

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

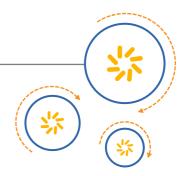
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



RF360 Europe GmbH
A Qualcomm – TDK Joint Venture

SAW components

SAW duplexer Small cell & femtocell LTE band 4

Series/type: B8033

Ordering code: B39212B8033P810

Date: January 11, 2018

Version: 2.1

RF360 products mentioned within this document are offered by RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2018 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm and Qualcomm RF360 are trademarks of Qualcomm Incorporated, registered in the United States and other countries. RF360 is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

SAW duplexer

1732.50 / 2132.50 MHz

Data sheet

Table of contents

1 Application	4
2 <u>Features</u>	4
3 Package	
4 Pin configuration	5
5 Matching circuit	6
6 Characteristics	
7 Maximum ratings	
8 Transmission coefficients	
9 Reflection coefficients.	17
10 <u>EVMs</u>	18
11 Packing material	20
12 Marking	23
13 Soldering profile	24
14 <u>Annotations</u>	25
15 Cautions and warnings	26
Important notes.	

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

1 Application

- Low-loss SAW duplexer for LTE smallcell system (Band 4)
- Low insertion attenuation
- Low amplitude ripple
- Usable pass band 45MHz
- High power durability in downlink
- TX=DOWNLINK=2110-2155MHz
- RX=UPLINK=1710-1755MHz

2 Features

- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.5 mm (max.)
- Approximate weight 0.01 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 2a (MSL2a)

Figure 1: Picture of component with example of product marking.

SAW duplexer

1732.50 / 2132.50 MHz

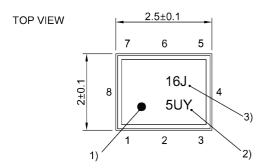
Data sheet

3 Package

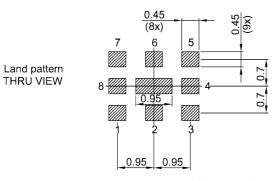
4 Pin configuration

1 TX

■ 3 RX


■ 6 ANT

■ 2, 4, 5, 7, Ground 8, 9


Pad and pitch tolerance ±0.05

SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Landing pad tolerance -0.02

Figure 2: Drawing of package with package height A = 0.5 mm (max.). See Sec. Package information (p. 26).

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

5 Matching circuit

■ L_{p6} = 3.3 nH

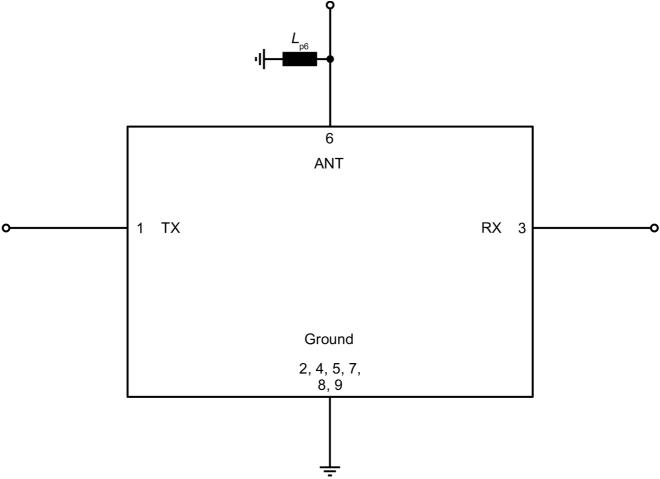


Figure 3: Schematic of matching circuit.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

6 Characteristics

6.1 TX – ANT

Temperature range for specification $T_{\text{SPEC}} = -10 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$

