

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

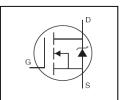
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

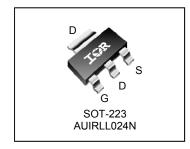
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Features

- Advanced Planar Technology
- Low On-Resistance
- Logic Level Gate Drive
- Dynamic dv/dt Rating
- 150°C Operating Temperature
- · Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *


Description

Specifically designed for Automotive applications, this Cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

V _{DSS}	55V
R _{DS(on)} max.	0.065Ω
I _D	3.1A

G	D	S
Gate	Drain	Source

Page part number Backage Tune		Standard Pack		Ouderable Part Number	
Base part number	Package Type	Form Quantity		Orderable Part Number	
AUIRLL024N	SOT-223	Tape and Reel	2500	AUIRLL024NTR	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ®	4.4	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑤	3.1	A
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ⑤	2.5	
I _{DM}	Pulsed Drain Current ①	12	
P _D @T _A = 25°C	Maximum Power Dissipation (PCB Mount) ⑥	2.1	10/
P _D @T _A = 25°C	Maximum Power Dissipation (PCB Mount) S	1.0	W
	Linear Derating Factor (PCB Mount) ⑤	8.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	120	mJ
I _{AR}	Avalanche Current ①	3.1	А
E _{AR}	Repetitive Avalanche Energy ①⑤	0.1	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T_J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount, steady state) ©	90	120	°CAM
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount, steady state) ®	50	60	°C/W

 $\label{eq:hexpectation} \mbox{HEXFET} \mbox{\ensuremath{\mathbb{R}}} \mbox{ is a registered trademark of Infineon}.$

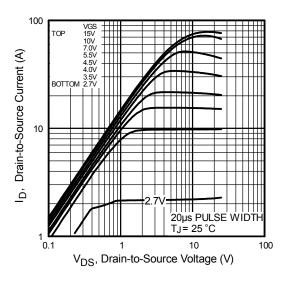
^{*}Qualification standards can be found at www.infineon.com

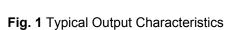
Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.048		V/°C	Reference to 25°C, I _D = 1mA
				0.065		$V_{GS} = 10V, I_D = 3.1A \oplus$
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.080	Ω	$V_{GS} = 5.0V, I_D = 2.5A $ ④
				0.100		V _{GS} = 4.0V, I _D = 1.6A ④
$V_{GS(th)}$	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	3.3			S	$V_{DS} = 25V, I_{D} = 1.9A$
	Drain-to-Source Leakage Current			25		$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}				250	μA	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	n ^	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -16V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q_g	Total Gate Charge	 10.4	15.6		I _D = 1.9A
Q_{gs}	Gate-to-Source Charge	 1.5	2.3	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain Charge	 5.5	8.3		V_{GS} = 5.0V, See Fig 6 and 13 @
$t_{d(on)}$	Turn-On Delay Time	 7.4			$V_{DD} = 28V$
t _r	Rise Time	 21		20	I _D = 1.9A
$t_{d(off)}$	Turn-Off Delay Time	 18		ns	$R_G = 24\Omega$
t _f	Fall Time	 25			R_D = 15 Ω , See Fig. 10 \oplus
C _{iss}	Input Capacitance	 510			$V_{GS} = 0V$
Coss	Output Capacitance	 140		pF	V _{DS} = 25V
C_{rss}	Reverse Transfer Capacitance	 58			f = 1.0MHz, See Fig.5


Diode Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			3.1		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			12	A	integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 1.9A, V_{GS} = 0V $
t _{rr}	Reverse Recovery Time		39	58	ns	$T_J = 25^{\circ}C$, $I_F = 1.9A$,
Q _{rr}	Reverse Recovery Charge		63	94	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsion	turn-or	n time is	negligil	ole (turn-on is dominated by LS+LD)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}C$, L = 25mH, $R_G = 25\Omega$, $I_{AS} = 3.1A$. (See fig. 12)
- $\text{ } \textbf{I}_{SD} \leq 1.9 A, \text{ } \text{di/dt} \leq 270 \text{A/\mu s}, \text{ } \textbf{V}_{DD} \leq \textbf{V}_{(BR)DSS}, \text{ } \textbf{T}_{J} \leq 150 ^{\circ}\text{C}.$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ When mounted on FR-4 board using minimum recommended footprint.
- © When mounted on 1 inch square copper board, for comparison with other SMD devices.

