

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

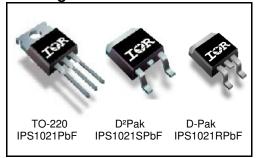
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IPS1021(S)(R)PbF

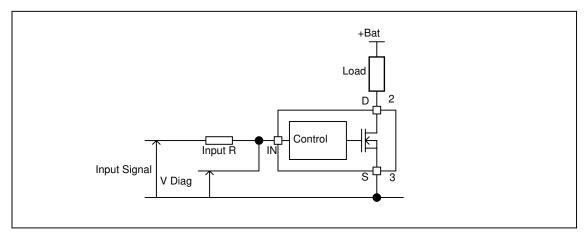
INTELLIGENT POWER LOW SIDE SWITCH

Features

- Over temperature shutdown
- Over current shutdown
- Active clamp
- Low current & logic level input
- ESD protection
- Optimized Turn On/Off for EMI
- Diagnostic on the input current


Description

The IPS1021(S)(R)PbF is a three terminal Intelligent Power Switch (IPS) that features a low side MOSFET with over-current, over-temperature, ESD protection and drain to source active clamp. This device offers protections and the high reliability required in harsh environments. The switch provides efficient protection by turning OFF the power MOSFET when the temperature exceeds 165°C or when the drain current reaches 35A. The device restarts once the input is cycled. A serial resistance connected to the input provides the diagnostic. The avalanche capability is significantly enhanced by the active clamp and covers most inductive load demagnetizations.


Product Summary

 $\begin{array}{ll} \text{Rds(on)} & 25\text{m}\Omega\,(\text{max.}) \\ \text{Vclamp} & 36\text{V} \\ \text{Ishutdown} & 35\text{A}\,(\text{typ.}) \end{array}$

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters

are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vds	Maximum drain to source voltage	-0.3	36	V
Vds cont.	Maximum continuous drain to source voltage	-	28	V
Vin	Maximum input voltage	-0.3	6	V
Isd cont.	Max. diode continuous current (limited by thermal dissipation)	_	4.5	Α
	Maximum power dissipation (internally limited by thermal protection)			
Pd	Rth=5°C/W IPS1021	_	25	W
ru	Rth=40°C/W IPS1021S 1" sqr. footprint	_	3.1	
	Rth=50°C/W IPS1021R 1" sqr. footprint	_	2.5	
ESD	Electrostatic discharge voltage (Human body) C=100pF, R=1500Ω			
	Between drain and source	_	4	
	Other combinations	_	3	kV
	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω			r.v
	Between drain and source	_	0.5	
	Other combinations	_	0.3	
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C
Tsoldering	Lead soldering temperature (10 seconds)		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient IPS1021 TO-220 free air	50	_	
Rth2	Thermal resistance junction to case IPS1021 TO-220	2.6	_	
Rth1	Thermal resistance junction to ambient IPS1021S D2Pak std. footprint	60	_	
Rth2	Thermal resistance junction to ambient IPS1021S D2Pak 1" sqr. footprint	40	_	°C/W
Rth3	Thermal resistance junction to case IPS1021S D ² Pak	2.6	_	C/VV
Rth1	Thermal resistance junction to ambient IPS1021R D-Pak std. footprint	70	_	
Rth2	Thermal resistance junction to ambient IPS1021R D-Pak 1" sqr. footprint	50	_	
Rth3	Thermal resistance junction to case IPS1021R D-Pak	2.6	_	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	4.5	5.5	
VIL	Low level input voltage	0	0.5	
lds	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V			
	Rth=5°C/W IPS1021	_	13.5	Α
	Rth=40°C/W IPS1021S 1" sqr. footprint	_	4.8	
	Rth=50°C/W IPS1021R 1" sqr. footprint	_	4.3	
Rin	Recommended resistor in series with IN pin to generate a diagnostic	0.5	10	kΩ
Max L	Max. recommended load inductance (including line inductance) (1)	_	20	μΗ
Max F	Max. frequency (switching losses = conduction losses)		500	Hz
Max t rise	Max. input rising time	_	1	μs

⁽¹⁾ Higher inductance is possible if maximum load current is limited - see figure 11

