imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

 Series/Type:
 B32620 ... B32621

 Date:
 December 2012

© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Metallized polypropylene film capacitors (MKP)

High pulse (stacked)

Typical applications

- Compact fluorescent lamps (CFL)
- SMPS

Climatic

- Max. operating temperature: 105 °C
- Climatic category (IEC 60068-1): 55/100/56

Construction

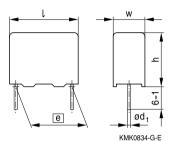
- Dielectric: polypropylene (PP)
- Stacked-film technology
- Plastic case (UL 94 V-0)
- Epoxy resin sealing

Features

- Very high pulse strength
- Very good self-healing properties
- Smallest possible dimensions
- High contact reliability
- RoHS-compatible

Terminals

- Parallel wire leads, lead-free tinned
- Special lead lengths available on request


Marking

Manufacturer's logo, rated capacitance (coded), cap. tolerance (code letter), rated voltage, date of manufacture (coded), for lead spacing 7.5 mm: style (MKP), for lead spacing 10 mm: lot number, series number (621)

Delivery mode

Bulk (untaped) Taped (Ammo pack or reel) For notes on taping, refer to chapter "Taping and packing".

Dimensional drawing

Dimensions in mm

Lead spacing	Lead diameter	Туре
<i>e</i> ±0.4	d ₁	
7.5	0.5	B32620
10.0	0.61)	B32621

^{1) 0.5} mm for capacitor width w = 4 mm

MKP

High pulse (stacked)

B32620 ... B32621

Overview of available types

Lead spacing 7.5 mm					10.0 mm						
Туре	B3262	B32620			B32621						
Page	4						6				
V _R (V DC)	160	250	400	630	1000	1000	160	250	400	630	1000
V _{RMS} (V AC)	90	140	200	400	500	600	90	140	200	400	500
C _R (nF)											
1.0											
1.5											
2.2											
3.3											
4.7											
6.8											
10											
15											
22											
33											
47											
68											
100											
150											
220											

B32620

High pulse (stacked)

Ordering codes and packing units (lead spacing 7.5 mm)

V _R	V _{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f ≤1 kHz		$w \times h \times l$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
160	90	33	$4.0\times8.5\times10.0$	B32620A5333+***	8000	7200	6000
		47	$4.0\times 8.5\times10.0$	B32620A5473+***	8000	7200	6000
		68	$5.0\times10.5\times10.0$	B32620A5683+***	6400	5600	4000
		100	$5.0\times10.5\times10.0$	B32620A5104+***	6400	5600	4000
		150	$6.0\times12.0\times10.3$	B32620A5154+***	5200	4400	3000
250	140	22	$4.0\times 8.5\times10.0$	B32620A3223+***	8000	7200	6000
		33	$4.0\times 8.5\times10.0$	B32620A3333+***	8000	7200	6000
		47	$5.0\times10.5\times10.0$	B32620A3473+***	6400	5600	4000
		68	$5.0\times10.5\times10.0$	B32620A3683+***	6400	5600	4000
		100	$6.0\times12.0\times10.3$	B32620A3104+***	5200	4400	3000
400	200	6.8	$4.0\times 8.5\times10.0$	B32620A4682+***	8000	7200	6000
		10	$4.0\times 8.5\times10.0$	B32620A4103+***	8000	7200	6000
		15	$5.0\times10.5\times10.0$	B32620A4153+***	6400	5600	4000
		22	$5.0\times10.5\times10.0$	B32620A4223+***	6400	5600	4000
		33	$6.0\times12.0\times10.3$	B32620A4333+***	5200	4400	3000
630	400	1.5	$4.0\times 8.5\times10.0$	B32620A6152+***	8000	7200	6000
		2.2	$4.0\times 8.5\times10.0$	B32620A6222+***	8000	7200	6000
		3.3	$4.0\times 8.5\times10.0$	B32620A6332+***	8000	7200	6000
		4.7	$4.0\times 8.5\times10.0$	B32620A6472+***	8000	7200	6000
		6.8	$5.0\times10.5\times10.0$	B32620A6682+***	6400	5600	4000
		10	$5.0\times10.5\times10.0$	B32620A6103+***	6400	5600	4000
		15	$6.0\times12.0\times10.3$	B32620A6153+***	5200	4400	3000
1000	500	1.5	$4.0\times 8.5\times10.0$	B32620A0152+***	8000	7200	6000
		2.2	$4.0\times 8.5\times10.0$	B32620A0222+***	8000	7200	6000
		3.3	$5.0\times10.5\times10.0$	B32620A0332+***	6400	5600	4000
		4.7	$5.0\times10.5\times10.0$	B32620A0472+***	6400	5600	4000
		6.8	$6.0 \times 12.0 \times 10.3$	B32620A0682+***	5200	4400	3000

