imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RF360 Europe GmbH

A Qualcomm – TDK Joint Venture

SAW components

SAW duplexer

LTE band 1

Series/type: B8651 Ordering code: B39212B8651P810

Date: Version: May 31, 2016 2.5

RF360 products mentioned within this document are offered by RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries"). RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG. References in this documentation to EPCOS AG should properly reference, and shall be read to reference, the RF360 Subsidiaries.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2016 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm and Qualcomm RF360 are trademarks of Qualcomm Incorporated, registered in the United States and other countries. RF360 is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

SAW duplexer

Series/type:	B8651
Ordering code:	B39212B8651P810
Date:	May 31, 2016
Version:	2.5

© EPCOS AG 2016. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

B8651

SAW components

SAW duplexer

Data sheet

Table of contents

1 Application	3
1 Application. 2 Features.	3
3 Package	4
4 Pin configuration	4
5 Matching circuit	5
6 Characteristics	6
7 Maximum ratings	
8 Transmission coefficients	
9 Reflection coefficients	
10 <u>EVMs</u>	
11 Packing material	
12 Marking	
13 Soldering profile	23
14 Annotations.	24
15 <u>Cautions and warnings</u>	25
Important notes	

SAW components

SAW duplexer

Data sheet

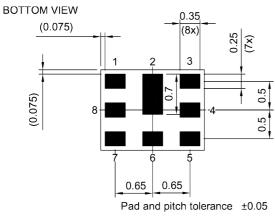
1 Application

- Low-loss SAW duplexer for mobile telephone LTE Band 1 systems, also suitable for CDMA applications
- Usable pass bands 60 MHz
- Low insertion attenuation
- Low amplitude ripple
- Terminating impedances 50 Ω
- External matching only needed at ANT port

2 Features

- Package size 1.8±0.1 mm × 1.4±0.1 mm
- Package height 0.475 mm (max.)
- Approximate weight 3 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

Figure 1: Picture of component with example of product marking.

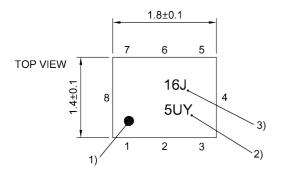

B8651

SAW components

SAW duplexer

Data sheet

3 Package

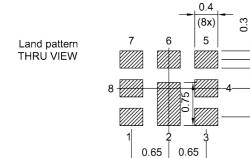


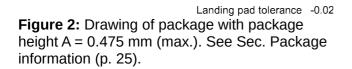
4 Pin configuration

- 1 RX
 3 TX
 6 ANT
- 2, 4, 5, 7, Ground 8

SIDE VIEW

1) Marking for pad number 1


2) Example of encoded lot number

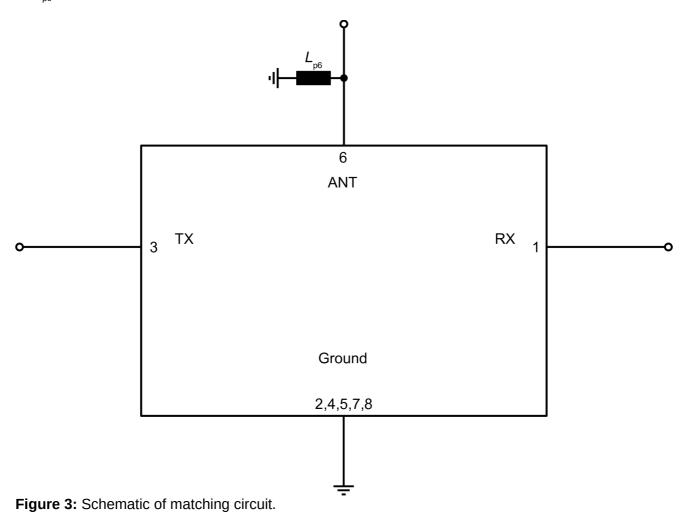


(XX)