TX terminating impedance $Z_{TY} = 50 \Omega$

ANT terminating impedance $Z_{ANT} = 50 \Omega$ with par. 3.3 nH¹⁾

Characteristics TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency			f _C	_	2132.5	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	2110 2155	MHz		_	1.7	2.4	dB
Amplitude ripple (p-p)			Δα				
	2110 2155	MHz		_	0.3	1.0	dB
Maximum VSWR			$VSWR_{max}$				
@ TX port	2110 2155	MHz		_	1.3	2.0	
@ ANT port	2110 2155	MHz		_	1.3	2.1	
Maximum error vector magnitude			$EVM_{max}^{}2)}$				
	2112.4 2152.6	MHz		_	1.2	3.0	%
Minimum attenuation			$\alpha_{_{min}}$				
	50 1574	MHz		30	38	_	dB
	1574 1606	MHz		35	44	_	dB
	1606 1710	MHz		35	47	_	dB
	1710 1755	MHz		38	47	_	dB
	1830 1875	MHz		28	33	_	dB
	1875 1910	MHz		20	31	_	dB
	1920 2050	MHz		17	27	_	dB
	2180 2200	MHz		2	7	_	dB
	2200 2300	MHz		15	39	_	dB
	2300 2400	MHz		30	33	_	dB
	2400 2500	MHz		28	31	_	dB
	2500 2690	MHz		23	27	_	dB
	2690 3400	MHz		19	22	_	dB
	3400 3800	MHz		10	22	_	dB
	3800 5150	MHz		10	20	_	dB
	5150 5180	MHz		5	20	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

Temperature range for specification $T_{\text{spec}} = -40 \,^{\circ}\text{C} \dots +95 \,^{\circ}\text{C}$

TX terminating impedance $Z_{TY} = 50 \Omega$

ANT terminating impedance $Z_{ANT} = 50 \Omega$ with par. 3.3 nH¹⁾

Characteristics TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Center frequency			f _C	_	2132.5	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	2110 2155	MHz		_	1.7	2.7	dB
Amplitude ripple (p-p)			Δα				
	2110 2155	MHz		_	0.3	1.3	dB
Maximum VSWR			$VSWR_{max}$				
@ TX port	2110 2155	MHz		_	1.3	2.0	
@ ANT port	2110 2155	MHz		_	1.3	2.1	
Maximum error vector magnitude			EVM _{max} ²⁾				
	2112.4 2152.6	MHz		_	1.2	3.5	%
Minimum attenuation			$\alpha_{_{min}}$				
	50 1574	MHz		30	38	_	dB
	1574 1606	MHz		35	44	_	dB
	1606 1710	MHz		35	47	_	dB
	1710 1755	MHz		38	47	_	dB
	1830 1875	MHz		28	33	_	dB
	1875 1910	MHz		20	31	_	dB
	1920 2050	MHz		16	27	_	dB
	2180 2200	MHz		2	7	_	dB
	2200 2300	MHz		10	39	_	dB
	2300 2400	MHz		30	33	_	dB
	2400 2500	MHz		28	31	_	dB
	2500 2690	MHz		23	27	_	dB
	2690 3400	MHz		19	22	_	dB
	3400 3800	MHz		10	22	_	dB
	3800 5150	MHz		10	20	_	dB
	5150 5180	MHz		5	20	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

6.2 ANT - RX

Temperature range for specification $T_{\text{SPEC}} = -10 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$

TX terminating impedance $Z_{TY} = 50 \Omega$

ANT terminating impedance $Z_{\Delta NT} = 50 \Omega$ with par. 3.3 nH¹⁾

Characteristics ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Center frequency			f _C	_	1732.5	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	1710 1755	MHz		_	2.1	3.1	dB
Amplitude ripple (p-p)			Δα				
	1710 1755	MHz		_	0.6	1.6	dB
Maximum VSWR			$VSWR_{max}$				
@ ANT port	1710 1755	MHz		_	1.5	2.0	
@ RX port	1710 1755	MHz		_	1.7	2.1	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1712.4 1752.6	MHz		_	1.2	3.0	%
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	50 1500	MHz		40	53	_	dB
	1500 1560	MHz		45	51	_	dB
	1560 1675	MHz		21	37	_	dB
	1675 1680	MHz		15	35	_	dB
	1775 1805	MHz		3	11	_	dB
	1805 1830	MHz		20	42	_	dB
	1830 1880	MHz		34	44	_	dB
	1880 1910	MHz		34	44	_	dB
	1920 1980	MHz		38	44	_	dB
	1980 2110	MHz		20	48	_	dB
	2110 2155	MHz		49	52	_	dB
	2155 2300	MHz		45	50	_	dB
	2300 2500	MHz		38	50	_	dB
	2500 3800	MHz		40	53	_	dB
	3800 4310	MHz		32	42	_	dB
	4310 5265	MHz		29	42	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

