## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China


FEATURES


- 10.1 Amp. high contact capacity is available
- Long life
- Precise operating position ( $\pm 0.25 \mathrm{~mm}$ : Pin plunger type)
- Flux-resistant construction with integrally molded terminals
- In-line terminals make soldering works easy
- UL/CSA/SEMKO approved


## TYPICAL

APPLICATIONS

- Heaters
- Electric rice cookers
- Copiers
- Printers
- Facsimiles
- Vending machines
- Measuring equipment
- Audio equipment

ORDERING INFORMATION


## CONSTRUCTION



CONTACT
ARRANGEMENT: SPDT


DATA
Electrical life curve


## PRODUCT TYPES

| Contact | Actuator | Part No. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Self-standing solder terminal |  |  | Self-standing PC terminal |
|  |  | Without guard | With guard | With opposite side guard |  |
| Gold-clad | Pin plunger | AVM3205P3 | AVM3105P3 | AVM3305P3 | AVM3405P3 |
|  | Short hinge lever | AVM3215P3 | AVM3115P3 | AVM3315P3 | AVM3415P3 |
|  | Hinge lever | AVM3225P3 | AVM3125P3 | AVM3325P3 | AVM3425P3 |
|  | Long hinge lever | AVM3235P3 | AVM3135P3 | AVM3335P3 | AVM3435P3 |
|  | Simulated roller lever | AVM3245P3 | AVM3145P3 | AVM3345P3 | AVM3445P3 |
|  | Roller lever | AVM3255P3 | AVM3155P3 | AVM3355P3 | AVM3455P3 |

## SPECIFICATIONS

## 1. Contact rating

| Resistive load $(\cos \phi \doteqdot 1)$ | $10.1 \mathrm{~A}, 250 \mathrm{~V}$ AC |
| :--- | ---: |

## 2. Characteristics

| Expected life | Electrical | Min. $5 \times 10^{4}$ (at 20 cpm ) (O.T. max.) |
| :---: | :---: | :---: |
|  | Mechanical | Min. $3 \times 10^{7}$ (O.T.: Specified value), at 60 cpm |
| Dielectric strength | Between terminals | $1,000 \mathrm{Vrms}$ for 1 min . (at 10 mA ) |
|  | Between terminals and other exposed metal parts | 2,000 Vrms for 1 min . (at 10 mA ) |
|  | Between terminals and ground | 2,000 Vrms for 1 min . (at 10 mA ) |
| Insulation resistance |  | Min. $100 \mathrm{M} \Omega$ (at 500V DC) |
| Contact resistance (initial) |  | Max. $50 \mathrm{~m} \Omega$ (By voltage drop, 1A 6 to 8V DC) |
| Allowable operating speed (at no load) |  | 0.1 to 1,000 mm/sec. |
| Max. operating cycle rate (at no load) |  | 300 cpm |
| Ambient temperature |  | -25 to $+85^{\circ} \mathrm{C}$ (Not freezing below $0^{\circ} \mathrm{C}$ ) |
| Unit weight |  | Approx. 2g |
| Contact material |  | AgNi alloy |

## 3. Operating characteristics

| Actuator | Operating force, <br> Max. | Release force, <br> Min. | Pretravel, Max. <br> mm | Movement differential, <br> Max. mm | Overtravel, Min. <br> mm | Operating position <br> mm |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Pin plunger | 1.47 N | 0.20 N | 0.6 mm | 0.1 mm | 0.4 mm | $8.4 \pm 0.25 \mathrm{~mm}$ |
| Short hinge lever | 0.59 N | 0.039 N | 2.5 mm | 0.5 mm | 0.8 mm | $8.8 \pm 0.8 \mathrm{~mm}$ |
| Hinge lever | 0.54 N | 0.034 N | 2.8 mm | 0.8 mm | 1.2 mm | $8.8 \pm 0.8 \mathrm{~mm}$ |
| Long hinge lever | 0.44 N | 0.029 N | 3.5 mm | 1.0 mm | 1.6 mm | $8.8 \pm 1.2 \mathrm{~mm}$ |
| Simulated roller lever | 0.54 N | 0.034 N | 2.8 mm | 0.8 mm | 1.2 mm | $11.65 \pm 0.8 \mathrm{~mm}$ |
| Roller lever | 0.59 N | 0.039 N | 2.5 mm | 0.5 mm | 0.8 mm | $14.5 \pm 0.8 \mathrm{~mm}$ |