0.5

0.5

B8651


SAW components

SAW duplexer

Data sheet

5 Matching circuit

■ *L*_{p6} = 3.1 nH

SAW duplexer

Data sheet

6 Characteristics

6.1 TX – ANT

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +90 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω with par. 3.1 nH^1)
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT						min. for $T_{\rm SPEC}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	
Center frequency					f _c	—	1950	—	MHz
Maximum insertion attenuation									
		1920.59 1	L979.41	MHz	α_{max}		1.9	2.3	dB
	@f	1922.4 1	L977.6	MHz	α _{wcdma,max} 2)	_	1.8	2.3	dB
Amplitude ripple (p-p)									
		1920.59 1	L979.41	MHz	$\Delta \alpha^{_{3)}}$	_	0.5	0.8	dB
		1920.59 1	L979.41	MHz	$\Delta \alpha^{_{4)}}$	_	1.0	2.0	dB
Maximum VSWR					VSWR				
@ TX port		1920.59 1	L979.41	MHz		_	1.5	2.0	
@ ANT port		1920.59 1	L979.41	MHz		_	1.4	2.0	
Maximum error vector magnitude					EVM ⁵⁾				
		1922.4 1	L977.6	MHz		_	1.5	2.5	%
Minimum attenuation					$\alpha_{_{min}}$				
		10 1	L574	MHz		30	41	_	dB
		4204	194	MHz		44	54	_	dB
		843 8	394	MHz		38	44	_	dB
		920 9	960	MHz		39	44	_	dB
		1226 1	L250	MHz		36	41	_	dB
		1470 1	L496	MHz		35	41	_	dB
		1496 1	L511	MHz		35	41	_	dB
		1559 1	L563	MHz		36	42	_	dB
		1565.42 1	L573.374	MHz		36	42	_	dB
	-	1573.374 1	L577.466	MHz		36	43	_	dB
	-	1577.466 1	1585.42	MHz		36	43	_	dB
	-	1597.551 1	L605.886	MHz		36	43	_	dB
	-	1605.886 1	L805	MHz		30	38	_	dB
		1805 1	L865	MHz		20	29	_	dB
		1865 1	L880	MHz		10	23	_	dB
		2010 2	2025	MHz		13 ⁶⁾	27	_	dB
		2110 2	2170	MHz		36	44	_	dB
		2400 2	2500	MHz		27	37	_	dB
		2620 2	2690	MHz		15	33	_	dB
		3830 3	3960	MHz		14	22	—	dB

1950 / 2140 MHz

SAW components

SAW duplexer

Data sheet

Characteristics TX – ANT		min. for $T_{_{\rm SPEC}}$	typ. @+25 °C	max. for $T_{_{\rm SPEC}}$	
4900 5950	MHz	6	12	_	dB
4905 5840	MHz	6	12	—	dB

1) See Sec. Matching circuit (p. 5).

2) Attenuation of WCDMA signal ("power transfer function"). Please refer to definition of Power Transfer Function (PTF) of WCDMA signal (p. 24).

3) Over any 5 MHz.

4) Over any 20 MHz.

5) Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141. Valid for temperature $T_{_{SPEC}}$ = +15 °C...+90 °C.

6)

SAW components

SAW duplexer

Data sheet

6.2 ANT – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +90 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 3.1 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				min. for $T_{_{\rm SPEC}}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c	—	2140	—	MHz
Maximum insertion attenuation			α_{max}				
	2110.59 2169.41	MHz		_	1.9	2.4	dB
Amplitude ripple (p-p)							
	2110.59 2169.41	MHz	$\Delta \alpha^{_2)}$	_	0.4	0.7	dB
	2110.59 2169.41	MHz	$\Delta \alpha^{_{3)}}$	_	0.5	1.5	dB
Maximum VSWR			VSWR				
@ ANT port	2110.59 2169.41	MHz		_	1.5	2.0	
@ RX port	2110.59 2169.41	MHz		_	1.7	2.0	
Maximum error vector magnitude			EVM _{max} ⁴⁾				
	2112.4 2167.6	MHz		_	1.2	2.5	%
Minimum attenuation			α _{min}				
	90 1920	MHz		32	43	_	dB
	190	MHz		50	77	_	dB
	718 748	MHz		40	55	_	dB
	814 849	MHz		40	53	_	dB
	880 910	MHz		40	52	_	dB
	1427 1447	MHz		40	46	_	dB
	1447 1463	MHz		39	45	_	dB
	1710 1780	MHz		32	43	_	dB
	1730 1790	MHz		30	43	_	dB
	1920 1980	MHz		36	54	_	dB
	1980 2010	MHz		25	40	—	dB
	2010 2050	MHz		28	34	—	dB
	2050 2070	MHz		18	27	—	dB
	2400 2500	MHz		25	40	—	dB
	2500 2570	MHz		32	42	—	dB
	4030 4150	MHz		34	46	—	dB
	4220 4340	MHz		29	41	—	dB
	4900 5950	MHz		28	38	—	dB

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Over any 5 MHz.

