

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IF Filters for Narrowband Cellular Phones

Series/Type: B4864

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product		Deadline Last Orders	Last Shipments
B39181B4864Z710		14.06.2006	31.08.2006	30.09.2006

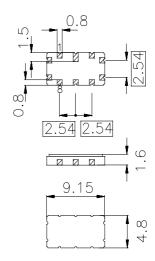
For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

B4864

Low Loss Filter for Mobile Communication

183,60 MHz

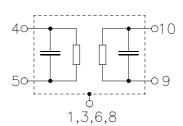
Data Sheet


Features

- Low-loss IF filter for mobile telephone
- Channel selection in AMPS systems
- Filter surface passivated
- Balanced or unbalanced operation possible
- Package for Surface Mounted Technology (SMT)

Terminals

■ Ni, gold plated


Ceramic package QCC10B

Dimensions in mm, approx. weight 0,23 g

Pin configuration

10	Input
5	Output
9	Balanced input or input ground
4	Balanced output or output ground
1,3,6,8	Case ground
2,7	Not connected

Туре	Ordering code	Marking and Package according to	Packing according to
B4864	B39181-B4864-Z710	C61157-A7-A49	F61064-V8035-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 25/+ 75	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	13	V
Source power	P_{s}	10	dBm

B4864

Low Loss Filter for Mobile Communication

183,60 MHz

Data Sheet

Characteristics

Operating temperature range: $T = -25^{\circ}\text{C} \dots 75^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 410 \Omega \parallel -0.4 \text{ pF}$ Terminating load impedance: $Z_{\text{L}} = 410 \Omega \parallel -0.4 \text{ pF}$

		min.	typ.	max.	
Nominal center frequency	f _N	_	183,60	_	MHz
Filter bandwidth at -5 dB		+-11	62	_	kHz
Minimum insertion attenuation (including losses in the matching network without loss of the balun)	α_{min}	_	4,8	6,0	dB
Group delay ripple (p-p) $f_N - 13.0 \text{ kHz} f_N + 13.0 \text{ kHz}$	Δτ	_	2,0	10,0	μs
Relative attenuation (relative to $\alpha_{\mbox{\scriptsize min}})$	α_{rel}				
f _N – 11,0 kHz		_	0,5	5	dB
f _N + 11,0 kHz			0,5	5	dB
$f_N - 120,0 \text{ kHz } \dots f_N - 60,0 \text{ kHz}$		11	30	_	dB
$f_N + 60,0 \text{ kHz } \dots f_N + 120,0 \text{ kHz}$		11	24	_	dB
$f_N \pm 120,0 \text{ kHz } \dots f_N \pm 130,0 \text{ kHz}$		43	50	_	dB
$f_N \pm 130,0 \text{ kHz } \dots f_N \pm 360,0 \text{ kHz}$		45	55	_	dB
$f_N \pm 360,0 \text{ kHz } \dots f_N \pm 1,4 \text{ MHz}$		40	60	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} \mid\mid C_{IN}$			410 0,4	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	410 0,4	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	TC_{f}	_	- 0,036	_	ppm/K ²
Turnover temperature	T_0		25	_	°C

¹⁾ Temperature dependance of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4864

Low Loss Filter for Mobile Communication

183,60 MHz

Data Sheet

Characteristics

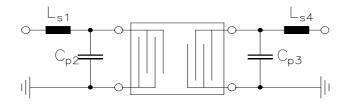
Operating temperature range: $T = -30^{\circ}\text{C} \dots 80^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 410 \Omega \parallel -0.4 \text{ pF}$ Terminating load impedance: $Z_{\text{L}} = 410 \Omega \parallel -0.4 \text{ pF}$