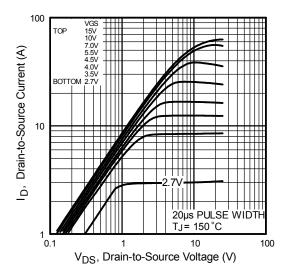


Fig. 2 Typical Output Characteristics

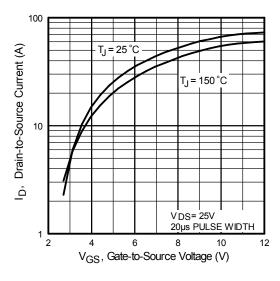
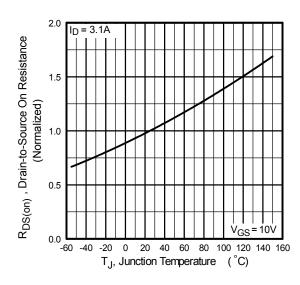
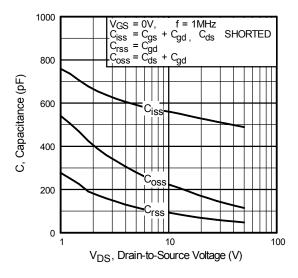




Fig. 3 Typical Transfer Characteristics

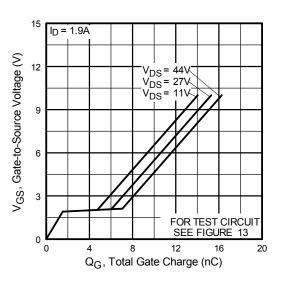


Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage



Fig. 7 Typical Source-to-Drain Diode Forward Voltage

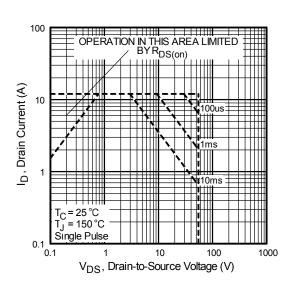
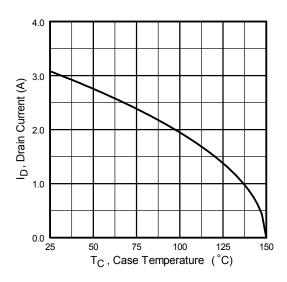



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

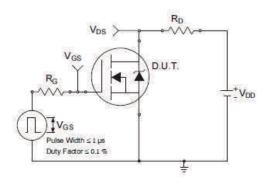


Fig 10a. Switching Time Test Circuit

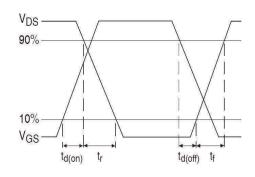


Fig 10b. Switching Time Waveforms

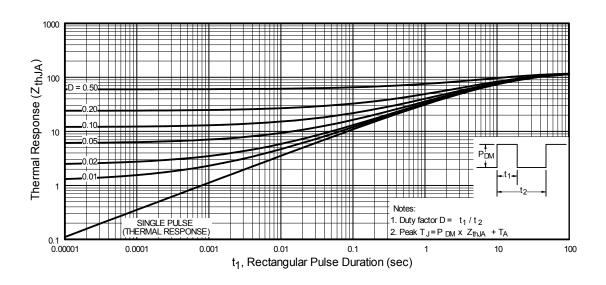


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

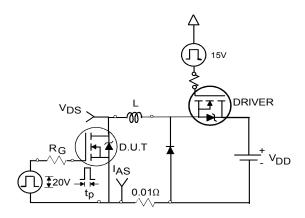


Fig 12a. Unclamped Inductive Test Circuit

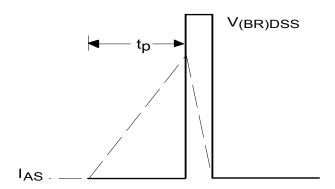


Fig 12b. Unclamped Inductive Waveforms

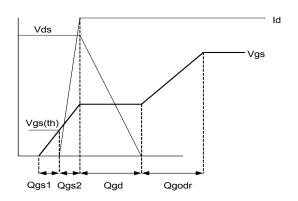
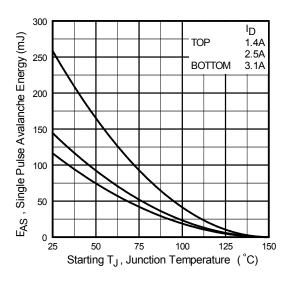



