM}	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	T _J = 25°C,I _S = 1.5A,V _{GS} = 0V ②
t _{rr}	Reverse Recovery Time		35	53	ns	T _J = 25°C ,I _F = 1.5A,
Q _{rr}	Reverse Recovery Charge		45	67	nC	di/dt = 100A/µs ②
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	n time is	negligil	ble (turn-on is dominated by $L_{S}+L_{D}$)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400µs; duty cycle \leq 2%.
- ③ Surface mounted on 1" in square Cu board.
- \textcircled{T}_{J} = 25°C, L = 4.9mH, R_G = 25 Ω , I_{AS} = 3.0A. (See Fig. 12)
- © Limited by T_{Jmax}, see Fig.16b, 16c, 19, 20 for typical repetitive avalanche performance.

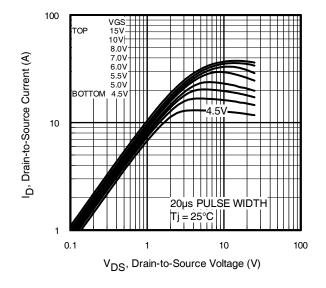
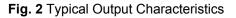


Fig. 1 Typical Output Characteristics

I_D, Drain-to-Source Current (A) 1 20μs PULSE WIDTH Tj = 175°C 0.1 0.1 1 10 100 V_{DS}, Drain-to-Source Voltage (V)

100

10


ΓOP

воттом

VGS 15V-10V 8.0V 7.0V 6.0V

5.5V

5.0V

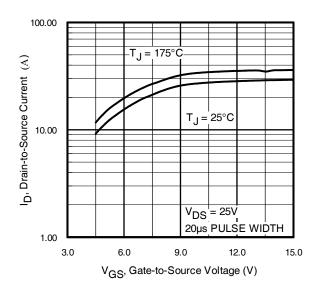


Fig. 3 Typical Transfer Characteristics

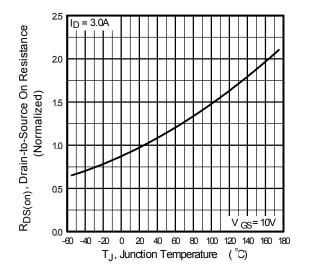
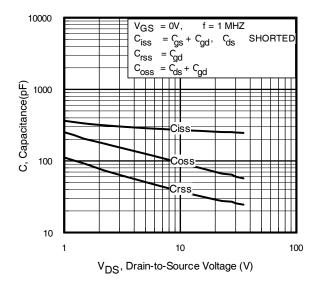
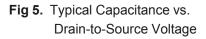




Fig. 4 Normalized On-Resistance vs. Temperature

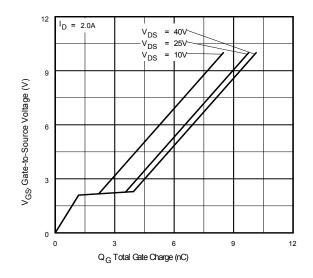
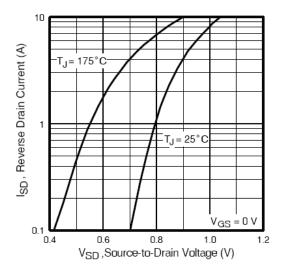
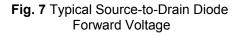




Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

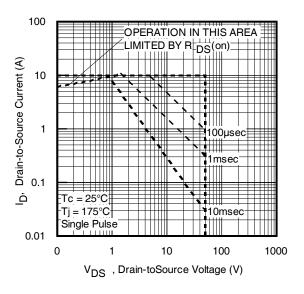


Fig 8. Maximum Safe Operating Area

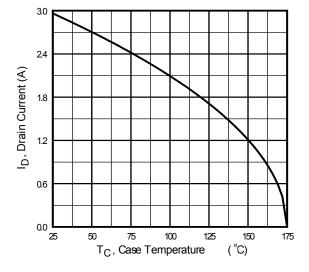


Fig 9. Maximum Drain Current vs. Case Temperature

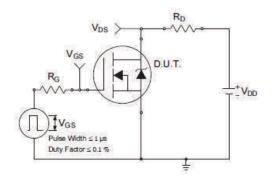


Fig 10a. Switching Time Test Circuit

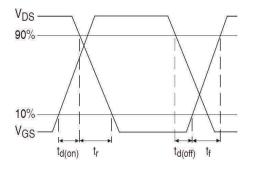


Fig 10b. Switching Time Waveforms

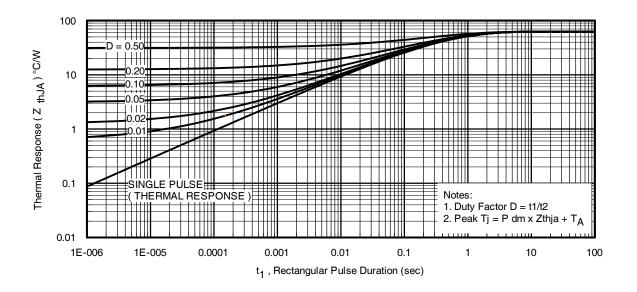


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

40

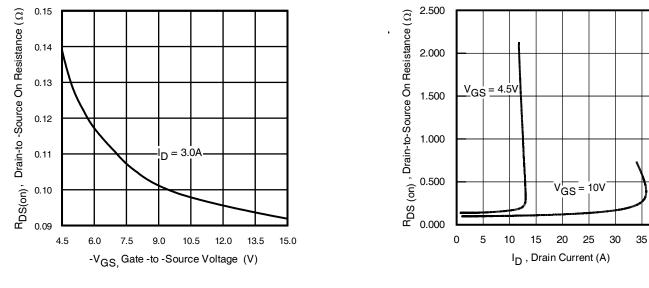
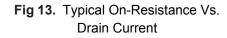