Temperature range for specification $T_{\text{SPEC}} = -40 \,^{\circ}\text{C} \dots +95 \,^{\circ}\text{C}$

TX terminating impedance $Z_{TX} = 50 \Omega$

ANT terminating impedance $Z_{ANT} = 50 \Omega$ with par. 3.3 nH¹⁾

Characteristics ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency			f _C	_	1732.5	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	1710 1755	MHz		_	2.1	3.8	dB
Amplitude ripple (p-p)			Δα				
	1710 1755	MHz		_	0.6	2.3	dB
Maximum VSWR			$VSWR_{max}$				
@ ANT port	1710 1755	MHz		_	1.5	2.5	
@ RX port	1710 1755	MHz		_	1.7	2.8	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1712.4 1752.6	MHz		_	1.2	4.0	%
Minimum attenuation			$\alpha_{_{min}}$				
	50 1500	MHz		40	53	_	dB
	1500 1560	MHz		45	51	_	dB
	1560 1675	MHz		21	37	_	dB
	1675 1680	MHz		15	35	_	dB
	1775 1805	MHz		3	11	_	dB
	1805 1830	MHz		20	42	_	dB
	1830 1880	MHz		34	44	_	dB
	1880 1910	MHz		34	44	_	dB
	1920 1980	MHz		38	44	_	dB
	1980 2110	MHz		20	48	_	dB
	2110 2155	MHz		49	52	_	dB
	2155 2300	MHz		45	50	_	dB
	2300 2500	MHz		38	50	_	dB
	2500 3800	MHz		40	53	_	dB
	3800 4310	MHz		32	42	_	dB
	4310 5265	MHz		29	42	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

6.3 TX – RX

Temperature range for specification $T_{\text{SPEC}} = -10 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$

TX terminating impedance $Z_{Tx} = 50 \Omega$

ANT terminating impedance $Z_{ANT} = 50 \Omega$ with par. 3.3 nH¹⁾

Characteristics TX – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Minimum isolation			α_{min}				
	1710 1755	MHz		45	49	_	dB
	2110 2155	MHz		48	52	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

Temperature range for specification $T_{\text{oper}} = -40 \,^{\circ}\text{C} \dots +95 \,^{\circ}\text{C}$

TX terminating impedance $Z_{TY} = 50 \Omega$

ANT terminating impedance $Z_{ANT}^{1A} = 50 \Omega$ with par. 3.3 nH¹⁾

Characteristics TX – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Minimum isolation			$\boldsymbol{\alpha}_{\text{min}}$				
	1710 1755	MHz		44	49	_	dB
	2110 2155	MHz		46	52	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

7 Maximum ratings

Operable temperature	T _{OP} = -40 °C +95 °C	
Storage temperature	T _{STG} ¹⁾ = −40 °C +95 °C	
DC voltage	$ V_{DC} ^{2)} = 0 \text{ V}$	
ESD voltage		
	V _{ESD} ³⁾ = 50 V	Machine model.
	V _{ESD} ⁴⁾ = 175 V	Human body model.
Input power	P _{IN}	
@ TX port: 2110 2155 MHz	27.4 dBm ⁵⁾	Pin average – Peak 38.4dBm LTE 5MHz downlink for 100000 h @ 55 °C. Source and load impedance 50Ω.
@ elsewhere	10 dBm	
Operating Lifetime with output power at antenna		
@ 2110 2155 MHz	24 dBm ⁶⁾	Continuous wave for 100000 h @ 55 °C.

Not valid for packaging material. Storage temperature for packaging material is −25 °C to +40 °C.

²⁾ In case of applied DC voltage blocking capacitors are mandatory.

³⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

⁴⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

⁵⁾ Time to failure (TTF) according to accelerated power durability test, and wear out models.

