

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

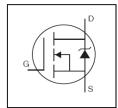
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HEXFET® Power MOSFET

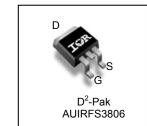
Features

- Advanced Process Technology
- 175°C Operating Temperature
- Fast Switching

Description


applications.

· Repetitive Avalanche Allowed up to Timax


Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are 175°C junction operating temperature, fast switching

speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other

- Lead-Free, RoHS Compliant
- Automotive Qualified *

60V
12.6mΩ
15.8mΩ
43A

G	D	S
Gate	Drain	Source

Base next number	Dookogo Type	Standard Pack	,	Orderchie Dort Number
Base part number	Package Type	Form Quantity		Orderable Part Number
AUIRFS3806	D ² Dok	Tube	50	AUIRFS3806
AUIRESSOU	D²-Pak	Tape and Reel Left	800	AUIRFS3806TRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	43	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	31	Α
I _{DM}	Pulsed Drain Current ①	170	
P _D @T _C = 25°C	Maximum Power Dissipation	71	W
	Linear Derating Factor	0.47	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	73	mJ
I_{AR}	Avalanche Current ①	25	Α
E _{AR}	Repetitive Avalanche Energy ①	7.1	mJ
dv/dt	Peak Diode Recovery ③	24	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		2.12	°C/W
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount), D ² Pak ⑦		40	C/VV

HEXFET® is a registered trademark of Infineon.

2017-10-12

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.075	_	V/°C	Reference to 25°C, I _D = 5mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		12.6	15.8	mΩ	V _{GS} = 10V, I _D = 25A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
gfs	Forward Trans conductance	41			S	$V_{DS} = 10V, I_{D} = 25A$
R_G	Internal Gate Resistance		0.79		Ω	
	Drain to Course Leakers Current			20		$V_{DS} = 60V, V_{GS} = 0V$ $V_{DS} = 48V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{DSS}	Drain-to-Source Leakage Current	urce Leakage Current 250		μA	$V_{DS} = 48V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	
I _{GSS}	Gate-to-Source Forward Leakage			100	- A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	<u> </u>				
Q_g	Total Gate Charge	 22	30		$I_D = 25A$
Q_{gs}	Gate-to-Source Charge	 5.0			$V_{DS} = 30V$
Q_{gd}	Gate-to-Drain Charge	 6.3		nC	V _{GS} = 10V④
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})	 28.3			
$t_{d(on)}$	Turn-On Delay Time	 6.3			$V_{DD} = 39V$
t _r	Rise Time	 40		no	I _D = 25A
$t_{d(off)}$	Turn-Off Delay Time	 49		ns	$R_G = 20\Omega$
t _f	Fall Time	 47			V _{GS} = 10V4
C _{iss}	Input Capacitance	 1150			$V_{GS} = 0V$
Coss	Output Capacitance	 130			V _{DS} = 50V
C_{rss}	Reverse Transfer Capacitance	 67		pF	f = 1.0MHz, See Fig. 5
Coss eff.(ER)	Effective Output Capacitance (Energy Related)	 190		-	V _{GS} = 0V, V _{DS} = 0V to 48V [©]
Coss eff.(TR)	Effective Output Capacitance (Time Related)	 230			V _{GS} = 0V, V _{DS} = 0V to 48V⑤

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			43		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			170		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 25A, V_{GS} = 0V $ @
t _{rr}	Reverse Recovery Time		22 26	33 39	ns	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$ $V_{DD} = 51V$
	Dayoraa Dagayary Charga		17	26	nC	$T_J = 25^{\circ}C$ $I_F = 25A$
Q_{rr}	Reverse Recovery Charge		24	36	IIC	$T_J = 125^{\circ}C$ di/dt = 100A/µs④
I _{RRM}	Reverse Recovery Current		1.4		Α	T _J = 25°C
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.23mH, $R_G = 25\Omega$, $I_{AS} = 25A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- $\label{eq:local_spectrum} \mbox{ } \$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $^{\circ}$ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}. $^{\circ}$ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- ® R_θ is measured at T_J approximately 90°C.

