Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # International TOR Rectifier # AUIRGP35B60PD-E # WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE ### **Features** - NPT Technology, Positive Temperature Coefficient - Lower V_{CE}(SAT) - Lower Parasitic Capacitances - Minimal Tail Current - HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode - Tighter Distribution of Parameters - Higher Reliability - Lead-Free, RoHS Compliant - Automotive Qualified* ### **Applications** - PFC and ZVS SMPS Circuits - DC/DC Converter Charger ### **Benefits** - Parallel Operation for Higher Current Applications - Lower Conduction Losses and Switching Losses - Higher Switching Frequency up to 150KHz $V_{CES} = 600V$ $V_{CE(on)}$ typ. = 1.85V @ $V_{GE} = 15V$ I_C = 22A # Equivalent MOSFET Parameters © $R_{CE(on)}$ typ. = 84m Ω I_D (FET equivalent) = 35A | G | С | E | |------|-----------|---------| | Gate | Collector | Emitter | ### **Absolute Maximum Ratings** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_o) is 25°C, unless otherwise specified. | | Parameter | Max. | Units | |-----------------------------------------|-------------------------------------------------|-----------------------------------|-------| | V _{CES} | Collector-to-Emitter Voltage | 600 | V | | I _C @ T _C = 25°C | Continuous Collector Current | 60 | | | _C @ T _C = 100°C | Continuous Collector Current | 34 | | | СМ | Pulse Collector Current (Ref. Fig. C.T.4) | 120 | | | LM | Clamped Inductive Load Current ② | 120 | A | | _F @ T _C = 25°C | Diode Continous Forward Current | 40 | | | _F @ T _C = 100°C | Diode Continous Forward Current | 15 | | | FRM | Maximum Repetitive Forward Current ^③ | 60 | | | √ _{GE} | Gate-to-Emitter Voltage | ±20 | V | | P _D @ T _C = 25°C | Maximum Power Dissipation | 308 | W | | P _D @ T _C = 100°C | Maximum Power Dissipation | 123 | | | Γ _J | Operating Junction and | -55 to +150 | | | Г _{STG} | Storage Temperature Range | | °C | | | Soldering Temperature for 10 sec. | 300 (0.063 in. (1.6mm) from case) | | | _ | Mounting Torque, 6-32 or M3 Screw | 10 lbf·in (1.1 N·m) | | ### **Thermal Resistance** | | Parameter | Min. | Тур. | Max. | Units | | |--------------------------|----------------------------------------------------------------|------------------------------------|------------|------|--------|--| | R _{θJC} (IGBT) | Thermal Resistance Junction-to-Case-(each IGBT) | | | 0.41 | °C/W | | | R _{0JC} (Diode) | Thermal Resistance Junction-to-Case-(each Diode) | ction-to-Case-(each Diode) — — 1.7 | | | | | | $R_{\theta CS}$ | Thermal Resistance, Case-to-Sink (flat, greased surface) | | 0.50 | | | | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient (typical socket mount) | | | 40 | | | | | Weight | | 6.0 (0.21) | | g (oz) | | ^{*}Qualification standards can be found at http://www.irf.com/ ### Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | Ref.Fig | |---------------------------------|-----------------------------------------|------|------|------|-------|---------------------------------------------------------------------|------------| | $V_{(BR)CES}$ | Collector-to-Emitter Breakdown Voltage | 600 | _ | _ | ٧ | $V_{GE} = 0V, I_{C} = 500\mu A$ | | | $\Delta V_{(BR)CES}/\Delta T_J$ | Temperature Coeff. of Breakdown Voltage | _ | 0.78 | _ | V/°C | $V_{GE} = 0V, I_{C} = 1mA (25^{\circ}C-125^{\circ}C)$ | | | R_G | Internal Gate Resistance | _ | 1.7 | _ | Ω | 1MHz, Open Collector | | | | | _ | 1.85 | 2.15 | | $I_C = 22A, V_{GE} = 15V$ | 4, 5,6,8,9 | | $V_{CE(on)}$ | Collector-to-Emitter Saturation Voltage | _ | 2.25 | 2.55 | ٧ | I _C = 35A, V _{GE} = 15V | | | | | _ | 2.37 | 2.80 | Ī | I _C = 22A, V _{GE} = 15V, T _J = 125°C | | | | | _ | 3.00 | 3.45 | Ī | $I_C = 35A, V_{GE} = 15V, T_J = 125^{\circ}C$ | | | $V_{GE(th)}$ | Gate Threshold Voltage | 3.0 | 4.0 | 5.0 | ٧ | I _C = 250μA | 7,8,9 | | $\Delta V_{GE(th)}/\Delta TJ$ | Threshold Voltage temp. coefficient | _ | -10 | _ | mV/°C | $V_{CE} = V_{GE}$, $I_C = 1.0 \text{mA}$ | | | gfe | Forward Transconductance | _ | 36 | _ | S | $V_{CE} = 50V, I_{C} = 22A, PW = 80\mu s$ | | | I _{CES} | Collector-to-Emitter Leakage Current | _ | 3.0 | 375 | μΑ | $V_{GE} = 0V, V_{CE} = 600V$ | | | | | _ | 0.35 | _ | mA | $V_{GE} = 0V, V_{CE} = 600V, T_{J} = 125^{\circ}C$ | | | V _{FM} | Diode Forward Voltage Drop | _ | 1.30 | 1.70 | ٧ | $I_F = 15A, V_{GE} = 0V$ | 10 | | | | _ | 1.20 | 1.60 | Ī | $I_F = 15A, V_{GE} = 0V, T_J = 125$ °C | | | I _{GES} | Gate-to-Emitter Leakage Current | _ | _ | ±100 | nA | $V_{GE} = \pm 20V$, $V_{CE} = 0V$ | | ### Switching Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | Ref.Fig | |----------------------------|-------------------------------------------------|------|--------|------|-------|--------------------------------------------------|-------------| | Qg | Total Gate Charge (turn-on) | _ | 160 | 240 | | I _C = 22A | 17 | | Q_{gc} | Gate-to-Collector Charge (turn-on) | _ | 55 | 83 | nC | V _{CC} = 400V | CT1 | | Q _{ge} | Gate-to-Emitter Charge (turn-on) | _ | 21 | 32 | | $V_{GE} = 15V$ | | | E _{on} | Turn-On Switching Loss | _ | 220 | 270 | | $I_C = 22A, V_{CC} = 390V$ | CT3 | | E _{off} | Turn-Off Switching Loss | _ | 215 | 265 | μJ | $V_{GE} = +15V, R_G = 3.3\Omega, L = 200\mu H$ | | | E _{total} | Total Switching Loss | _ | 435 | 535 | | T _J = 25°C ⊕ | | | t _{d(on)} | Turn-On delay time | _ | 26 | 34 | | $I_C = 22A, V_{CC} = 390V$ | СТЗ | | t _r | Rise time | _ | 6.0 | 8.0 | ns | $V_{GE} = +15V, R_G = 3.3\Omega, L = 200\mu H$ | | | t _{d(off)} | Turn-Off delay time | _ | 110 | 122 | | T _J = 25°C ⊕ | | | t _f | Fall time | _ | 8.0 | 10 | | | | | E _{on} | Turn-On Switching Loss | _ | 410 | 465 | | $I_C = 22A, V_{CC} = 390V$ | СТЗ | | E _{off} | Turn-Off Switching Loss | _ | 330 | 405 | μJ | $V_{GE} = +15V, R_G = 3.3\Omega, L = 200\mu H$ | 11,13 | | E _{total} | Total Switching Loss | _ | 740 | 870 | | T _J = 125°C | WF1,WF2 | | t _{d(on)} | Turn-On delay time | _ | 26 | 34 | | $I_C = 22A, V_{CC} = 390V$ | CT3 | | t _r | Rise time | _ | 8.0 | 11 | ns | $V_{GE} = +15V, R_G = 3.3\Omega, L = 200\mu H$ | 12,14 | | t _{d(off)} | Turn-Off delay time | _ | 130 | 150 | | T _J = 125°C | WF1,WF2 | | t _f | Fall time | _ | 12 | 16 | | | | | C _{ies} | Input Capacitance | _ | 3715 | _ | | $V_{GE} = 0V$ | 16 | | C _{oes} | Output Capacitance | _ | 265 | _ | | $V_{CC} = 30V$ | | | C _{res} | Reverse Transfer Capacitance | _ | 47 | _ | pF | f = 1Mhz | | | C _{oes} eff. | Effective Output Capacitance (Time Related) ③ | _ | 135 | _ | | $V_{GE} = 0V$, $V_{CE} = 0V$ to $480V$ | 15 | | C _{oes} eff. (ER) | Effective Output Capacitance (Energy Related) ③ | _ | 179 | _ | | | | | | | | | | | $T_J = 150$ °C, $I_C = 120$ A | 3 | | RBSOA | Reverse Bias Safe Operating Area | FUL | L SQUA | RE | | $V_{CC} = 480V, Vp = 600V$ | CT2 | | | | | | | | Rg = 22Ω , $V_{GE} = +15V$ to $0V$ | | | t _{rr} | Diode Reverse Recovery Time | _ | 42 | 60 | ns | $T_J = 25^{\circ}C$ $I_F = 15A$, $V_R = 200V$, | 19 | | | | _ | 74 | 120 | | $T_J = 125^{\circ}C$ di/dt = 200A/µs | | | Q _{rr} | Diode Reverse Recovery Charge | | 80 | 180 | nC | $T_J = 25^{\circ}C$ $I_F = 15A$, $V_R = 200V$, | 21 | | | | | 220 | 600 | | $T_J = 125^{\circ}C$ di/dt = 200A/µs | | | I _{rr} | Peak Reverse Recovery Current | _ | 4.0 | 6.0 | Α | $T_J = 25^{\circ}C$ $I_F = 15A, V_R = 200V,$ | 19,20,21,22 | | | | _ | 6.5 | 10 | | $T_J = 125^{\circ}C$ di/dt = 200A/ μ s | CT5 | ### Notes: ① $R_{CE(on)}$ typ. = equivalent on-resistance = $V_{CE(on)}$ typ./ I_C , where $V_{CE(on)}$ typ.