imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

SAW components

SAW duplexer Small cell & femtocell LTE band 1

Series/type:	B8092
Ordering code:	B39212B8092P810

Date:	April 11, 2018
Version:	2.4

RF360 products mentioned within this document are offered by RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2018 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

SAW duplexer

Data sheet

B8092

1950 / 2140 MHz

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm and Qualcomm RF360 are trademarks of Qualcomm Incorporated, registered in the United States and other countries. RF360 is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

1950 / 2140 MHz

B8092

SAW components

SAW duplexer

Data sheet

Table of contents

1 Application	4
2 Features	4
3 Package	5
4 Pin configuration	5
5 Matching circuit	6
6 Characteristics	7
7 Maximum ratings	13
8 Transmission coefficients	14
9 Reflection coefficients	17
10 <u>EVMs</u>	
11 Packing material	20
12 Marking	24
13 Soldering profile	
14 Annotations	
15 Cautions and warnings	27
Important notes	

SAW duplexer

Data sheet

1 Application

- Low-loss SAW duplexer for 3G/LTE small cell & femtocell systems (Band 1)
- Usable pass band 60 MHz
- DECT Europe rejection
- Rx = uplink = 1920 1980 MHz
- Tx = downlink = 2110 2170 MHz

2 Features

- Industrial grade qualified family
- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.5 mm (max.)
- Approximate weight 0.01 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 2a (MSL2a)

Figure 1: Picture of component with example of product marking.

1950 / 2140 MHz

UALCO

SAW duplexer

Data sheet

3 Package

4 Pin configuration

SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

2)

Land pattern THRU VIEW

Landing pad tolerance -0.02 **Figure 2:** Drawing of package with package height A = 0.5 mm (max.). See Sec. Package information (p. 27).

8

B8092

Ground

2, 4, 5, 7, 8, 9

Figure 3: Schematic of matching circuit.

SAW duplexer

Data sheet

6 Characteristics

6.1 TX – ANT

Temperature range for specification	$T_{_{\rm SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω with par. 2.2 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT				min. for T _{SPEC}	typ. @ +25 °C	max. for T _{SPEC}	
Center frequency			f _c		2140		MHz
Maximum insertion attenuation			$\alpha_{_{max}}$				
	2110 2170	MHz		_	2.0	2.5	dB
Amplitude ripple (p-p)			Δα				
	2110 2170	MHz		_	0.8	1.6	dB
Maximum VSWR			VSWR _{max}				
@ TX port	2110 2170	MHz		_	1.7	2.0	
@ ANT port	2110 2170	MHz		_	1.5	2.0	
Maximum error vector magnitude			EVM _{max} ²⁾				
	2112.5 2167.5	MHz		_	0.5	1.5	%
Minimum attenuation			$\alpha_{_{min}}$				
	10 1574	MHz		30	34	—	dB
	843 894	MHz		30	40	_	dB
	1574 1606	MHz		30	34	_	dB
	1606 1880	MHz		30	34	_	dB
	1805 1880	MHz		30	40	_	dB
	1920 1980	MHz		37	43	_	dB
	2250 2400	MHz		30	48	—	dB
	2400 2500	MHz		30	48	—	dB
	2500 2700	MHz		30	37	—	dB
	2620 2690	MHz		30	42	—	dB
	2700 3000	MHz		30	37	—	dB
	3000 3800	MHz		28	32	_	dB
	3800 4220	MHz		15	20	—	dB
	4220 4340	MHz		10	15	—	dB
	4340 5000	MHz		7	18	—	dB
	5000 6000	MHz		3	7	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

1950 / 2140 MHz

SAW duplexer

Data sheet

Temperature range for specification	T _{SPEC}	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 2.2 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT				min. for $T_{_{ m SPEC}}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c	—	2140	_	MHz
Maximum insertion attenuation			$\alpha_{_{max}}$				
	2110 2170	MHz		—	2.0	3.0	dB
Amplitude ripple (p-p)			Δα				
	2110 2170	MHz		_	0.8	1.9	dB
Maximum VSWR			VSWR _{max}				
@ TX port	2110 2170	MHz		_	1.7	2.2	
@ ANT port	2110 2170	MHz		_	1.5	2.2	
Minimum attenuation			$\alpha_{_{min}}$				
	10 1574	MHz		30	34	—	dB
	843 894	MHz		30	40	—	dB
	1574 1606	MHz		30	34	—	dB
	1606 1880	MHz		30	34	—	dB
	1805 1880	MHz		30	40	—	dB
	1920 1980	MHz		37	43	—	dB
	2250 2400	MHz		30	48	—	dB
	2400 2500	MHz		30	48	—	dB
	2500 2700	MHz		30	37	—	dB
	2620 2690	MHz		30	42	—	dB
	2700 3000	MHz		30	37	—	dB
	3000 3800	MHz		28	32	—	dB
	3800 4220	MHz		15	20	—	dB
	4220 4340	MHz		10	15	—	dB
	4340 5000	MHz		7	18	—	dB
	5000 6000	MHz		3	7	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