2017-10-12

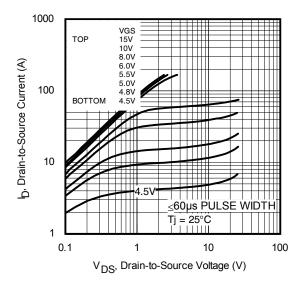


Fig. 1 Typical Output Characteristics

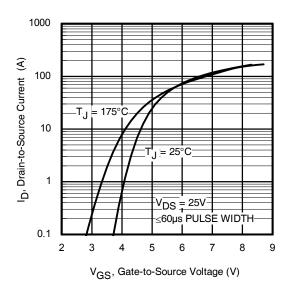


Fig. 3 Typical Transfer Characteristics

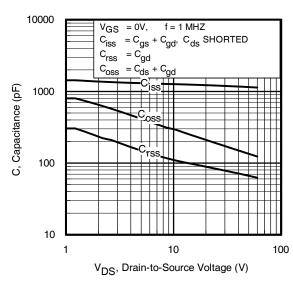


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

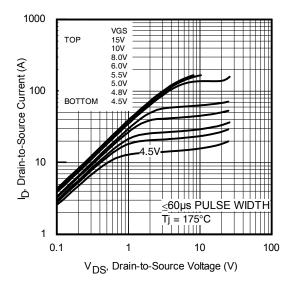


Fig. 2 Typical Output Characteristics

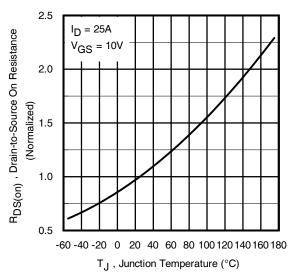


Fig. 4 Normalized On-Resistance vs. Temperature

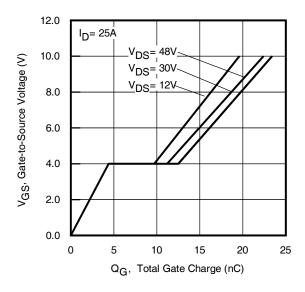


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

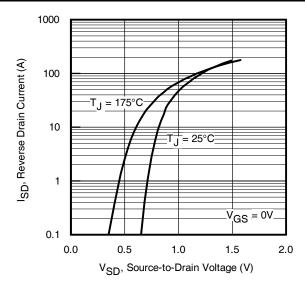


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

45
40
35

(V) 30
25
20
15
10
5

Fg 9. Maximum Drain Current vs. Case Temperature

100

 T_C , Case Temperature (°C)