= 1.85V and I_C =22A. I_D (FET Equivalent) is the equivalent MOSFET I_D rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. [@] V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 28 $\mu H,\ R_{G}$ = 22 $\Omega.$ ³ Pulse width limited by max. junction temperature. ④ Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06. $^{^{\}circ}$ C_{oes} eff. is a fixed capacitance that gives the same charging time as C_{oes} while V_{CE} is rising from 0 to 80% V_{CES}. C_{oes} eff.(ER) is a fixed capacitance that stores the same energy as C_{oes} while V_{CE} is rising from 0 to 80% V_{CES}. # Qualification Information[†] | | | Automotive | | | | | | |----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|--|--|--|--| | | | (per AEC-Q101) ^{††} | | | | | | | Qualification | Comments: This part number(s) passed Auto qualification. IR's Industrial and Consumer qualification I granted by extension of the higher Automotive level. | | | | | | | | Moisture Se | nsitivity Level | TO-247 MSL1 | | | | | | | | Machine Model | Class M4 (425V) ^{†††} | | | | | | | | | AEC-Q101-002 | | | | | | | ESD | Human Body Model | | Class H2 (4000V) ^{†††} | | | | | | ESD | | | AEC-Q101-001 | | | | | | Charged Device Model | | Class C5 (1125V) ^{†††} | | | | | | | | | AEC-Q101-005 | | | | | | | RoHS Compliant | | Yes | | | | | | [†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/ ^{††} Exceptions to AEC-Q101 requirements are noted in the qualification report. ^{†††} Highest passing voltage # International TOR Rectifier 300 250 200 150 100 50 0 20 40 60 80 100 120 140 160 T_C (°C) 350 Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature Fig. 3 - Reverse Bias SOA T_J = 150°C; V_{GE} =15V **Fig. 4** - Typ. IGBT Output Characteristics $T_{JJ} = -40^{\circ}\text{C}$; tp = 80µs Fig. 5 - Typ. IGBT Output Characteristics $T_J = 25$ °C; tp = 80 μ s **Fig. 6** - Typ. IGBT Output Characteristics $T_J = 125^{\circ}\text{C}$; tp = 80 μ s ### International ### IOR Rectation $T_J = 25^{\circ}C$ 700 $T_{.1} = 125^{\circ}C$ 600 500 400 300 200 T_J = 125°C 100 = 25°C 0 5 20 0 10 15 V_{GE} (V) Fig. 7 - Typ. Transfer Characteristics $V_{CE} = 50V$; tp = 10 μ s Fig. 9 - Typical V_{CE} vs. V_{GE} $T_{J} = 125^{\circ}C$ Fig. 11 - Typ. Energy Loss vs. I_C $T_J=125^{\circ}\text{C}; \ L=200\mu\text{H}; \ V_{CE}=390\text{V}, \ R_G=3.3\Omega; \ V_{GE}=15\text{V}. \\ www.irf.combiode clamp used: 30ETH06 (See C.T.3)$ # AUIRGP35B60PD-E Fig. 8 - Typical V_{CE} vs. V_{GE} $T_J = 25$ °C Fig. 10 - Typ. Diode Forward Characteristics $tp = 80\mu s$ Fig. 12 - Typ. Switching Time vs. I_C $T_J = 125$ °C; $L = 200 \mu H$; $V_{CE} = 390 V$, $R_G = 3.3 \Omega$; $V_{GE} = 15 V$. Diode clamp used: 30ETH06 (See C.T.3) Fig. 13 - Typ. Energy Loss vs. R_G T_J = 125°C; L = 200 μ H; V_{CE} = 390V, I_{CE} = 22A; V_{GE} = 15V Diode clamp used: 30ETH06 (See C.T.3) **Fig. 15-** Typ. Output Capacitance Stored Energy vs. V_{CF} Fig. 17 - Typical Gate Charge vs. V_{GE} $I_{CE} = 22A$ Fig. 14 - Typ. Switching Time vs. R_G $T_J = 125^{\circ}C$; $L = 200\mu H$; $V_{CE} = 390V$, $I_{CE} = 