

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

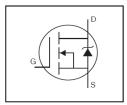
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



AUTOMOTIVE GRADE

AUIRFZ44Z AUIRFZ44ZS

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

HEXFE	Power MOSFET
V _{DSS}	55V
R _{DS(on)} max.	13.9mΩ
I _D	51A

D S S G S G TO-220AB AUIRFZ44Z AUIRFZ44ZS

G	D	S
Gate	Drain	Source

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Daga want number	Dookona Tuna	Standard Pack		Oudenable Dout Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
AUIRFZ44Z	TO-220	Tube	50	AUIRFZ44Z
AUIRFZ44ZS D ² -Pak		Tube	50	AUIRFZ44ZS
AUIRFZ44ZS	D-Pak	Tape and Reel Left	800	AUIRFZ44ZSTRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	51	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig. 9)	36	Α
I _{DM}	Pulsed Drain Current ①	200	
P _D @T _C = 25°C	Maximum Power Dissipation	80	W
	Linear Derating Factor	0.53	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
Single Pulse Avalanche Energy (Thermally Limited) ②		86	no I
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ②	105	mJ
I _{AR}	Avalanche Current ①	See Fig.15,16, 12a, 12b	Α
E _{AR}	Repetitive Avalanche Energy ®		mJ
TJ	Operating Junction and	-55 to + 175	
T_{STG}	Storage Temperature Range		°C
·	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
_	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		1.87	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/\/
$R_{\theta JA}$	Junction-to-Ambient		62	°C/W
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount, steady state) ®		40	

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.054		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		11.1	13.9	mΩ	$V_{GS} = 10V, I_D = 31A \oplus$
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	22			S	$V_{DS} = 25V, I_{D} = 31A$
ı	Drain-to-Source Leakage Current			20		$V_{DS} = 55V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current	in-to-Source Leakage Current 250		μΑ	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	
I_{GSS}	Gate-to-Source Forward Leakage			200	 Λ	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200	nA	$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		1			1	
Q_g	Total Gate Charge		29	43		I _D = 31A
Q_{gs}	Gate-to-Source Charge		7.2	11	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain Charge		12	18		V _{GS} = 10V4
$t_{d(on)}$	Turn-On Delay Time		14			$V_{DD} = 28V$
t _r	Rise Time		68			I _D = 31A
$t_{d(off)}$	Turn-Off Delay Time		33		ns	$R_G = 15\Omega$,
t _f	Fall Time		41			V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package and center of die contact
C _{iss}	Input Capacitance		1420			$V_{GS} = 0V$
C_{oss}	Output Capacitance		240			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		130		F	f = 1.0MHz,See Fig.5
C _{oss}	Output Capacitance		830		pF	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0MHz$
C _{oss}	Output Capacitance		190			$V_{GS} = 0V, V_{DS} = 44V f = 1.0MHz$
C _{oss eff.}	Effective Output Capacitance		300			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 44V$

Diode Characteristics

21040 0114140001101100							
	Parameter	Min.	Тур.	Max.	Units	Conditions	
	Continuous Source Current			51		MOSFET symbol	
I _S	(Body Diode)				51	_	showing the
	Pulsed Source Current			200	Α	integral reverse	
I _{SM}	(Body Diode) ①				200	0	p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 31A, V_{GS} = 0V \oplus$	
t _{rr}	Reverse Recovery Time		23	35	ns	$T_J = 25^{\circ}C$, $I_F = 31A$, $V_{DD} = 28V$	
Q_{rr}	Reverse Recovery Charge		17	26	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)
- \odot Limited by T_{Jmax_s} starting T_J = 25°C, L = 0.18mH, R_G = 25 Ω , I_{AS} = 31A, V_{GS} =10V. Part not recommended for use above this value.
- $\label{eq:local_local_local_local} \ensuremath{\Im} \quad I_{SD} \leq 31 A, \ di/dt \leq 840 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ} C.$
- 4 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} . $Limited by T_{Jmax}$, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population 100% tested to this value in production.
- This is applied to D2Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

 \mathfrak{P}_{θ} is rated at T_J of approximately 90°C.