³⁾ Over any 20 MHz.

⁴⁾ Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141.

SAW components

SAW duplexer

Data sheet

6.3 TX – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +90 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 3.1 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – RX					min. for $T_{_{\rm SPEC}}$	typ. @+25 °C	max. for $T_{_{\rm SPEC}}$	
Minimum isolation								
		1574 1577	MHz	$\alpha_{_{min}}$	40	74	—	dB
		1920.59 1979.41	MHz	$\alpha_{_{min}}$	55	60	_	dB
	@f	2112.4 2167.6	MHz	$lpha_{WCDMA,min}^{2)}$	55	61	—	dB
		3830 3970	MHz	$\alpha_{_{min}}$	20	60		dB
		5750 5950	MHz	α _{min}	20	42	_	dB

1)

See Sec. Matching circuit (p. 5). Attenuation of WCDMA signal ("power transfer function"). Please refer to definition of Power Transfer Function (PTF) of 2) WCDMA signal (p. 24).

SAW components

SAW duplexer

Data sheet

6.4 Linearity

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +90 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 3.1 nH^1)
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics linearity			min. for T_{SPEC}	typ. @+25 °C	max. for T_{SPEC}	
IMD product levels ^{2), 3)}						
IMD2						
Blocker 1	190	MHz	_	-117	_	dBm
Blocker 3	4030 4150	MHz	_	-102	_	dBm
IMD3						
SVLTE	1575	MHz	_	-85	_	dBm
Blocker 2	1730 1790	MHz	_	-113	_	dBm
SVLTE	2145	MHz	_	-75	_	dBm
Blocker 4	5950 6130	MHz	_	-118	_	dBm

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ @ fTX = 1920...1980 MHz, fRX = Blocker 1...4, IMD product levels for power levels PTX = +21.5 dBm (ANT port output power) and Pblocker = -15 dBm (ANT port input power).

³⁾ @ fTX = 1955 MHz, fANT = 1765, IMD product levels for power levels PTX = +24.5 dBm (ANT port output power) and Pblocker = +14 dBm (ANT port input power).

SAW duplexer

B8651

1950 / 2140 MHz

Data sheet

7 **Maximum ratings**

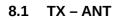
Storage temperature	$T_{\rm STG}^{1)} = -40 ^{\circ}{\rm C} \dots +90 ^{\circ}{\rm C}$	
DC voltage	$V_{\rm DC}^{(2)} = 5.0 \rm V (max.)$	
ESD voltage		
	$V_{\rm ESD}^{3)}$ = 125 V (max.)	Machine model.
	$V_{\rm ESD}^{4)}$ = 150 V (max.)	Human body model.
	$V_{\rm ESD}^{5)} = 600 \rm V (max.)$	Charged device model.
Input power	P _{IN}	
@ TX port: 1920 1980 MHz	29 dBm	Continuous wave for 5000 h @ 50 °C.
@ TX port: other frequency range(s)	10 dBm	Continuous wave for 5000 h @ 50 °C.

1) Extended upper limit: 168h@125°C acc. to IEC 60 Bb068-2-2.

2) 168h Damp Heat Steady State acc. to IEC600682-67 Cy.

3) According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

4)


5) According to JESD22-C101C (CDM - Field Induced Charged Device Model), 3 negative & 3 positive pulses.