## DIMENSIONS

mm General tolerance: $\pm 0.25$

## 1. Self-standing PC terminal (Without guard)

Pin plunger



| Pretravel, Max. mm | 2.5 |
| :--- | :---: |
| Movement differential, <br> Max. mm | 0.5 |
| Overtravel, Min mm | 0.8 |
| Operating <br> position | Distance from <br> mounting hole, <br> mm | $\mathrm{8.8} \mathrm{ \pm 0.8}$

Hinge lever


| Pretravel, Max. mm | 2.8 |
| :--- | :---: |
| Movement differential, <br> Max. mm | 0.8 |
| Overtravel, Min mm | 1.2 |
| Operating <br> position | Distance from <br> mounting hole, <br> mm | $\mathrm{8.8} \mathrm{ \pm 0.8}$

## Long hinge lever



| Pretravel, Max. mm | 3.5 |
| :--- | :---: |
| Movement differential, <br> Max. mm | 1.0 |
| Overtravel, Min mm | 1.6 |
| Operating <br> position | Distance from <br> mounting hole, <br> mm | $\mathrm{8.8} \mathrm{ \pm 1.2}$



| Pretravel, Max. mm | 2.8 |
| :--- | :---: |
| Movement differential, <br> Max. mm | 0.8 |
| Overtravel, Min mm | 1.2 |
| Operating <br> position | Distance from <br> mounting hole, <br> mm |$土 11.65 \pm 0.8 \mathrm{C}$

Roller lever


| Pretravel, Max. mm | 2.5 |
| :--- | :---: |
| Movement differential, <br> Max. mm | 0.5 |
| Overtravel, Min mm 0.8 <br> Operating <br> position Distance from <br> mounting hole, <br> mm | $14.5 \pm 0.8$ |

## 2. Self-standing solder terminal

## Pin plunger



* The height from the center of mounting hole to the edge of guard.



## NOTES

## 1. Fastening of the switch body

1) Use flat filister head M2.3 screws to mount switches with less than a $0.29 \mathrm{~N} \cdot \mathrm{~m}$ torque. Use of screws washers or adhesive lock is recommended to prevent loosening of the screws.
2) Check insulation distance between ground and each terminal.
3) When the operation object is in the free position, force should not be applied directly to the actuator or pin plunger from vertical direction to the switch.
4) In setting the movement after operation, the over-travel should be set more than $70 \%$ as a standard. Setting the movement at less than $70 \%$ of O.T. may cause troubles such as miscontact and welding due to small contact force of the switch.
5) For a lever type, the force from the reverse and side to the operation direction should not be applied.

## 2. Soldering operations

For manual soldering:
Soldering should be accomplished in less than 3 seconds, with a 60 watt iron. Care should be taken not to apply force to the terminal during soldering.
For automatic soldering:
Soldering should be done less than 6 seconds in $260^{\circ} \mathrm{C}$ soldering bath or less than 3 seconds in $350^{\circ} \mathrm{C}$ soldering bath. Terminal portions should not be moved within 1 minute after soldering.
Also no tensile strength of lead wires should be applied to the terminals.
3. Selection of the switch

When specifying the switch, allow $\pm 20 \%$ to the listed operating characteristics.

## 4. Environment

Avoid using the switches in the following conditions;

- In corrosive gases, such as silicon gas
- In a dusty environment


## 5. Cautions regarding use

When switching low-level circuits (6V DC $5 \mathrm{~mA}, 12 \mathrm{~V}$ DC $2 \mathrm{~mA}, 24 \mathrm{~V}$ DC 1mA), FS/ FS-T Au clad contact type switches are recommended. When used to switch inductive loads (relays, solenoids, buzzers, etc.), it is recommended that a proper spark quench circuit is inserted in the switch to prevent contact faults caused by electric arcs. Care should be taken that occurrence in AC load possibly shorten the expected life.
6. Quality check under actual loading conditions
To assure reliability, check the switch under actual loading conditions. Avoid any situation that may adversely affect switching performance.