125

175

150

75

50

25

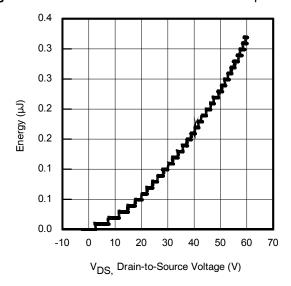


Fig 11. Typical Coss Stored Energy

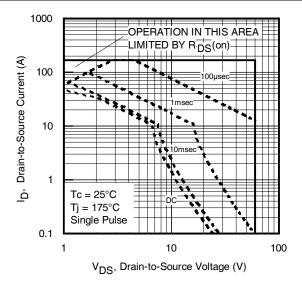


Fig 8. Maximum Safe Operating Area

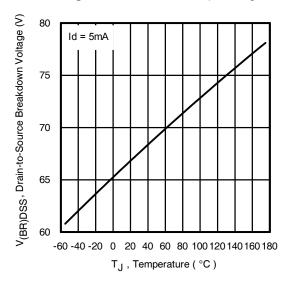


Fig 10. Drain-to-Source Breakdown Voltage

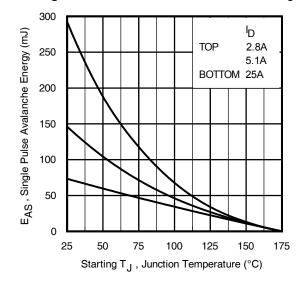


Fig 12. Maximum Avalanche Energy vs. Drain Current

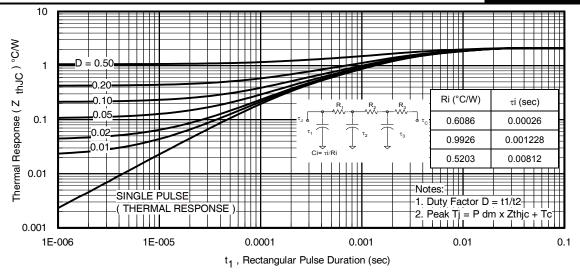


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

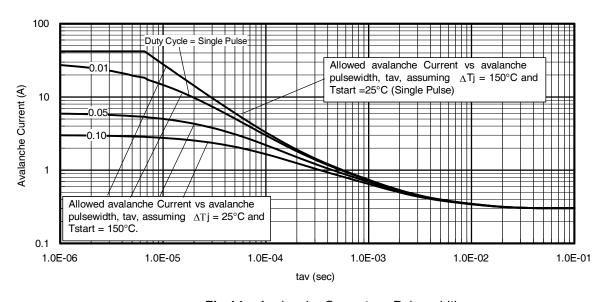


Fig 14. Avalanche Current vs. Pulse width

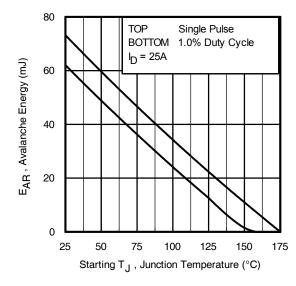


Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{ Z}_{thJC} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