Fig 12. Typical On-Resistance Vs. Gate Voltage

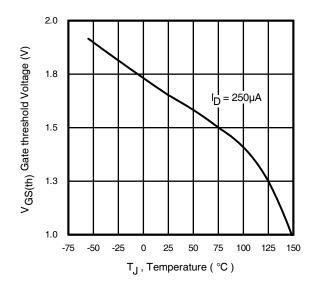


Fig. 14. Typical Threshold Voltage Vs. Junction Temperature

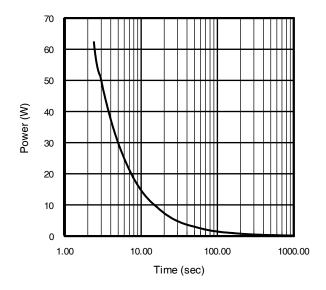


Fig 15. Typical Power Vs. Time

AUIRF7103Q

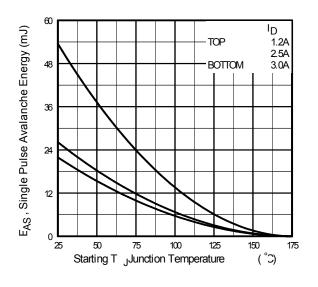


Fig 16a. Maximum Avalanche Energy vs. Drain Current

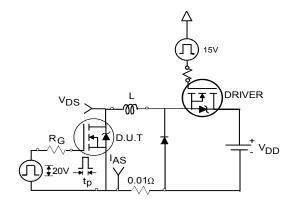


Fig 16b. Unclamped Inductive Test Circuit

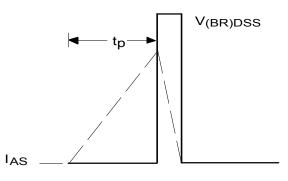


Fig 16c. Unclamped Inductive Waveforms

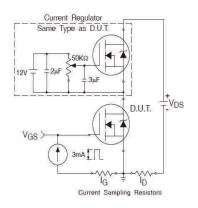


Fig 17. Gate Charge Test Circuit

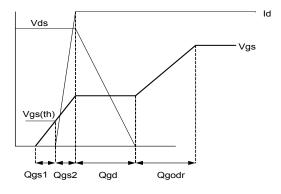


Fig 18. Basic Gate Charge Waveform

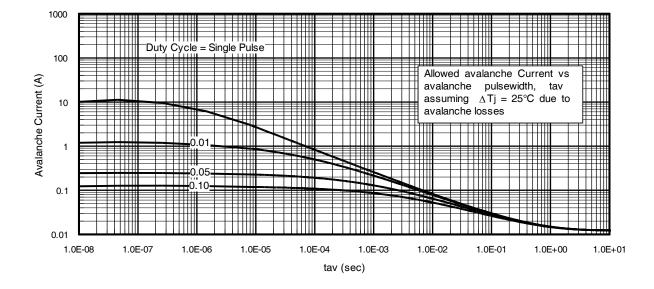
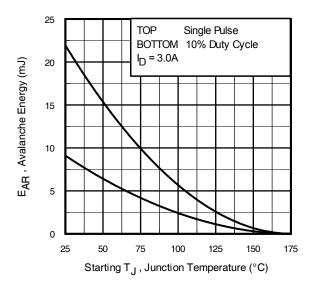
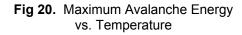
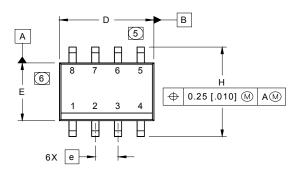
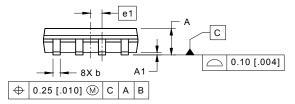




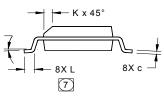
Fig 19. Typical Avalanche Current vs. Pulse width

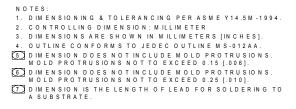
Notes on Repetitive Avalanche Curves , Figures 19, 20: (For further info, see AN-1005 at www.infineon.com)

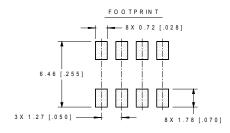

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16b, 16c.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 11, 16).
 - tav = Average time in avalanche.
 - D = Duty cycle in avalanche = tav ·f

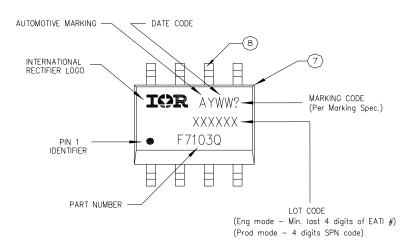

ZthJC(D, tav) = Transient thermal resistance, see Figures 11)

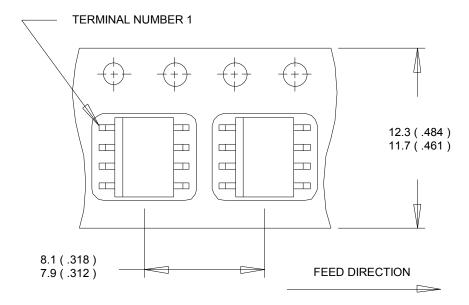
$$\begin{split} \textbf{P}_{D \;(ave)} &= 1/2 \; (\; 1.3 \cdot \textbf{BV} \cdot \textbf{I}_{av}) = \Delta T / \; \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \; \textbf{[} 1.3 \cdot \textbf{BV} \cdot \textbf{Z}_{th} \textbf{]} \\ \textbf{E}_{AS \;(AR)} &= \textbf{P}_{D \;(ave)} \cdot \textbf{t}_{av} \end{split}$$



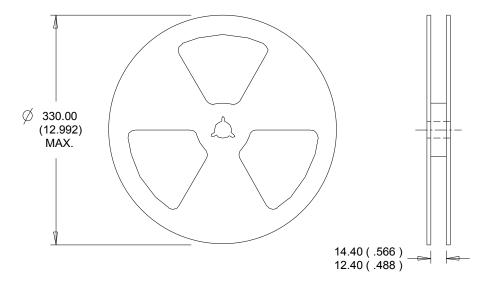

SO-8 Package Outline (Dimensions are shown in millimeters (inches)




DIM	INC	HES	MILLIM	ETERS	
DIN	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
E	.1497	.1574	3.80	4.00	
е	.050 B/	ASIC	1.27 BASIC		
e 1	.025 B/	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	



SO-8 Part Marking Information



SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Qualification Information

		Automotive (per AEC-Q101)					
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture	Sensitivity Level	SO-8 MSL1					
		Class M1A (+/- 50V) [†]					
	Machine Model	AEC-Q101-002					
505	Lives are Deady. Madel	Class H0 (+/- 250V) [†]					
ESD	Human Body Model	AEC-Q101-001					
		Class C5 (+/- 1125V) [†]					
	Charged Device Model		AEC-Q101-005				
RoHS Cor	S Compliant Yes		Yes				

+ Highest passing voltage.

Revision History

Date	Comments					
4/3/2014	Added "Logic Level Gate Drive" bullet in the features section on page 1					
4/3/2014	Updated data sheet with new IR corporate template					
9/30/2015	Updated datasheet with corporate template					
9/30/2015	Corrected ordering table on page 1.					

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.