

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AZ809A

General Description

The AZ809A is a precision system supervisor and reset circuit designed to monitor the power supplies in microprocessor and digital system. It provides a reset signal to the host processor during power-up, power-down, and brownout conditions.

The AZ809A has an active-low RESET output, three standard reset options are offered to support 5V, 3.3V, and 3.0V system. Whenever the system supply voltage declines below the internal fixed reset threshold, the AZ809A asserts a reset signal and the reset signal remains asserted for 240ms after V_{CC} rises above the threshold.

The AZ809A has a push-pull output, no external components are required. The output is guaranteed to be in the correct state at V_{CC} level as low as 1V. The AZ809A is optimized to reject fast transient glitches on the VCC line. When the V_{CC} is 3.3V, the supply current consumption is about $6\mu A$ typically.

The IC is available in SOT-23 package.

Features

- Precise Monitoring of 3.0V, 3.3V, and 5.0V Supply Voltages
- 140ms Minimum Reset Pulse Width
- Active-low RESET Output
- Push-Pull RESET Output
- No External Components
- Reset Valid Down to V_{CC}=1.0V
- Power Supply Fast Transient Immunity
- Specified Over Full Temperature Range: -40 to 105°C

Applications

- Microprocessor Systems
- Portable/Battery-Powered Systems
- Embedded Controllers
- Automotive
- Intelligent Instruments
- Wireless Communication Systems
- PDAs and Handheld Equipment
- Set-Top Boxes
- ADSL Modems

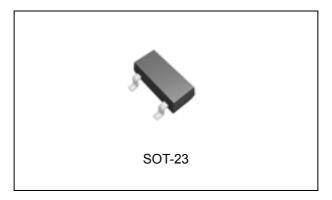


Figure 1. Package Type of AZ809A

AZ809A

Pin Configuration



Figure 2. Pin Configuration of AZ809A (Top View)

Pin Description

Pin Number	Pin Name	Function
1	GND	Ground pin
2	RESET	Active low output. The \overline{RESET} is asserted LOW if V_{CC} falls below the reset threshold and remains LOW for the 240ms typical reset timeout period (140ms minimum) after V_{CC} exceeds the threshold
3	VCC	Power supply input voltage (3.0V, 3.3V, 5.0V)

Functional Block Diagram

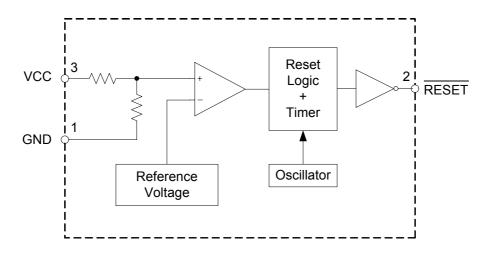
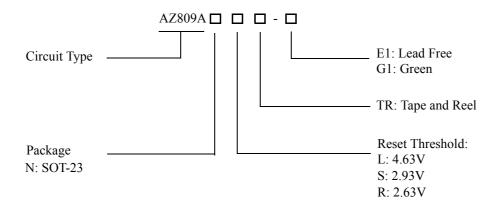



Figure 3. Functional Block Diagram of AZ809A

Ordering Information

Package	Temperature Range	Reset	Part Number		Marking ID		Packing	
		Threshold	Lead Free	Green	Lead Free	Green	Type	
SOT-23	-40 to 105°C	4.63V	AZ809ANLTR-E1	AZ809ANLTR-G1	EH7	GH7	Tape & Reel	
		2.93V	AZ809ANSTR-E1	AZ809ANSTR-G1	EH1	GH1		
		2.63V	AZ809ANRTR-E1	AZ809ANRTR-G1	ЕН6	GH6		

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green package.

AZ809A

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 to 6	V
RESET		-0.3 to V _{CC} +0.3	V
Input Current, VCC Pin		20	mA
Output Current, RESET Pin		20	mA
Rate of Rise, V _{CC}		100	V/µs
Continuous Power Dissipation		320	mW
Junction Temperature	T_{J}	150	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	$T_{ m LEAD}$	260	°C
ESD (Human Body Model)		6000	V
ESD (Machine Model)		400	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

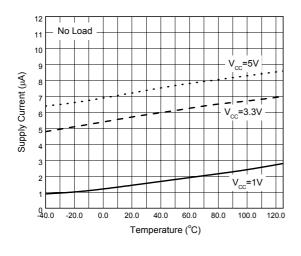
Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	1	5.5	V
Operating Ambient Temperature Range	T_{A}	-40	105	°C

AZ809A

Electrical Characteristics

(V_{CC} is over the full voltage range, T_A =-40°C to 105°C, unless otherwise noted.