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - $K = \pm 10\%$
 - $J = \pm 5\%$

- *** = Packaging code:
 - 289 = Ammo pack
 - 189 = Reel
 - 000 = Untaped (lead length 6 -1 mm)

High pulse (stacked)

B32620

Ordering codes and packing units (lead spacing 7.5 mm)

V _R	V _{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f ≤1 kHz		$w \times h \times l$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
1000	600	1.0	$5.0\times10.5\times10.0$	B32620J0102+***	6400	5600	4000
		1.5	$5.0\times10.5\times10.0$	B32620J0152+***	6400	5600	4000
		2.2	$5.0\times10.5\times10.0$	B32620J0222+***	6400	5600	4000
		3.3	$5.0\times10.5\times10.0$	B32620J0332+***	6400	5600	4000
		4.7	$6.0\times12.0\times10.3$	B32620J0472+***	5200	4400	3000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

- 289 = Ammo pack
- 189 = Reel
- 000 = Untaped (lead length 6 -1 mm)

МКР ► 10 ◄

B32621 High pulse (stacked)

Ordering codes and packing units (lead spacing 10 mm)

V _R	V _{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times l$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
160	90	47	$4.0\times~7.0\times13.0$	B32621A5473+***	4000	6800	4000
		68	$4.0\times 9.0\times 13.0$	B32621A5683+***	4000	6800	4000
		100	$5.0\times11.0\times13.0$	B32621A5104+***	3320	5200	4000
		150	$5.0\times11.0\times13.0$	B32621A5154+***	3320	5200	4000
		220	$6.0\times12.0\times13.0$	B32621A5224+***	2720	4400	4000
250	140	2.2	$4.0\times~7.0\times13.0$	B32621A3222+***	4000	6800	4000
		3.3	$4.0\times 9.0\times 13.0$	B32621A3332+***	4000	6800	4000
		4.7	$4.0\times 9.0\times 13.0$	B32621A3472+***	4000	6800	4000
		6.8	$4.0\times 9.0\times 13.0$	B32621A3682+***	4000	6800	4000
		10	$4.0\times 9.0\times 13.0$	B32621A3103+***	4000	6800	4000
		15	$4.0\times 9.0\times 13.0$	B32621A3153+***	4000	6800	4000
		22	$4.0\times 9.0\times 13.0$	B32621A3223+***	4000	6800	4000
		33	$4.0\times 9.0\times 13.0$	B32621A3333+***	4000	6800	4000
		47	$4.0\times 9.0\times 13.0$	B32621A3473+***	4000	6800	4000
		68	$5.0\times11.0\times13.0$	B32621A3683+***	3320	5200	4000
		100	$6.0 \times 12.0 \times 13.0$	B32621A3104+***	2720	4400	4000
400	200	10	$4.0\times 9.0\times 13.0$	B32621A4103+***	4000	6800	4000
		15	$4.0\times 9.0\times 13.0$	B32621A4153+***	4000	6800	4000
		22	$5.0\times11.0\times13.0$	B32621A4223+***	3320	5200	4000
		33	$5.0\times11.0\times13.0$	B32621A4333+***	3320	5200	4000
		47	$6.0\times12.0\times13.0$	B32621A4473+***	2720	4400	4000
630	400	2.2	$4.0\times~7.0\times13.0$	B32621A6222+***	4000	6800	4000
		3.3	$4.0\times 9.0\times 13.0$	B32621A6332+***	4000	6800	4000
		4.7	$4.0\times 9.0\times 13.0$	B32621A6472+***	4000	6800	4000
		6.8	$4.0\times 9.0\times 13.0$	B32621A6682+***	4000	6800	4000
		10	$4.0\times 9.0\times 13.0$	B32621A6103+***	4000	6800	4000
		15	$5.0\times11.0\times13.0$	B32621A6153+***	3320	5200	4000
		22	$6.0\times12.0\times13.0$	B32621A6223+***	2720	4400	4000
		33	$6.0\times12.0\times13.0$	B32621A6333+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