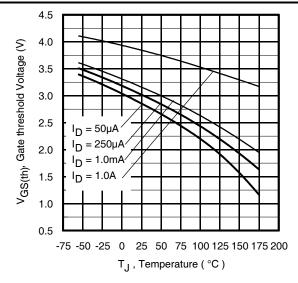


Fig 16. Threshold Voltage vs. Temperature

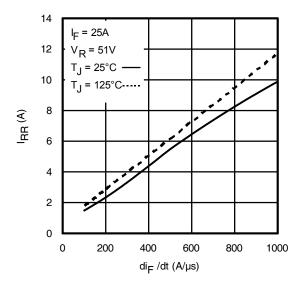


Fig. 18 - Typical Recovery Current vs. dif/dt

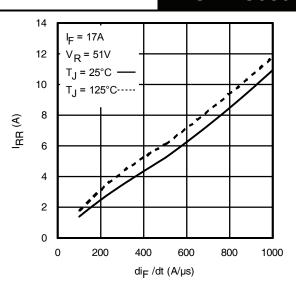


Fig. 17 - Typical Recovery Current vs. dif/dt

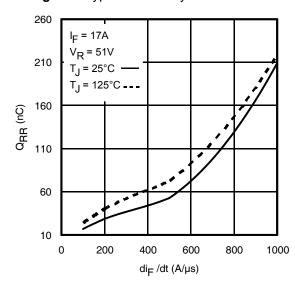


Fig. 19 - Typical Stored Charge vs. dif/dt

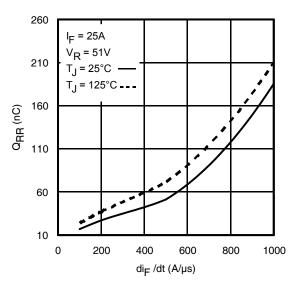


Fig. 20 - Typical Stored Charge vs. dif/dt

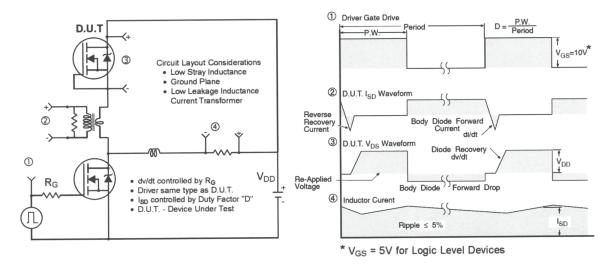


Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

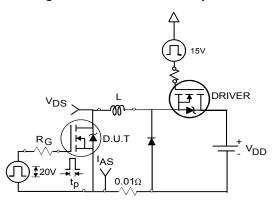


Fig 22a. Unclamped Inductive Test Circuit

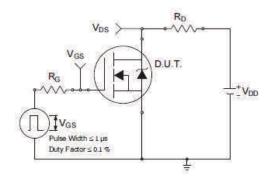


Fig 23a. Switching Time Test Circuit

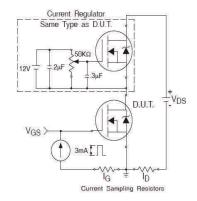


Fig 24a. Gate Charge Test Circuit

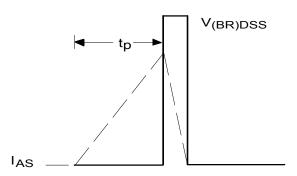


Fig 22b. Unclamped Inductive Waveforms

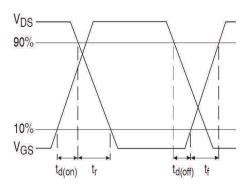


Fig 23b. Switching Time Waveforms

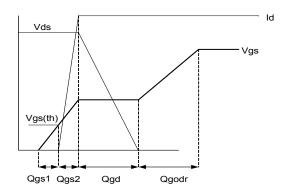
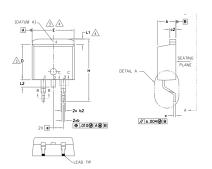
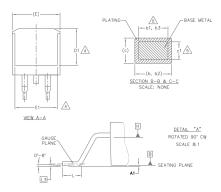




Fig 24b. Gate Charge Waveform

D²-Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

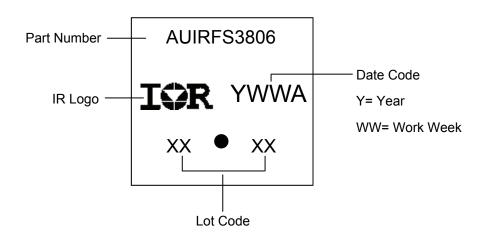
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S	DIMENSIONS					
M B	MILLIM	ETERS	TERS INCHES			
0 L	MIN.	MAX.	MIN.	MAX.	NOTES	
А	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
Ь	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
ь3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	_	.270	_	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	_	.245	_	4	
е	2.54	BSC	.100	BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	_	1.68	_	.066	4	
L2	_	1.78	_	.070		
L3	0.25	BSC	.010	BSC		

LEAD ASSIGNMENTS

DIODES

1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE

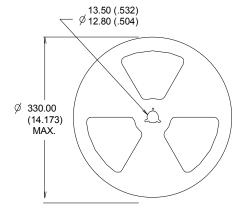

HEXFET

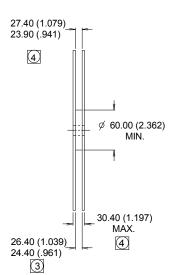
IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE

1.- GATE 2, 4.- COLLECTOR 3.- EMITTER


D²-Pak (TO-263AB) Part Marking Information




2017-10-12

D²-Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 🗷 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Qualification Information

		Automotive (per AEC-Q101)			
Qualificat	ion Level	Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the highe Automotive level.			
Moisture	Sensitivity Level	D ² -Pak MSL1			
			Class M2 (+/- 200V) [†]		
	Machine Model	AEC-Q101-002			
EGD	Human Rady Madal		Class H1B (+/- 700V) [†]		
ESD	Human Body Model		AEC-Q101-001		
Charged Davies Medal		Class C5 (+/- 2000V) [†]			
	Charged Device Model	AEC-Q101-005			
RoHS Co	mpliant	Yes			

[†] Highest passing voltage.

Revision History

Date	Comments
	Updated datasheet with corporate template
12/2/2015	Corrected ordering table on page 1.
12/2/2015	 Updated typo on the fig.19 and fig.20, unit of y-axis from "A" to "nC" on page 7.
	 Corrected typo Coss eff test condition from "60V" to "48V" on page 2.
10/12/2017	Corrected typo error on part marking on page 8.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.