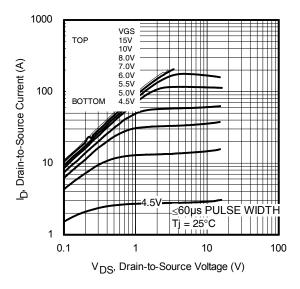


Fig. 1 Typical Output Characteristics

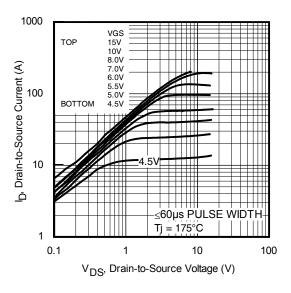


Fig. 2 Typical Output Characteristics

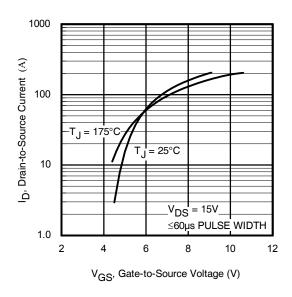


Fig. 3 Typical Transfer Characteristics

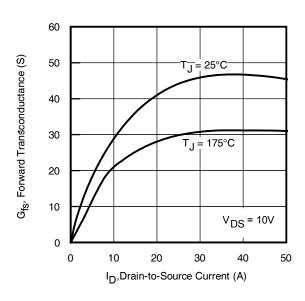


Fig. 4 Typical Forward Trans conductance vs. Drain Current

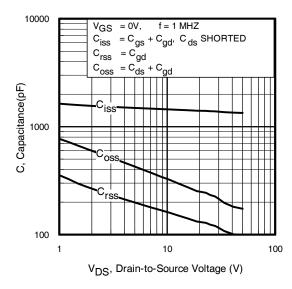


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

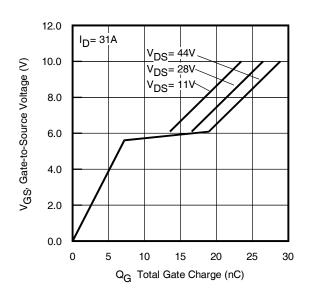
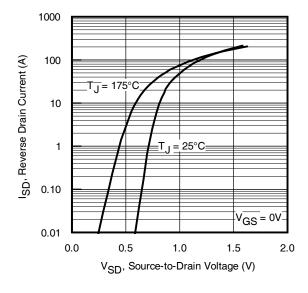



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

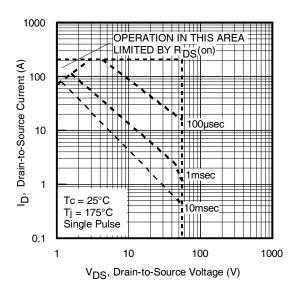


Fig 8. Maximum Safe Operating Area

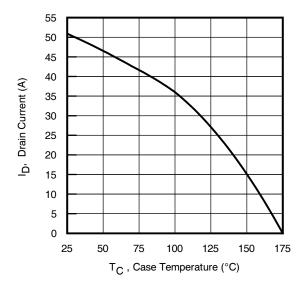
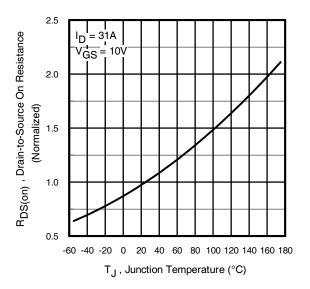



Fig 9. Maximum Drain Current vs.
Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