⁶⁾ According to accelerated High Temperature Operating Life (HTOL) test.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

8 Transmission coefficients

8.1 TX - ANT 0.0 α/dB 1.0 2.0 1.574 1.630 3.0 4.0 2180 2100 2120 2140 2160 2200 f/MHz 0.0 20.0 40.0 60.0 80.0 <u>--</u> 1500 1700 2200 1600 1800 1900 2000 2100 2300 f/MHz 0.0 20.0 40.0 60.0 80.0 1000 2000 3000 4000 5000 6000

Figure 4: Attenuation TX – ANT.

f/MHz -

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

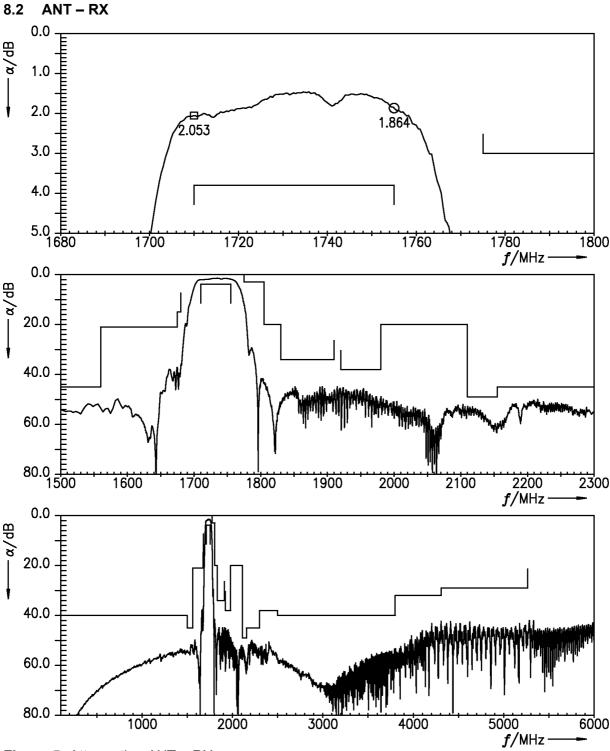
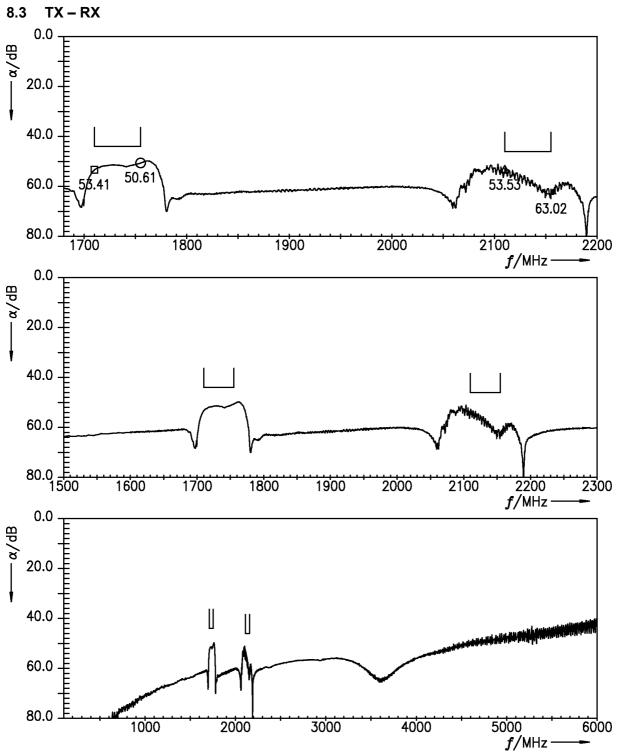


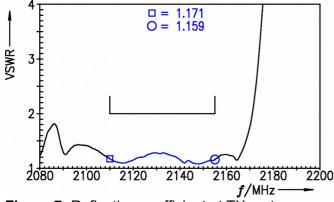
Figure 5: Attenuation ANT – RX.

 SAW components
 B8033

 SAW duplexer
 1732.50 / 2132.50 MHz

Data sheet




Figure 6: Isolation TX – RX.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

9 Reflection coefficients

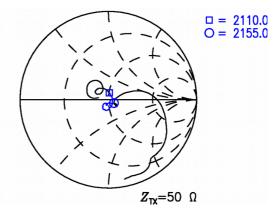
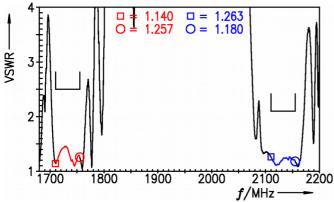



Figure 7: Reflection coefficient at TX port.