Static Electrical Characteristics

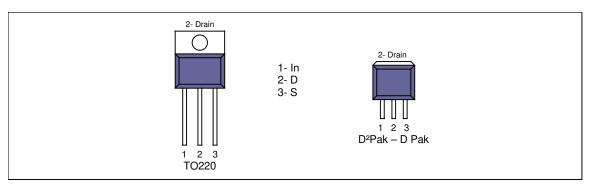
Tj=25°C, Vcc=14V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C	_	20	25	mΩ	Vin=5V. Ids=8A
	ON state resistance Tj=150°C (2)	_	38	48	1112.2	VIII=5V, IUS=6A
ldss1	Drain to source leakage current	_	0.1	10	۸	Vcc=14V, Tj=25°C
ldss2	Drain to source leakage current	_	0.2	20	μΑ	Vcc=28V, Tj=25°C
V clamp1	Drain to source clamp voltage 1	36	39	_		Id=20mA
V clamp2	Drain to source clamp voltage 2	_	40	42	W	Id=2A
Vin clamp	IN to source pin clamp voltage	5.5	6.5	7.5	V	lin=1mA
Vth	Input threshold voltage	_	1.7	_		Id=10mA

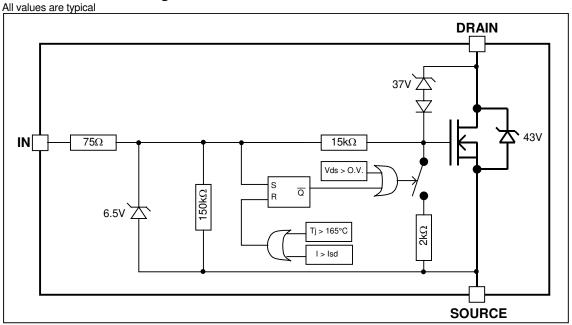
Switching Electrical Characteristics Vcc=14V, Resistive load=1.5Ω, Rinput=0Ω, Vin=5V, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time to 20%	10	30	100		
Tr	Rise time 20% to 80%	10	30	60		See figure 2
Tdoff	Turn-off delay time to 80%	40	150	400	μs	See ligure 2
Tf	Fall time 80% to 20%	15	30	60		
Eon + Eoff	Turn on and off energy	_	2	_	mJ	

Protection Characteristics


Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tsd	Over temperature threshold	150(2)	165	_	°C	See figure 1
Isd	Over current threshold	32	45	58	Α	See figure 1
OV	Over voltage protection (not active when the device is ON)	34	37	_	V	
Vreset	IN protection reset threshold	_	1.7	_	V	
Treset	Time to reset protection	15(2)	50	200	μs	Vin=0V

Diagnostic


Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
lin, on	ON state IN positive current	15	32	70		Vin=5V
lin, off	OFF state IN positive current	150	230	350	μΑ	Vin=5V
	(after protection latched)					

(2) Guaranteed by design

Lead Assignments

Functional Block Diagram All values are typical

IPS1021(S)(R)PbF

All curves are typical values. Operating in the shaded area is not recommended.

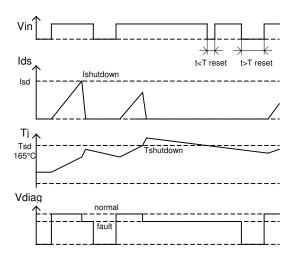


Figure 1 - Timing diagram

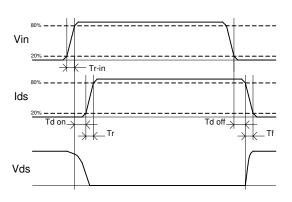


Figure 2 - IN rise time & switching definitions

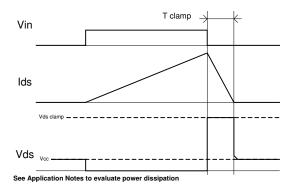


Figure 3 - Active clamp waveforms

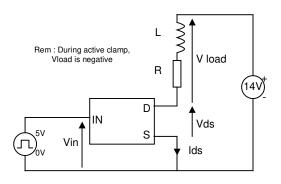


Figure 4 - Active clamp test circuit

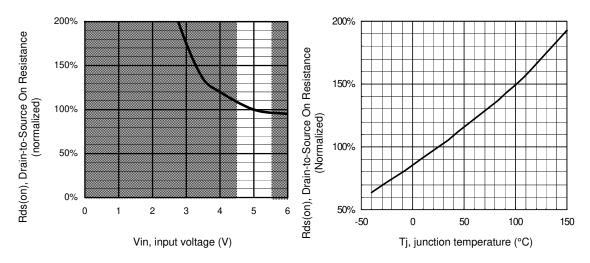


Figure 5 – Normalized Rds(on) (%) Vs Input voltage (V)