1950 / 2140 MHz

SAW duplexer

Data sheet

6.2 ANT – RX

Temperature range for specification		= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 2.2 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } \mathcal{T}_{_{\mathrm{SPEC}}} \end{array}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c	—	1950		MHz
Maximum insertion attenuation			α_{max}				
	1920 1980	MHz		_	2.3	3.7	dB
Amplitude ripple (p-p)			Δα				
	1920 1980	MHz		_	0.9	2.2	dB
Maximum VSWR			VSWR _{max}				
@ ANT port	1920 1980	MHz		_	1.9	2.2	
@ RX port	1920 1980	MHz		_	2.0	2.3	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1922.5 1977.5	MHz		_	1.5	3.0	%
Minimum attenuation			$\alpha_{_{min}}$				
	10 1785	MHz		30	36	—	dB
	1785 1880	MHz		20	31	—	dB
	1880 1900	MHz		5	15	—	dB
	2000 2110	MHz		2.5	12	—	dB
	2110 2170	MHz		43	48	—	dB
	2255 2400	MHz		30	33	—	dB
	2400 2500	MHz		25	30	—	dB
	2500 3840	MHz		15	20	—	dB
	3840 3960	MHz		20	24	—	dB
	3960 5000	MHz		20	25	—	dB
	5000 5760	MHz		15	30		dB
	5760 5940	MHz		15	30	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

1950 / 2140 MHz

SAW duplexer

Data sheet

Temperature range for specification	T _{SPEC}	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 2.2 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Maximum insertion attenuation			α _{max}				
	1920 1980	MHz		_	2.3	5.2	dB
Amplitude ripple (p-p)			Δα				
	1920 1980	MHz		—	0.9	3.7	dB
Maximum VSWR			$VSWR_{max}$				
@ ANT port	1920 1980	MHz		—	1.9	2.3	
@ RX port	1920 1980	MHz		—	2.0	2.3	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1922.5 1977.5	MHz		_	1.5	6.0	%
Minimum attenuation			$\alpha_{_{min}}$				
	10 1785	MHz		30	36		dB
	1785 1880	MHz		20	31	—	dB
	1880 1900	MHz		3	15	—	dB
	2000 2110	MHz		2	12	—	dB
	2110 2170	MHz		43	48	—	dB
	2255 2400	MHz		30	33	—	dB
	2400 2500	MHz		25	30	—	dB
	2500 3840	MHz		15	20	—	dB
	3840 3960	MHz		20	24	—	dB
	3960 5000	MHz		20	25	—	dB
	5000 5760	MHz		15	30	—	dB
	5760 5940	MHz		15	30	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

B8092

SAW duplexer

Data sheet

6.3 TX – RX

Temperature range for specification	T _{SPEC}	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 2.2 nH ¹
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Average isolation			$lpha_{_{INT,avg}}^{~~2)}$				
	1920 1960	MHz		45	48	—	dB
	1960 1980	MHz		42	48	—	dB
	2110 2155	MHz		50	52	—	dB
	2155 2170	MHz		48	52	—	dB
Minimum isolation			$\boldsymbol{\alpha}_{min}$				
	1920 1980	MHz		42	48	—	dB
	2110 2170	MHz		47	52	—	dB

1)

See Sec. Matching circuit (p. 6). Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels. 2)

1950 / 2140 MHz

SAW duplexer

Data sheet

Temperature range for specification	T _{SPEC}	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω with par. 2.2 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for T _{SPEC}	
Average isolation			$lpha_{_{INT,avg}}^{2)}$				
	1920 1960	MHz		45	48	—	dB
	1960 1980	MHz		42	48	—	dB
	2110 2155	MHz		50	52	—	dB
	2155 2170	MHz		48	52	—	dB
Minimum isolation			$\boldsymbol{\alpha}_{_{min}}$				
	1920 1980	MHz		42	48	—	dB
	2110 2170	MHz		47	52	—	dB

1)

See Sec. Matching circuit (p. 6). Integrated attenuation $\alpha_{_{INT}}$: Averaged power $|S_{_{ij}}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels. 2)

1950 / 2140 MHz

SAW duplexer

B8092

1950 / 2140 MHz

Data sheet

7 Maximum ratings

Operable temperature	$T_{\rm OP} = -40 ^{\circ}{\rm C} \dots +95 ^{\circ}{\rm C}$	
Storage temperature	$T_{\rm STG}^{1)} = -40 ^{\circ}{\rm C} \dots +95 ^{\circ}{\rm C}$	
DC voltage	$ V_{\rm DC} ^{2)} = 0 V$	
ESD voltage		
	$V_{\rm ESD}^{3)} = 50 \rm V$	Machine model.
	$V_{\rm ESD}^{4)} = 100 \rm V$	Human body model.
Input power	P _{IN}	
@ TX port: 2110 2170 MHz	28 dBm ^{5), 6)}	5 MHz LTE downlink signal (25 RB) for 100000 h @ 55 °C. P_{IN} average – 39 dBm
		peak. Source and load impedance 50Ω .
@ TX port: other frequency ranges	10 dBm	Source and load impedance 50Ω .
Operating lifetime with output power at antenna 2110 2170 MHz	$P_{OUT}^{(7)} = 24 \text{ dBm}$	Continuous wave for 100000 h @ 55 °C. Source and load impedance 50Ω.

1) Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

2) In case of applied DC voltage blocking capacitors are mandatory.

3) According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

4)

Expected lifetime according to accelerated power durability tests, and wear out models. 5)

6) T_{SPEC} is the ambient temperature of the PCB at component position. Specified min./max values from section 6 "characteristics" for maximum input power 28dBm are valid for temperature up to 57°C.

7) According to accelerated high temperature operating life (HTOL) test.

SAW duplexer

Data sheet

8 Transmission coefficients

8.1 TX – ANT

B8092

SAW duplexer

Data sheet

Figure 5: Attenuation ANT – RX.

B8092

SAW duplexer

Data sheet

1950 / 2140 MHz

B8092

Please read **Cautions and warnings** and **Important notes** at the end of this document.

Reflection coefficients

1.396

2100

SAW duplexer

Data sheet

2080

9

2140

2120

1.401

2180

2200

2160

 $\begin{array}{rcl} \Box &=& 1920.0\\ O &=& 1980.0\\ \Box &=& 2110.0\\ O &=& 2170.0 \end{array}$

Z_{ANT}=50 Ω

1950 / 2140 MHz

1950 / 2140 MHz

B8092

SAW components

SAW duplexer

Data sheet

10 EVMs

10.1 TX – ANT

Figure 10: Error vector magnitude TX – ANT.

1950 / 2140 MHz

B8092

SAW components

SAW duplexer

Data sheet

10.2 ANT – RX

Figure 11: Error vector magnitude ANT – RX.

SAW components

SAW duplexer

Data sheet

11 Packing material

11.1 Tape

User direction of unreeling

Figure 12: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	2.25±0.05 mm
B ₀	2.75±0.05 mm
D ₀	1.5+0.1/-0 mm
D ₁	1.0 mm (min.)
E1	1.75±0.1 mm

Table 1: Tape dimensions.

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.6±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P_2	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

Please read **Cautions and warnings** and **Important notes** at the end of this document.

B8092

1950 / 2140 MHz

SAW components

SAW duplexer

Data sheet

11.2 Reel with diameter of 180 mm

Figure 15: Drawing of folding box for reel with diameter of 180 mm.

11.3 Reel with diameter of 330 mm

Important notes at the end of this document.

customer label

В

Figure 18: Drawing of folding box for reel with diameter of 330 mm.

Flat area of

moisture barrier bag

for customer label

Identification label

on carton box

additional printing

for badge number on the upper right side

on the top of the carton box.

SAW duplexer

Data sheet

12 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code,			e.g.,	B3xxxxB <u>1234</u> xxxx,
is encoded by a special	BASE32 code into a 3 digit m	arking.		
Example of decoding	type number marking on de	evice		in decimal code.
16J		=>		1234
1 x 32 ² + 6 x	32 ¹ + 18 (=J) x 32 ⁰	=		1234
The BASE32 code for pr	oduct type B8092 is 7WW.			

=>

=

■ Lot number:

Decimal

value

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Base32

code

G

Н

J

Κ

Μ

Ν

Ρ

Q

R

S

Т

V W

Х

Y

Ζ

Example of decoding lot number marking on device

Decimal

value

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Adopted BASE32 code for type number

Base32

code

0

1

2

3

4

5

6

7

8

9

A

В

С

D

Е

F

SUY				
5 x 47 ² + 27	(=U) x 4	7 ¹ + 3 1	l (=Y)	x 47 [°]

Adopt	Adopted BASE47 code for lot number			
Decimal	Base47	Decimal	Base47	
value	code	value	code	
0	0	24	R	
1	1	25	S	
2	2	26	Т	
3	3	27	U	
4	4	28	V	
5	5	29	W	
6	6	30	X	
7	7	31	Y	
8	8	32	Z	
9	9	33	b	
10	А	34	d	
11	В	35	f	
12	С	36	h	
13	D	37	n	
14	E	38	r	
15	F	39	t	
16	G	40	v	
17	Н	41	١	
18	J	42	?	
19	К	43	{	
20	L	44	}	
21	М	45	<	
22	N	46	>	
23	P			

5 5

Table 2: Lists for encoding and decoding of marking.

UALCOM

12345,

12345

in decimal code. 12345

B8092

SAW components

SAW duplexer

Data sheet

13 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 19: Recommended reflow profile for convection and infrared soldering – lead-free solder.

B8092