22A$; $V_{GE} = 15V$ Diode clamp used: 30ETH06 (See C.T.3) Fig. 16- Typ. Capacitance vs. V_{CE} $V_{GE} = 0V$; f = 1MHz Fig. 18 - Normalized Typ. $V_{CE(on)}$ vs. Junction Temperature $I_C = 22A$, $V_{GE} = 15V$ # International TOR Region ier V_R = 200V T_J = 125°C T_J = 25°C I_F = 30A I_F = 15A Fig. 19 - Typical Reverse Recovery vs. dif/dt dif/dt - (A/µs) 100 $I_{F} = 5.0A$ 1000 Fig. 21 - Typical Stored Charge vs. di_f/dt # AUIRGP35B60PD-E Fig. 20 - Typical Recovery Current vs. di_f/dt Fig. 22 - Typical $di_{(rec)M}/dt$ vs. di_f/dt , International Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - Resistive Load Circuit ### REVERSE RECOVERY CIRCUIT Fig. C.T.5 - Reverse Recovery Parameter Test Circuit Fig. WF1 - Typ. Turn-off Loss Waveform $@T_J = 25^{\circ}C$ using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ $T_J = 25$ °C using Fig. CT.3 - 1. diddt-Rate of change of current through zero crossing - 2. IRRM Peak reverse recovery current - 3. trr Reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current - 4. Q_{rr} Area under curve defined by t_{rr} and I_{RRM} $$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$ 5. di_{(rec)M}/dt - Peak rate of change of current during t_b portion of t_{rr} Fig. WF3 - Reverse Recovery Waveform and Definitions ### TO-247AD Package Outline Dimensions are shown in millimeters (inches) #### NOTES: DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994. DIMENSIONS ARE SHOWN IN INCHES. CONTOUR OF SLOT OPTIONAL. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1. LEAD FINISH UNCONTROLLED IN L1. OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD. | SYMBOL | INC | HES | MILLIM | ETERS | | |--------|----------|------|--------|-------|-------| | | MIN, | MAX. | MIN. | MAX. | NOTES | | A | .183 | .209 | 4.65 | 5.31 | | | A1 | .087 | .102 | 2.21 | 2.59 | | | A2 | .059 | .098 | 1.50 | 2.49 | | | b | .039 | .055 | 0.99 | 1,40 | | | ь1 | .039 | .053 | 0,99 | 1,35 | | | b2 | .065 | .094 | 1.65 | 2.39 | | | ь3 | .065 | .092 | 1.65 | 2.34 | | | b4 | .102 | .135 | 2.59 | 3,43 | | | b5 | .102 | .133 | 2.59 | 3.38 | | | С | .015 | .035 | 0.38 | 0.89 | | | c1 | .015 | .033 | 0.38 | 0.84 | | | D | .776 | .815 | 19,71 | 20.70 | 4 | | D1 | .515 | - | 13.08 | - | 5 | | D2 | .020 | .053 | 0.51 | 1,35 | | | E | .602 | .625 | 15.29 | 15.87 | 4 | | E1 | .530 | - | 13,46 | - | | | E2 | .178 | .216 | 4.52 | 5.49 | | | е | ,215 BSC | | 5,46 | BSC | | | Øk | .0 | 10 | 0.25 | | | | L | .780 | .827 | 19.57 | 21.00 | | | L1 | .146 | .169 | 3.71 | 4.29 | | | øP | .140 | .144 | 3.56 | 3.66 | | | øP1 | - | .291 | - | 7.39 | | | 0 | .209 | .224 | 5.31 | 5.69 | | | S | .217 | BSC | 5,51 | BSC | | ### LEAD ASSIGNMENTS ### HEXFET - 1.- GATE - 2.- DRAIN 3.- SOURCE 4.- DRAIN ### IGBTs, CoPACK - 1.- GATE 2.- COLLECTOR 3.- EMITTER - 4.- COLLECTOR # DIODES - 1.- ANODE/OPEN - 2.- CATHODE 3.- ANODE ### TO-247AD Part Marking Information TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ # **Ordering Information** | Base part number | Package Type | Standard Pack | | Complete Part Number | |------------------|--------------|---------------|----------|----------------------| | | | Form | Quantity | | | AUIRGP35B60PD-E | TO-247 | Tube | 25 | AUIRGP35B60PD-E | | | | | | | International ### AUIRGP35B60PD-E ### **IMPORTANT NOTICE** Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and/or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements. For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ **WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105