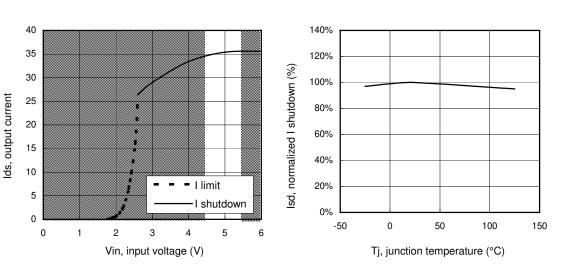
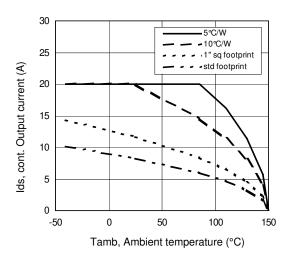



Figure 7 – Current limitation and current shutdown Vs Input voltage (V)

Figure 8 – Normalized I shutdown (%) Vs junction temperature (°C)

Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

Total total

Figure 9 – Max. continuous output current (A) Vs Ambient temperature (°C)

Figure 11 – Max. ouput current (A) Vs Inductive load (mH)

Figure 10 – Ids (A) Vs over temperature protection response time (s)

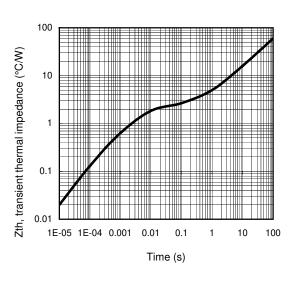
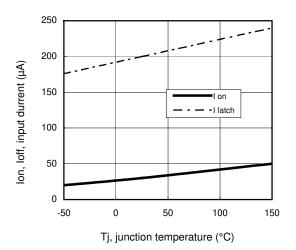
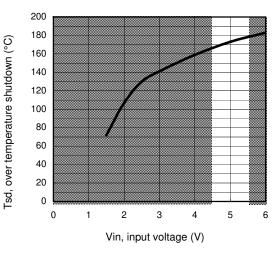
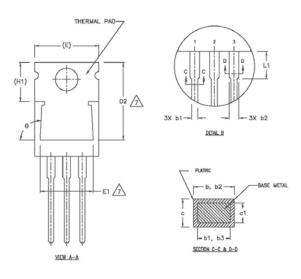



Figure 12 – Transient thermal impedance (°C/W) Vs time (s)

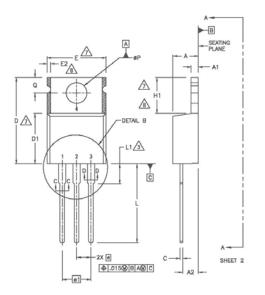
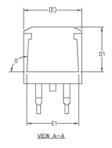
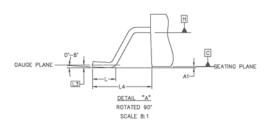

Figure 13 – Input current (μA) On and Off Vs junction temperature (°C)

Figure 14 – Over temperature shutdown (°C) Vs input voltage (V)

Case Outline - TO-220 AB - Automotive Q100 PbF qualified


		DIMEN	ISIONS		
SYMBOL	MILLIM	ETERS	INC	HES	1
	MIN.	MAX.	MIN.	MAX.	NOTES
A	3.56	4.82	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.04	2.92	.080	.115	
ь	0.38	1.01	.015	.040	
ь1	0.38	0.96	.015	.038	5
b2	1.15	1.77	.045	.070	
b3	1.15	1.73	.045	.068	
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	12.19	12.88	.480	.507	7
E	9.66	10.66	.380	.420	4,7
E1	8.38	8.89	.330	.350	7
е	2.54	2.54 BSC		BSC	1
e1	5.	08	.200	BSC	-
H1	5.85	6.55	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	-	6.35	-	.250	3
øP	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	
ø	90"-	-93"	90*-	-93*]


NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BOOY.
- DIMENSION 61 & c1 APPLY TO BASE METAL ONLY. CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- LEADS AND DRAIN ARE PLATED WITH 100% Sn

Case Outline - D²Pak (SMD-220) - Automotive Q100 PbF MSL1 qualified

MILLIMETERS MIN MAX MIN. MAX

> 0.89 .020 .035

1.78 .045 .070

0.74 .015 .029

0.58 .015 .023

1.65 .045 .065

9.65 .335 .380

15.88

2.79 .070 .110

1.65

1.78 .050 .070

5.28

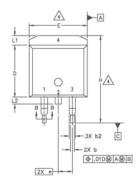
93* 90° 93°

.270 10.67 .380 .420 .245

.100 BSC

.010

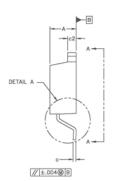
.188 .700 .350 .450 .082 .150 0.71 .020 .028