High pulse (stacked)

B32621

Ordering codes and packing units (lead spacing 10 mm)

V _R	V _{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
1000	500	2.2	$4.0\times~7.0\times13.0$	B32621A0222+***	4000	6800	4000
		3.3	$4.0\times 9.0\times 13.0$	B32621A0332+***	4000	6800	4000
		4.7	$4.0\times 9.0\times 13.0$	B32621A0472+***	4000	6800	4000
		6.8	$5.0\times11.0\times13.0$	B32621A0682+***	3320	5200	4000
		10	$6.0\times12.0\times13.0$	B32621A0103+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Ammo pack

- 189 = Reel
- 000 = Untaped (lead length 6 -1 mm)

МКР

B32620 ... B32621

High pulse (stacked)

Technical data

Operating temperature range	Max. operat	ting temperature T _{op.max}	+105 °C
		gory temperature T _{max}	+100 °C
		gory temperature T _{min}	−55 °C
	Rated temp	erature T _R	+85 °C
Dissipation factor tan δ (in 10 ⁻³)	at	$C_{\text{R}} \leq 0.1 \ \mu\text{F}$	$0.1 \ \mu F < C_R \le 0.22 \ \mu F$
at 20 °C	1 kHz	-	1.0
(upper limit values)	10 kHz	-	1.5
	100 kHz	4.0	-
Insulation resistance R _{ins}	100 GΩ		
at 20 °C, rel. humidity \leq 65%			
(minimum as-delivered values)			
DC test voltage	$1.6 \cdot V_{R}, 2 s$	3	
Category voltage V_{c}	T _A (°C)	DC voltage derating	AC voltage derating
(continuous operation with $V_{\mbox{\tiny DC}}$	$T_A \le 85$	$V_{C} = V_{R}$	$V_{C,RMS} = V_{RMS}$
or V_{AC} at f \leq 1 kHz)	85 <t<sub>A≤100</t<sub>	$V_{C} = V_{R} \cdot (165 - T_{A})/80$	$V_{C,RMS} = V_{RMS} \cdot (165 - T_A)/80$
Operating voltage V_{op}	T _A (°C)	DC voltage (max. hours)	AC voltage (max. hours)
for short operating periods	$T_A \le 85$	$V_{op} = 1.25 \cdot V_{C} (2000 \text{ h})$	$V_{op} = 1.0 \cdot V_{C,RMS} (2000 \text{ h})$
$(V_{DC} \text{ or } V_{AC} \text{ at } f \leq 1 \text{ kHz})$	85 <t<sub>A≤100</t<sub>	$V_{op} = 1.25 \cdot V_{C} (1000 \text{ h})$	$V_{op} = 1.0 \cdot V_{C,RMS} (1000 \text{ h})$
Damp heat test	56 days/40	°C/93% relative humidity	
Limit values after damp	Capacitance	e change ∆C/C	≤ 3 %
heat test	Dissipation	factor change Δ tan δ	≤ 0.5 · 10 ⁻³ (at 1 kHz)
			\leq 1.0 · 10 ⁻³ (at 10 kHz)
	Insulation re	esistance R _{ins}	\geq 50% of minimum
			as-delivered values
Reliability:			
Failure rate λ	•	0 ⁻⁹ /h) at 0.5 · V _R , 40 °C	
Service life t _{SL}		tt 1.0 · V _R , 85 °C	
		ion to other operating cor pter "Quality, 2 Reliability'	nditions and temperatures, '.
Failure criteria:			
Total failure	Short circuit	t or open circuit	
Failure due to variation	Capacitanc	e change ∆C/C	> ±10%
of parameters	Dissipation		> 4 \cdot upper limit value
	Insulation re	esistance R _{ins}	< 1500 MΩ

B32620 ... B32621

МКР _____

High pulse (stacked)

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

"k_0" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in V²/µs.