Typical values at T_A =25°C, V_{CC} =5V for L device, V_{CC} =3.3V for S device and V_{CC} =3V for R device.)(Note 2)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Voltage (V _{CC}) Range	put Voltage (V_{CC}) Range V_{CC} $T_A=0^{\circ}C$ to $85^{\circ}C$		5°C	1.0		5.5	V
		T_A =-40°C to	105°C	1.2		5.5	
	I_{CC}	L Devices	T_A =-40°C to 85°C, V_{CC} <5.5V		7	11	μΑ
Supply Current			T_A =-40°C to 105°C, V_{CC} <5.5V			12	
Supply Carrent		R/S Devices	T_A =-40°C to 85°C, V_{CC} <3.6V		6	10	
		To be vices	T_A =-40°C to 105°C, V_{CC} <3.6V			11	
		L Devices	T _A =25°C	4.56	4.63	4.70	V V
			$T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$	4.50		4.75	
	$ m V_{TH}$		$T_A = -40^{\circ} \text{C to } 105^{\circ} \text{C}$	4.40		4.86	
		S Devices	$T_A=25^{\circ}C$	2.89	2.93	2.96	
Reset Threshold			$T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$	2.85		3.00	
			$T_A = -40^{\circ} \text{C to } 105^{\circ} \text{C}$	2.78		3.08	
		R Devices	$T_{A}=25^{\circ}C$	2.59	2.63	2.66	
			$T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$	2.55		2.70	
			$T_A = -40^{\circ} \text{C to } 105^{\circ} \text{C}$	2.50		2.76	
Reset Threshold Temperature Coefficient		T _A =-40°C to 105°C			30		ppm/°C
VCC to Reset Delay		V _{CC} =V _{TH} to V _{TH} -100mV			20		μs
Reset Active Timeout Period		T _A =-40°C to 85°C		140	240	560	ms
Reset Active Timeout I chou		$T_A = -40^{\circ} \text{C to}$		100		840	
	Voltage V _{OL}	R/S Devices V _{CC} =V _{TH} (min), I _{SINK} =1.2mA			0.3		
Low RESET Output Voltage		L Devices	V _{CC} =V _{TH} (min), I _{SINK} =3.2mA		0.4		V
		V _{CC} >1.1V, I _{SINK} =50μA			0.3		
	V	R/S Devices V _{CC} >V _{TH} (max), I _{SOURCE} =500μA		0.8V _{CC}			V
High RESET Output Voltage	V _{OH}	L Devices	V _{CC} >V _{TH} (max), I _{SOURCE} =800μA	V _{CC} - 1.5			

Note 2. Production testing done at T_A =25°C. Over temperature specifications guaranteed by design only.

Typical Performance Characteristics

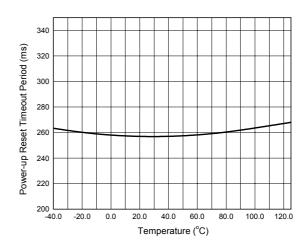
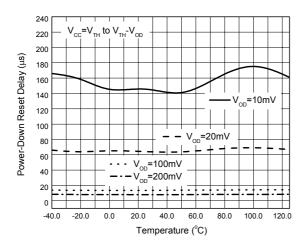



Figure 4. Supply Current vs. Temperature

Figure 5. Power-up Reset Timeout vs. Temperature

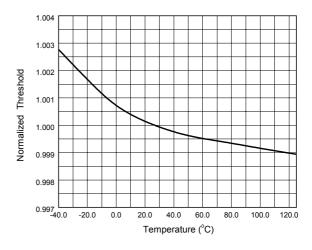
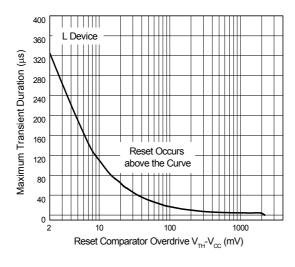



Figure 6. Power-down Reset Delay vs. Temperature

Figure 7. Normalized Reset Threshold vs. Temperature

Typical Performance Characteristics (Continued)