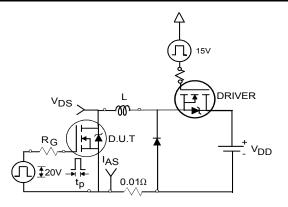


Fig 12a. Unclamped Inductive Test Circuit

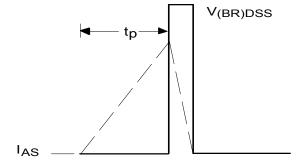


Fig 12b. Unclamped Inductive Waveforms

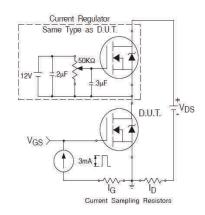


Fig 13a. Gate Charge Test Circuit

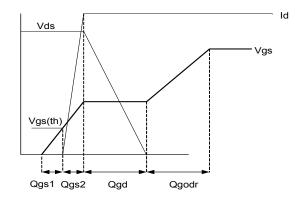


Fig 13b. Gate Charge Waveform

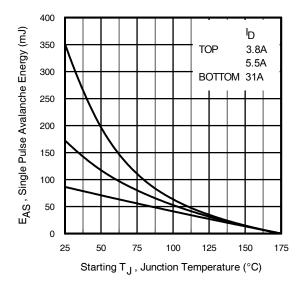


Fig 12c. Maximum Avalanche Energy vs. Drain Current

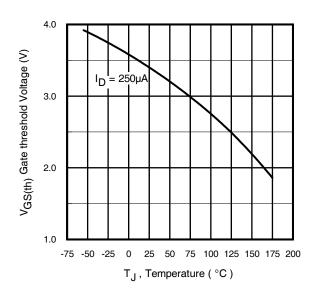


Fig 14. Threshold Voltage vs. Temperature

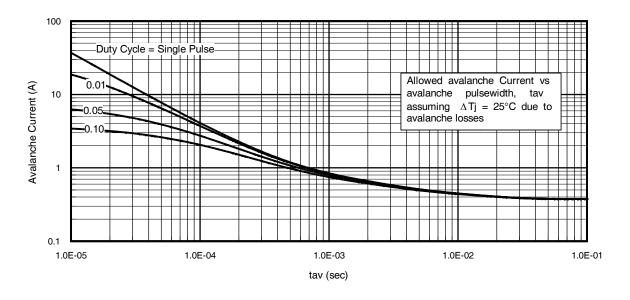
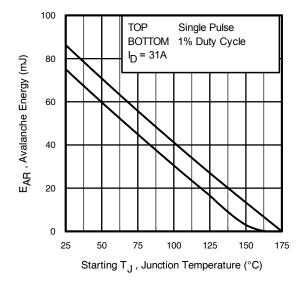



Fig 15. Avalanche Current vs. Pulse width

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{Z}_{\text{thJC}} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{\text{th}} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 16. Maximum Avalanche Energy vs. Temperature

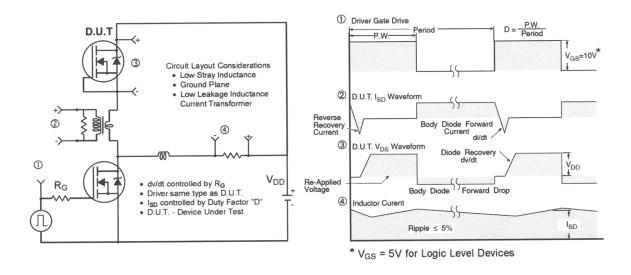


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

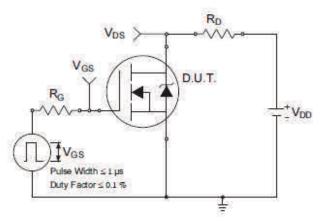


Fig 18a. Switching Time Test Circuit

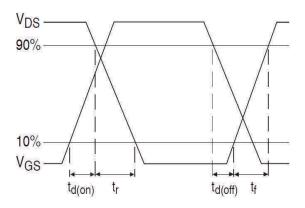
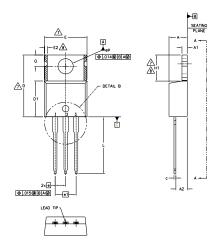
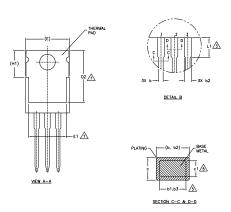




Fig 18b. Switching Time Waveforms

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1
- DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1

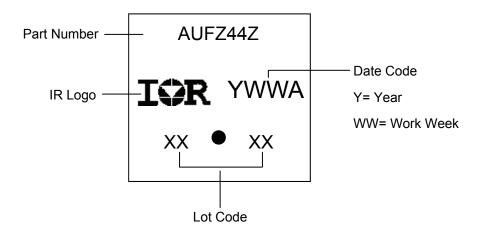
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING
 AND SINGULATION IRREGULARITIES ARE ALLOWED.

 OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.)
 WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIMETERS		MILLIMETERS INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	1,14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
ь1	0.38	0.97	.015	.038	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	_	.030	8
е	2.54		.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
ØΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

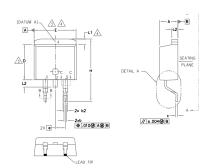
LEAD ASSIGNMENTS

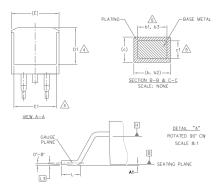
HEXFET


- 1.- GATE 2.- DRAIN 3.- SOURCE

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES


- 1.- ANODE 2.- CATHODE 3.- ANODE


TO-220AB Part Marking Information

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

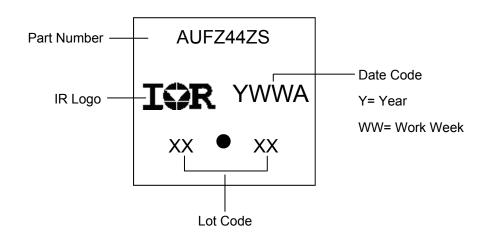
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S	DIMENSIONS				
M B	MILLIM	ETERS	INC	HES	O T E S
0 L	MIN.	MAX.	MIN.	MAX.	S
А	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
Ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1,14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
с1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245	_	4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	

LEAD ASSIGNMENTS

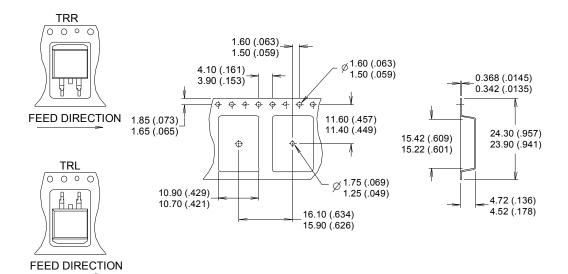
DIODES

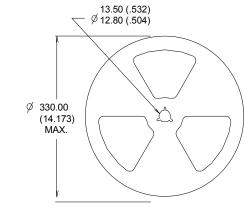
1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE

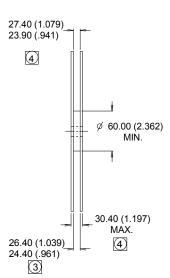

HEXFET

IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE


1.- GATE 2, 4.- COLLECTOR 3.- EMITTER


D²Pak (TO-263AB) Part Marking Information



D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Qualification Information

Qualification Level		Automotive (per AEC-Q101)			
		Comments: Th	is part number(s) passed Automotive qualification. Infineon's		
		Industrial and C	consumer qualification level is granted by extension of the higher		
		Automotive leve	l.		
		TO-220 Pak	N/A		
Woisture	Moisture Sensitivity Level		MSL1		
	Machine Madel	Class M2 (+/- 200V) [†]			
	Machine Model	AEC-Q101-002			
FOD	Liveran Dady Madal	Class H1A (+/- 500V) [†]			
ESD	Human Body Model	AEC-Q101-001			
	Charged Davise Medal	Class C5 (+/- 1125V) [†]			
Charged Device Model		AEC-Q101-005			
RoHS Compliant		Yes			
		•			

[†] Highest passing voltage.

Revision History

Date	Comments
12/4/2015	Updated datasheet with corporate template
	Corrected ordering table on page 1.
09/25/17	Corrected typo error on part marking on pages 9,10.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.