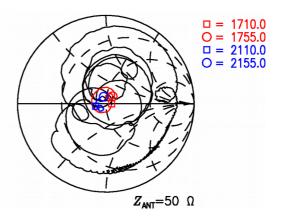
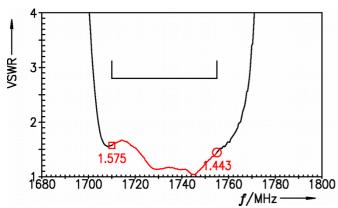



Figure 8: Reflection coefficient at ANT port.

 $Z_{\text{RX}} = 50 \Omega$

Figure 9: Reflection coefficient at RX port.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

10 EVMs

10.1 TX - ANT

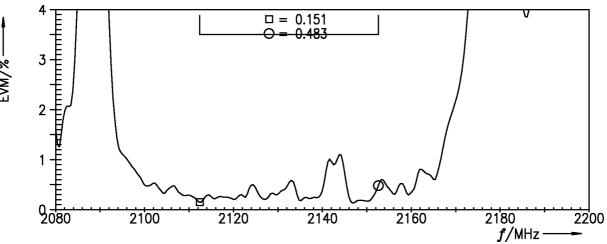


Figure 10: Error vector magnitude TX – ANT.

 SAW components
 B8033

 SAW duplexer
 1732.50 / 2132.50 MHz

Data sheet

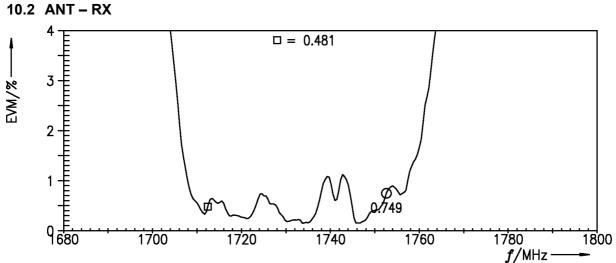


Figure 11: Error vector magnitude ANT – RX.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

11 Packing material

11.1 Tape

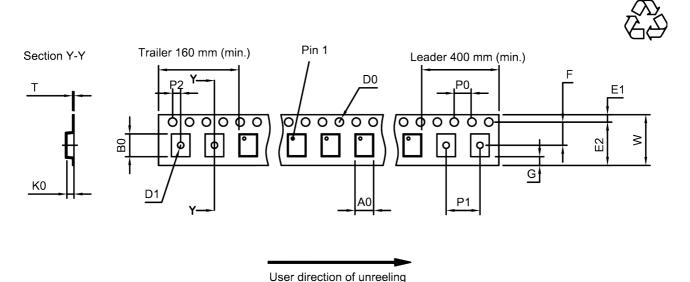


Figure 12: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	2.25±0.05 mm	E	6.25 mm (min.)	P ₁	4.0±0.1 mm
B ₀	2.75±0.05 mm	F	3.5±0.05 mm	P ₂	2.0±0.05 mm
D ₀	1.5+0.1/-0 mm	(0.75 mm (min.)	Т	0.25±0.03 mm
D ₁	1.0 mm (min.)	K	0.6±0.05 mm		8.0+0.3/-0.1 mm
E ₁	1.75±0.1 mm	P	4.0±0.1 mm		

Table 1: Tape dimensions.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

11.2 Reel with diameter of 180 mm

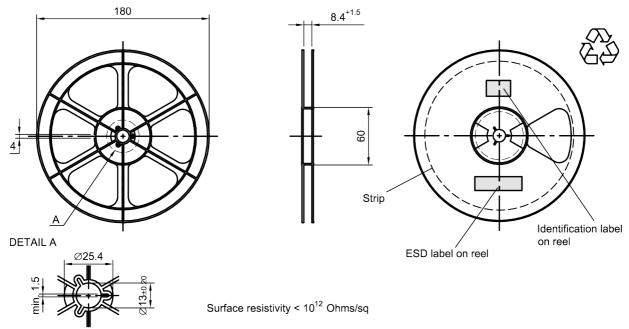


Figure 13: Drawing of reel (first-angle projection) with diameter of 180 mm.