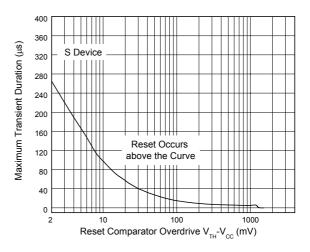


Figure 8. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive

Figure 9. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive

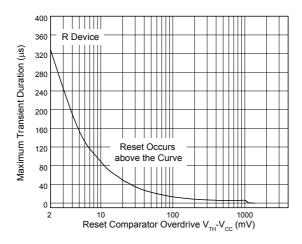
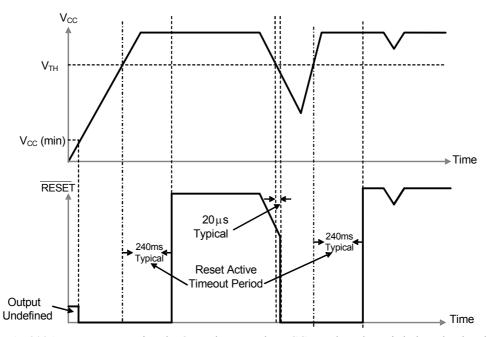



Figure 10. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive

Operating Diagram

The AZ809A asserts a reset signal LOW whenever the VCC supply voltage is below the threshold voltage and remains asserted for 240ms typically after the VCC has risen above the threshold.

Figure 11. Reset Timing Diagram of AZ809A

Application Information

Valid RESET with V_{CC} under 1.0 V

The AZ809A RESET output is valid to V_{CC} =1.0V. Below this voltage, the output becomes an open circuit and doesn't sink current. Therefore, high-impedance CMOS logic input connected to RESET can drift to undetermined voltages.

To ensure that the AZ809A RESET is in a known state when V_{CC} is under 1.0V, a 100K Ω pull-down resistor between the RESET pin and GND is recommended to discharge stray capacitances and maintain the output low.

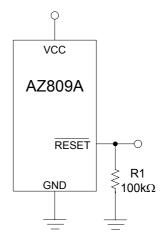


Figure 12. RESET Valid to V_{CC}=0V

Oct. 2010 Rev. 1. 3

BCD Semiconductor Manufacturing Limited

Application Information (Continued)

Negative Going V_{CC} Transient

The AZ809A is optimized to immune fast negative-going transients or glitches on the V_{CC} line, and the sensitivity depends on the duration of the transient and the magnitude of the undershoot below the reset threshold (reset comparator overdrive). Figure 13 shows the maximum pulse width of a negative-going V_{CC} transient that will not cause a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Any combination of duration and overdrive that lies under the curve will not generate a reset signal, typically, a V_{CC} transient that goes 100 mV below the reset threshold and lasts about $20 \mu \text{s}$ or less will not cause a reset pulse.

A $0.1\mu F$ bypass capacitor mounted as close as possible to the V_{CC} pin will provide additional transient rejection.

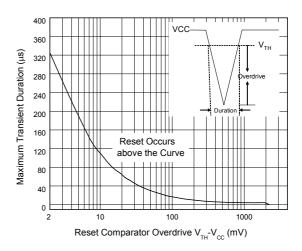
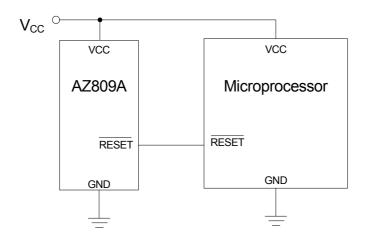
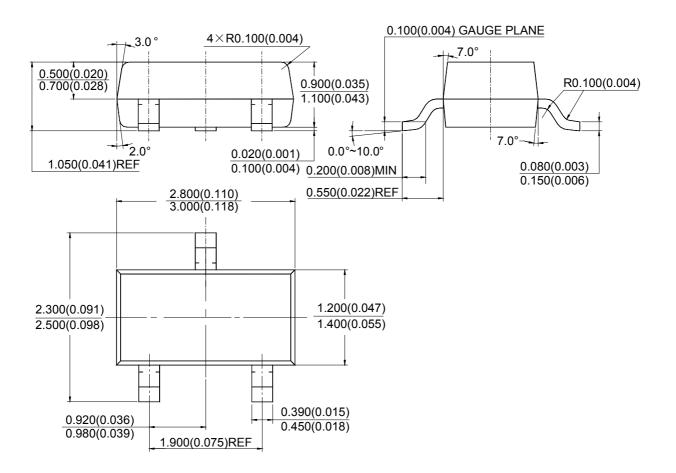


Figure 13. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive

Typical Application




Figure 14. Typical Application of AZ809A

AZ809A

Mechanical Dimensions

SOT-23 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788