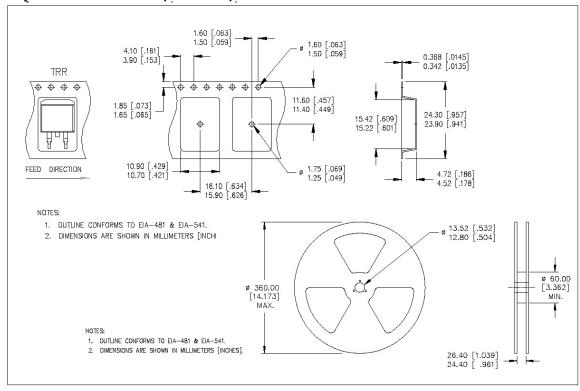

.625

.065

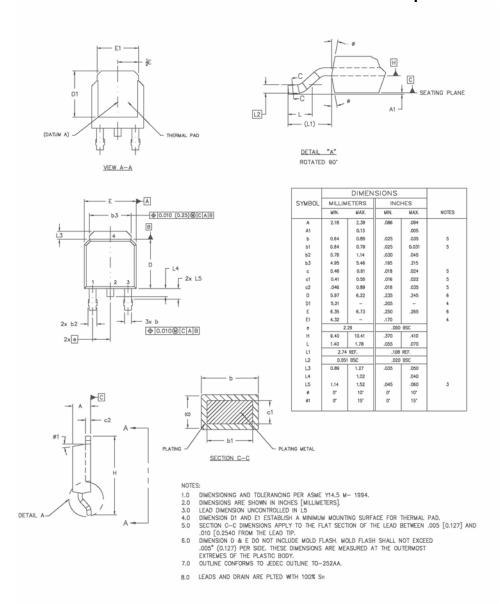
4.06 4.83 .160 .190

0.51 0.99 .020 .039

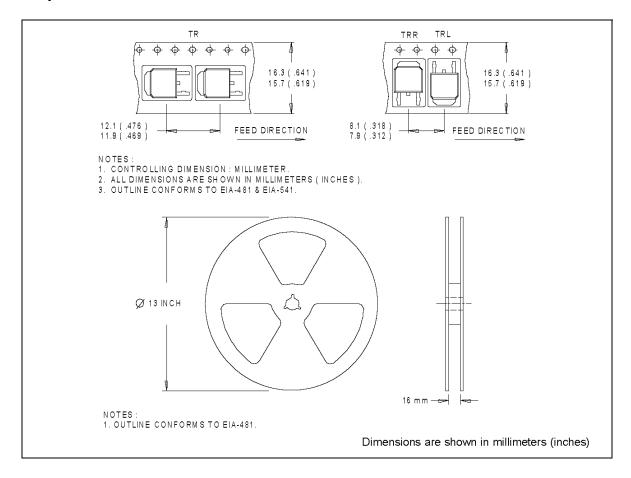

A1 0.00 0.254 .000 .010



SECTION B-B	b1	0.51	0.89
SCALE: NONE	b2	1.14	1.78
	c	0.38	0.74
	c1	0.38	0.58
	c2	1.14	1.65
	D	8.51	9.65
	D1	6.86	
	E	9.65	10.6
	E1	6.22	
n	e	2.54	BSC
	Н	14.61	15.8
†. †	L	1.78	2.79
m1	L1		1.65
<u>+</u>	L2	1.27	1.78
1	L3	0.25	BSC
-	L4	4.78	5.28
<u>- U U - 1</u>	m	17.78	
	m1	8.89	
#0	n	11.43	
	0	2.08	
	P	3.81	
SCALE 2: 1	R	0.51	0.7
	θ	90.	93



- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
 - 5. CONTROLLING DIMENSION: INCH.
 - 6. LEADS & DRAIN CONTACT ARE PLATED : 100% Sn


Tape & Reel - D²Pak (SMD220)

Case Outline - D-Pak - Automotive Q100 PbF MSL1 qualified

Tape & Reel - D-Pak

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice.

This product is designed and qualified for the Automotive [Q100] market.

TO220, D2Pak and Dpak is MSL1 qualified.

06/15/2006

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/