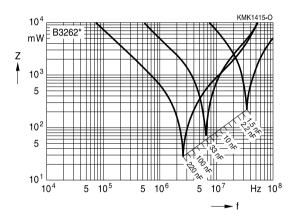
Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor.

dV/dt values

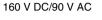
Lead spacing		7.5 mm	10 mm
V _R	V_{RMS}		
V DC	V AC	dV/dt in V/μs	
160	90	750	600
250	140	1 200	900
400	200	1 500	1 050
630	400	2 700	1 800
1 000	500	3 200	2 400
1 000	600	4 000	-

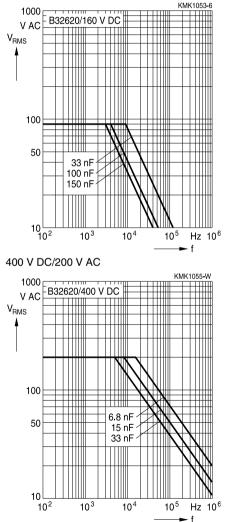
k₀ values

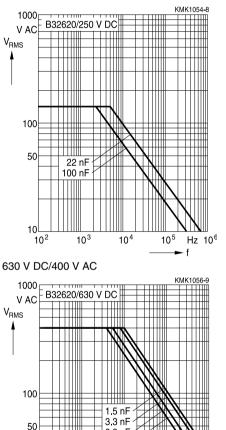

Lead spa	ead spacing 7.5 mm 10 n		10 mm
V _R	V _{RMS}		·
V DC	V AC	k₀ in V²/μs	
160	90	240 000	190 000
250	140	600 000	450 000
400	200	1 200 000	840 000
630	400	3 400 000	2 250 000
1 000	500	6 400 000	4 800 000
1 000	600	8 000 000	-

Impedance Z versus frequency f

(typical values)






Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \leq 90$ °C) For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 7.5 mm

250 V DC/140 V AC

6.8 nF

15 nF

10⁴

10⁵

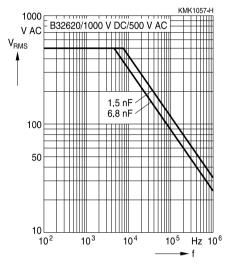
Hz 10⁶

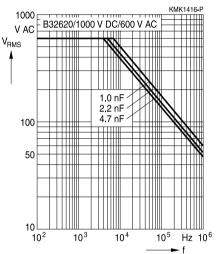
f

10

10²

10³

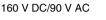


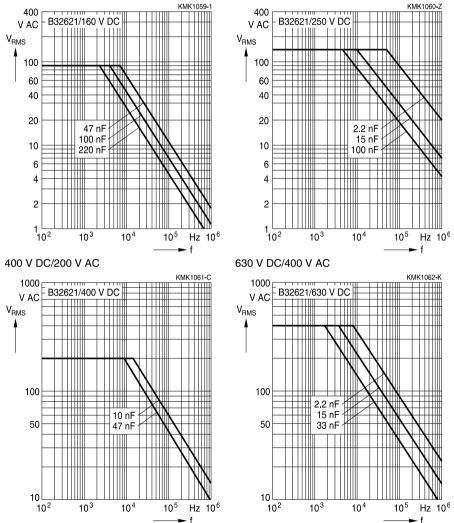

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \leq 90$ °C) For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 7.5 mm

1000 V DC/500 V AC

1000 V DC/600 V AC

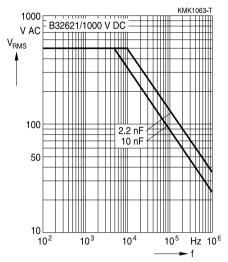




250 V DC/140 V AC

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \leq 90$ °C) For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