SAW duplexer

Data sheet

8 Transmission coefficients

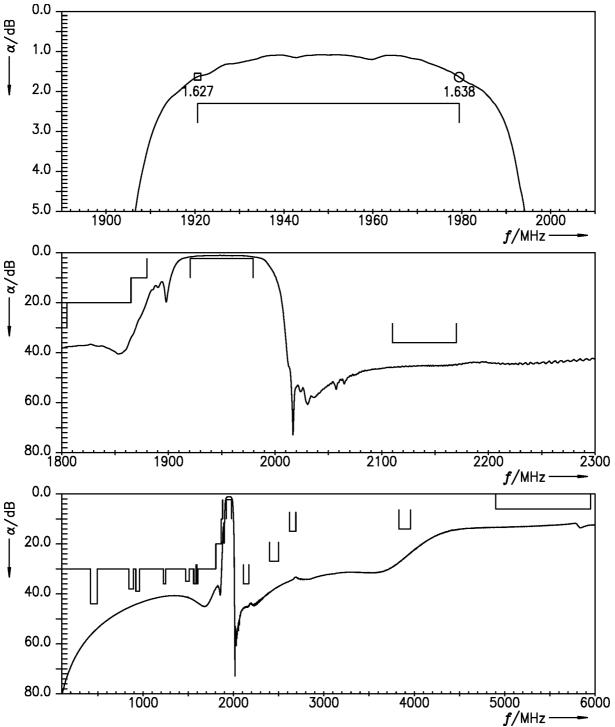


Figure 4: Attenuation TX – ANT.

B8651

1950 / 2140 MHz

B8651

SAW components

SAW duplexer

Data sheet

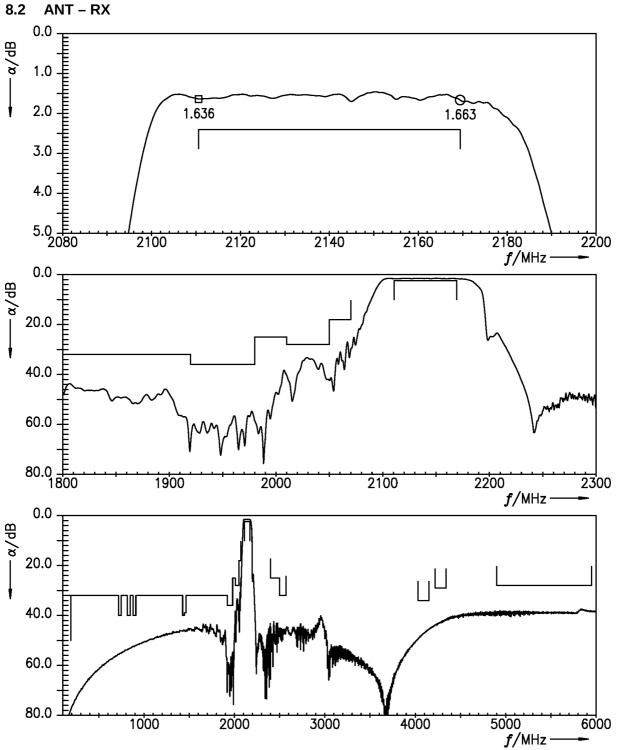
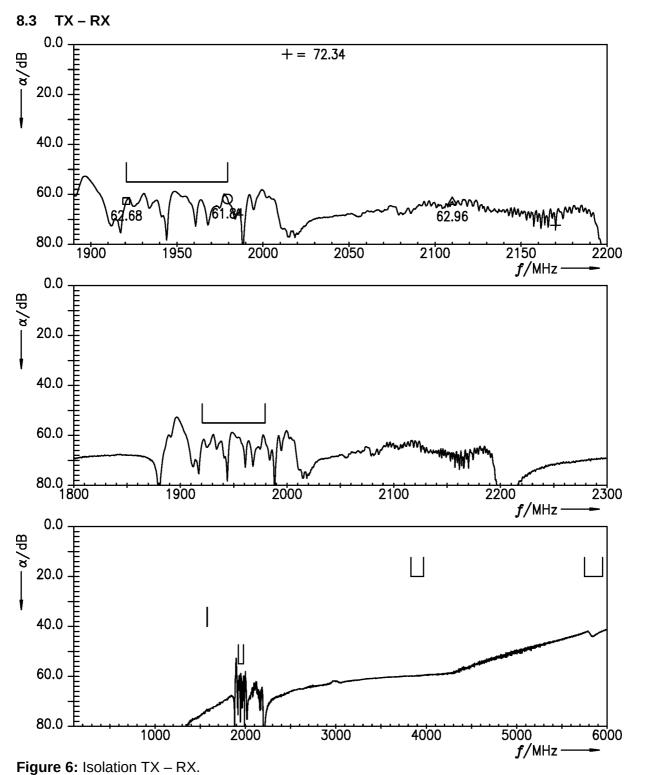


Figure 5: Attenuation ANT – RX.