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

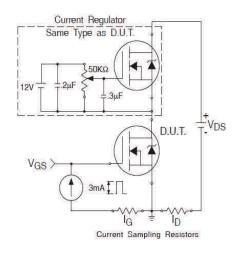
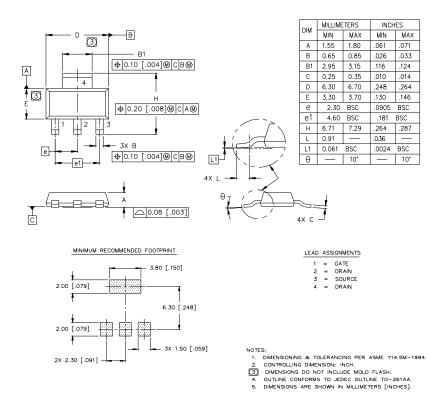
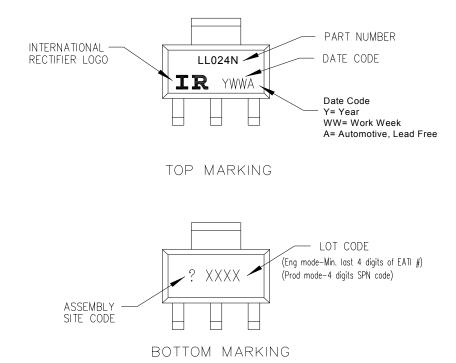
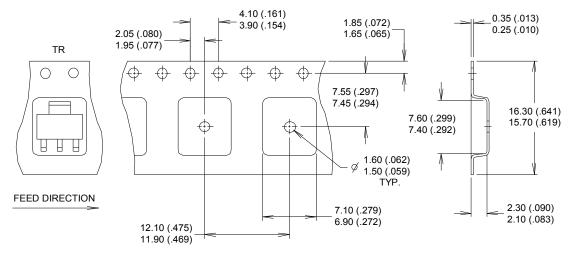



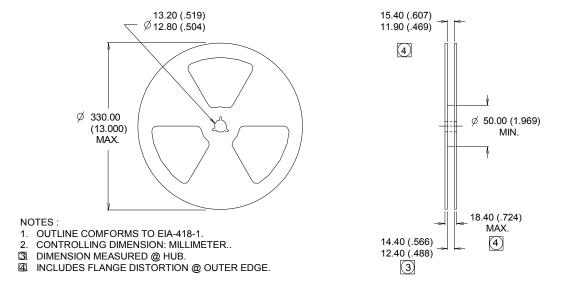
Fig 13b. Gate Charge Test Circuit


2015-10-29

SOT-223 (TO-261AA) Package Outline (Dimensions are shown in millimeters (inches)


SOT-223(TO-261AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/



SOT-223(TO-261AA) Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive					
		(per AEC-Q101)					
Qualificati	ion Level	Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture	Sensitivity Level	SOT-223	MSL1				
	Machine Madel	Class M2 (+/- 150V) [†]					
	Machine Model	AEC-Q101-002					
FOD	Lluman Dady Madal	Class H1A (+/- 500V) [†]					
ESD	Human Body Model	AEC-Q101-001					
	Charried Davids Madel	Class C5 (+/- 2000V) [†]					
	Charged Device Model	AEC-Q101-005					
RoHS Compliant		Yes					

[†] Highest passing voltage.

Revision History

Date	Comments		
3/25/2014	 Added "Logic Level Gate Drive" bullet in the features section on page 1 Updated part marking on page 7 Updated data sheet with new IR corporate template 		
10/29/2015	 Updated datasheet with corporate template Corrected ordering table on page 1. 		

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.