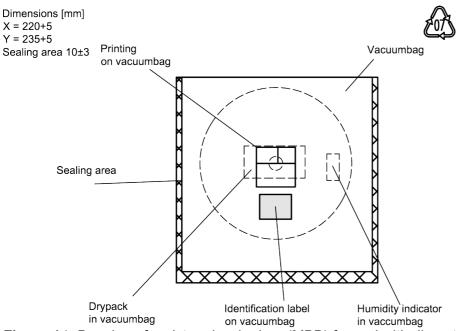


Figure 14: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

SAW duplexer 1732.50 / 2132.50 MHz

Data sheet

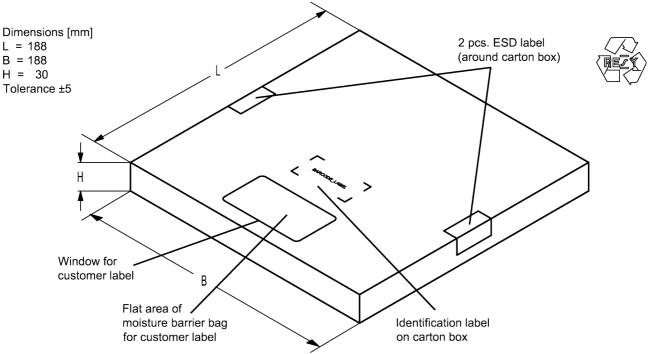


Figure 15: Drawing of folding box for reel with diameter of 180 mm.

SAW duplexer

1732.50 / 2132.50 MHz

Data sheet

12 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, e.g., B3xxxxB**1234**xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0 = 1234

The BASE32 code for product type B8033 is 7V1.

■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device in decimal code.

5UY => 12345 $5 \times 47^2 + 27 (=U) \times 47^1 + 31 (=Y) \times 47^0 =$ 12345

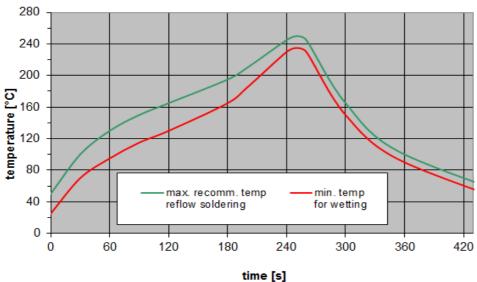
Adopted BASE32 code for type number						
Decimal	Base32	Decimal	Base32			
value	code	value	code			
0	0	16	G			
1	1	17	Н			
2	2	18	J			
3	3	19	K			
4	4	20	M			
5	5	21	N			
6	6	22	Р			
7	7	23	Q			
8	8	24	R			
9	9	25	S			
10	Α	26	Т			
11	В	27	V			
12	С	28	W			
13	D	29	Х			
14	E	30	Y			
15	F	31	Z			

Adopted BASE47 code for lot number								
Decimal	Base47	Decimal	Base47					
value	code	value	code					
0	0	24	R					
1	1	25	S					
2	2	26	Т					
3	3	27	U					
4	4	28	V					
5	5	29	W					
6	6	30	X					
7	7	31	Y					
8	8	32	Z					
9	9	33	b					
10	Α	34	d					
11	В	35	f					
12	С	36	h					
13	D	37	n					
14	Е	38	r					
15	F	39	t					
16	G	40	V					
17	Н	41	\					
18	J	42	?					
19	K	43	{					
20	L	44	}					
21	M	45	<					
22	N	46	>					
23	Р							

Adopted BASE47 code for lot number

Table 2: Lists for encoding and decoding of marking.

SAW components	B8033
SAW duplexer	1732.50 / 2132.50 MHz


Data sheet

13 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	_
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{\min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature <i>T</i>	measured at solder pads
wetting temperature T_{\min} cooling rate	230 °C +5/-0 °C for 10 s ± 1 s ≤ 3 K/s

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 16: Recommended reflow profile for convection and infrared soldering – lead-free solder.

 SAW components
 B8033

 SAW duplexer
 1732.50 / 2132.50 MHz

Data sheet

14 Annotations

14.1 Matching coils

See TDK inductor pdf-catalog http://www.tdk.co.jp/tefe02/coil.htm#aname1 and Data Library for circuit simulation http://www.tdk.co.jp/etvcl/index.htm.

14.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

14.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

14.4 Ordering codes and packing units

Ordering code	Packing unit
B39212B8033P810	5000 pcs

Table 4: Ordering codes and packing units.