B8651

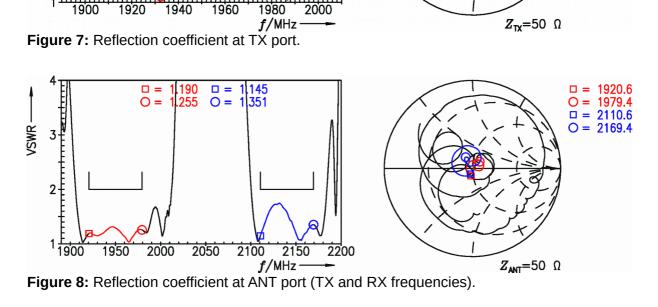
SAW components

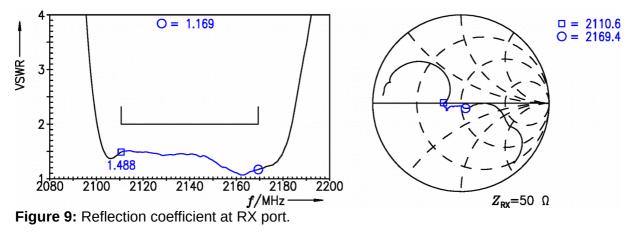
SAW duplexer

Data sheet

□ = 1920.6 O = 1979.4

B8651


SAW components SAW duplexer Data sheet **Reflection coefficients** □ = 1.168 O = 1.364 3


9

VSWR -

2

1-

B8651

SAW components

SAW duplexer

Data sheet

10 EVMs

10.1 TX - ANT

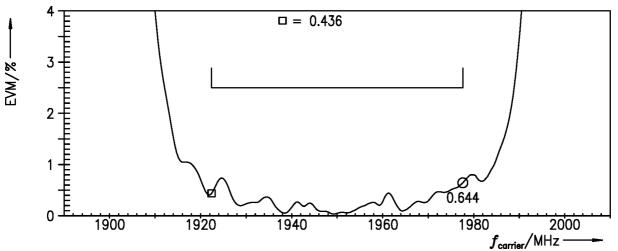


Figure 10: Error vector magnitude TX – ANT.

B8651

SAW components

SAW duplexer

Data sheet

10.2 ANT - RX

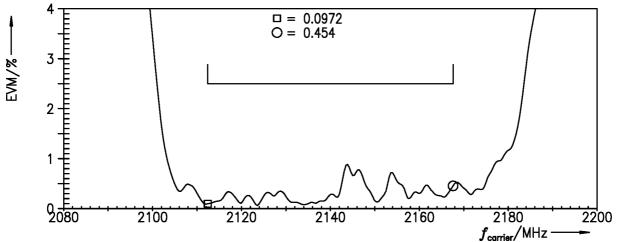
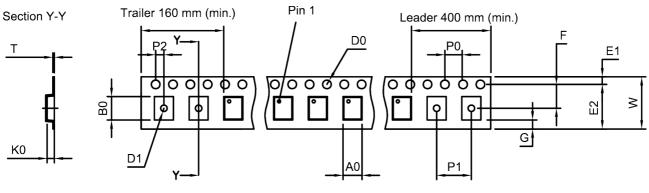


Figure 11: Error vector magnitude ANT – RX.

B8651


SAW components

SAW duplexer

Data sheet

11 Packing material

11.1 Tape

User direction of unreeling

Figure 12: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	1.62±0.05 mm
B ₀	2.04±0.05 mm
D_0	1.5±0.05 mm
D_1	0.8±0.05 mm
E1	1.75±0.1 mm

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K_0	0.62±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.25±0.02 mm
W	8.0±0.1 mm

Table 1: Tape dimensions.