		min.	typ.	max.	
Nominal center frequency	f_{N}	_	183,60	_	MHz
Filter bandwidth at -5 dB		+-11	62	_	kHz
Minimum insertion attenuation (including losses in the matching network without loss of the balun)	α_{min}	_	4,8	6,0	dB
Group delay ripple (p-p) $f_N - 13,0 \text{ kHz} f_N + 13,0 \text{ kHz}$	Δτ	_	2,0	10,0	μs
Relative attenuation (relative to α_{min})	α_{rel}		0.5	-	dB
f _N – 11,0 kHz f _N + 11,0 kHz			0,5 0,5	5 5	dВ
f _N - 120,0 kHz f _N - 60,0 kHz		8	30		dB
$f_N + 60,0 \text{ kHz} \dots f_N + 120,0 \text{ kHz}$		8	24	_	dB
$f_N \pm 120,0 \text{ kHz} \dots f_N \pm 130,0 \text{ kHz}$		40	50	_	dB
f _N ± 130,0 kHz f _N ± 360,0 kHz		42	55	_	dB
$f_N \pm 360,0 \text{ kHz } \dots f_N \pm 1,4 \text{ MHz}$		40	60	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	410 0,4	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	410 0,4	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	TC_{f}	_	- 0,036	_	ppm/K ²
Turnover temperature	T_0	_	25	_	°C

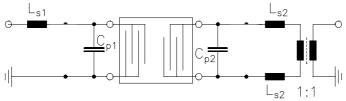
 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T) = f_{\rm c}(T_0)(1+TC_{\rm f}(T-T_0)^2)$

B4864

Low Loss Filter for Mobile Communication


183,60 MHz

Data Sheet


Recommended pin configurations / test matching networks:

a) single-ended 50 $\!\Omega$ / single-ended 50 $\!\Omega$

 $\begin{array}{l} \text{Input}: \text{Pin } 10 \\ \text{Output}: \text{Pin } 5 \\ \text{L}_{\text{s}1} = 100 \text{ nH} \\ \text{C}_{\text{p}2} = 3,9 \text{ pF} \\ \text{C}_{\text{p}3} = 3,9 \text{ pF} \\ \text{L}_{\text{s}4} = 100 \text{ nH} \\ \end{array}$

b) single-ended 50 Ω / balanced 50 Ω

Input : Pin 10 Output : Pins 5 and 4 L_{s1} =100 nH C_{p1} = 3,9 pF C_{p2} = 3,9 pF L_{s2} =39 / 47 nH

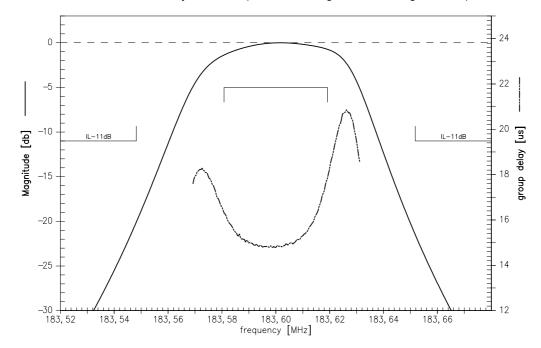
Note:

The balanced network is realized using TOKO 1:1 balun B5FL. The insertion attenuation of a balun is 0.3 dB at 183.6 MHz. The loss of the balun is not included in the specified filter insertion attenuation.

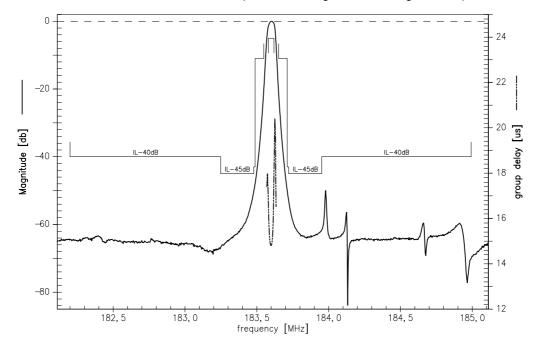
The level of ultimate suppression may be limited by electromagnetic feedthrough depending on the layout of the pcb and the arrangement of the matching components.

The above mentioned characteristics can be realized either in balanced or in unbalanced mode of operation.

B4864


Low Loss Filter for Mobile Communication

183,60 MHz


Data Sheet

Normalized transfer function passband (measured single ended / single ended)

Normalized transfer function wideband (measured single ended / single ended)

Low Loss Filter for Mobile Communication

183,60 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.