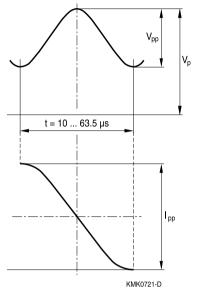
Lead spacing 10 mm



Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \leq 90$ °C) For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 10 mm

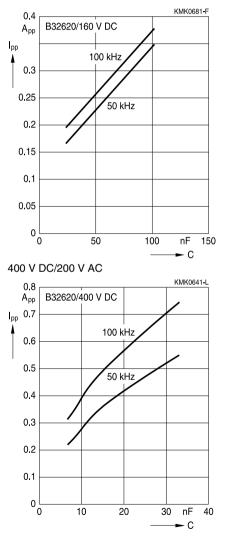
1000 V DC/500 V AC

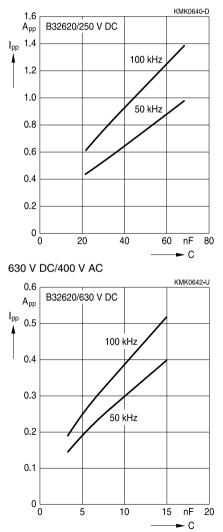


⊗TDK

B32620 ... B32621 High pulse (stacked)

Sinus-wave application, lighting Permissible voltage and current / waveform



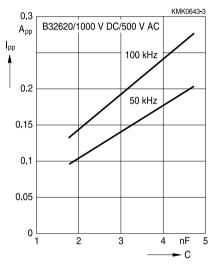

Sinus-wave application, lighting Permissible current I_{pp} versus rated capacitance C_R

Lead spacing 7.5 mm

160 V DC/90 V AC

250 V DC/140 V AC

B32620 High pulse (stacked)


MKP → 7.5

Sinus-wave application, lighting

Permissible current I_{pp} versus rated capacitance C_{R}

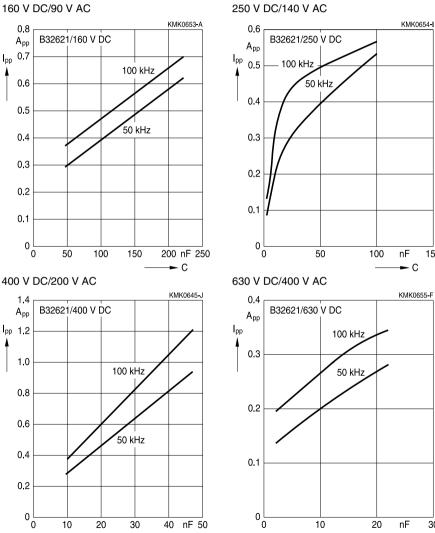
Lead spacing 7.5 mm

1000 V DC/500 V AC

KMK0644-B 0.4 B32620/1000 V DC/600 V AC A_{pp} I_{pp} 100 kHz 0.3 0.25 50 kHz 0.2 0.15 0.1 0.05 0 1 2 3 4 nF 5 - C

1000 V DC/600 V AC

150

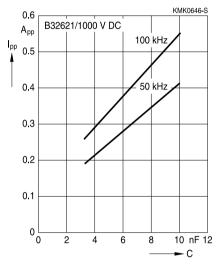

30

- C

Sinus-wave application, lighting Permissible current I_{pp} versus rated capacitance C_{R}

Lead spacing 10 mm

Please read Cautions and warnings and Important notes at the end of this document. - C



Sinus-wave application, lighting

Permissible current I_{pp} versus rated capacitance C_R

Lead spacing 10 mm

1000 V DC/500 V AC

MKP B32620 ... B32621 High pulse (stacked)

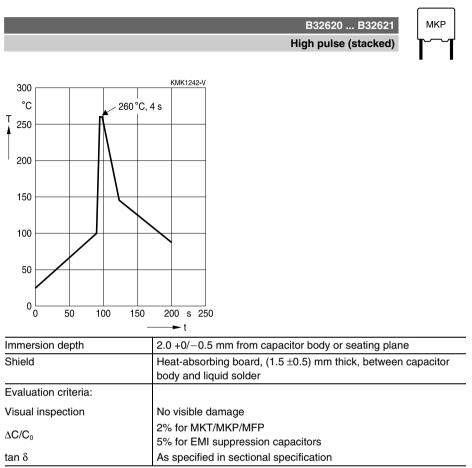
Mounting guidelines

1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.


Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder \ge 90%, free-flowing solder

1.2 Resistance to soldering heat

Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions:

Serie	S	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated uncoated (lead spacing > 10 mm)	260 ±5 °C	10 ±1 s
MFP MKP	(lead spacing > 7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5±1 s
МКР МКТ	(lead spacing \leq 7.5 mm) uncoated (lead spacing \leq 10 mm) insulated (B32559)		< 4 s recommended soldering profile for MKT uncoated (lead spacing \leq 10 mm) and insulated (B32559)

MKP B3262 High

B32620 ... B32621

High pulse (stacked)

1.3 General notes on soldering

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics:
- diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

EPCOS recommends the following conditions:

- Pre-heating with a maximum temperature of 110 °C
- Temperature inside the capacitor should not exceed the following limits:
 - MKP/MFP 110 °C
 - MKT 160 °C
- When SMD components are used together with leaded ones, the leaded film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.
- Leaded film capacitors are not suitable for reflow soldering.

Uncoated capacitors

For uncoated MKT capacitors with lead spacings \leq 10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

B32620 ... B32621

MKP

High pulse (stacked)

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Торіс	Safety information	Reference chapter "General technical information"
Storage conditions	Make sure that capacitors are stored within the specified range of time, temperature and humidity conditions.	4.5 "Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive flammability), avoid overload of the capacitors (active flammability) and consider the flammability of materials.	5.3 "Flammability"
Resistance to vibration	Do not exceed the tested ability to withstand vibration. The capacitors are tested to IEC 60068-2-6. EPCOS offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics".	5.2 "Resistance to vibration"

МКР

B32620 ... B32621 High pulse (stacked)

Торіс	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

B32620 ... B32621

MKP

High pulse (stacked)

Symbols and terms

Symbol	English	German	
α	Heat transfer coefficient	Wärmeübergangszahl	
α _c	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität	
A	Capacitor surface area	Kondensatoroberfläche	
βc	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität	
С	Capacitance	Kapazität	
C _R	Rated capacitance	Nennkapazität	
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung	
∆C/C	Relative capacitance change (relative deviation of actual value)	Relative Kapazitätsänderung (relative Abweichung vom Ist-Wert)	
$\Delta C/C_R$	Capacitance tolerance (relative deviation from rated capacitance)	Kapazitätstoleranz (relative Abweichung vom Nennwert)	
dt	Time differential	Differentielle Zeit	
Δt	Time interval	Zeitintervall	
ΔT	Absolute temperature change (self-heating)	Absolute Temperaturänderung (Selbsterwärmung)	
∆tan δ	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors	
ΔV	Absolute voltage change	Absolute Spannungsänderung	
dV/dt	Time differential of voltage function (rate of voltage rise)	Differentielle Spannungsänderung (Spannungsflankensteilheit)	
$\Delta V / \Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall	
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion	
ESL	Self-inductance	Eigeninduktivität	
ESR	Equivalent series resistance	Ersatz-Serienwiderstand	
f	Frequency	Frequenz	
f ₁	Frequency limit for reducing permissible AC voltage due to thermal limits	Grenzfrequenz für thermisch bedingte Reduzierung der zulässigen Wechselspannung	
f ₂	Frequency limit for reducing permissible AC voltage due to current limit	Grenzfrequenz für strombedingte Reduzierung der zulässigen Wechselspannung	
f _r	Resonant frequency	Resonanzfrequenz	
F _D	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur Diffusion	
F⊤	Derating factor	Deratingfaktor	
i	Current (peak)	Stromspitze	
I _C	Category current (max. continuous current)	Kategoriestrom (max. Dauerstrom)	