11.2 Reel with diameter of 180 mm

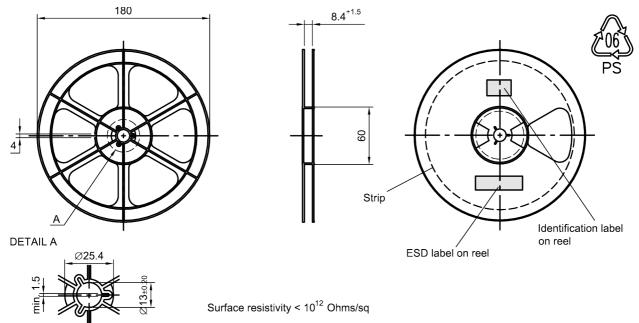


Figure 13: Drawing of reel (first-angle projection) with diameter of 180 mm.

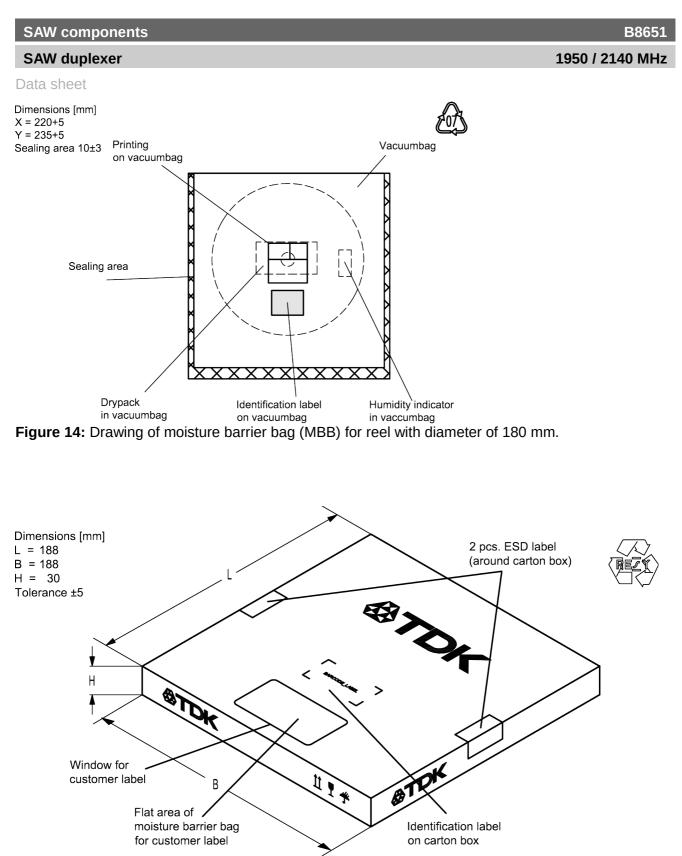
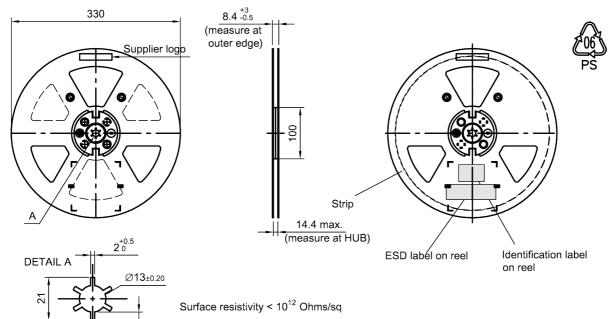
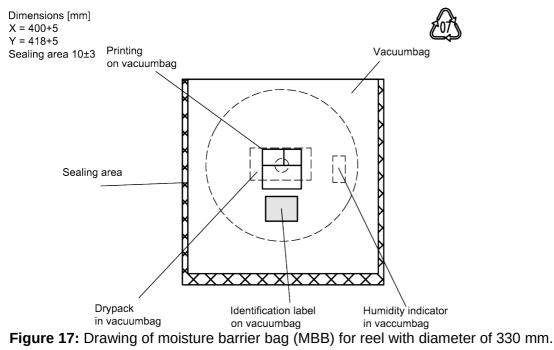


Figure 15: Drawing of folding box for reel with diameter of 180 mm.

B8651


SAW components

SAW duplexer


Data sheet

11.3 Reel with diameter of 330 mm

4

Figure 16: Drawing of reel (first-angle projection) with diameter of 330 mm.

⊗TDK

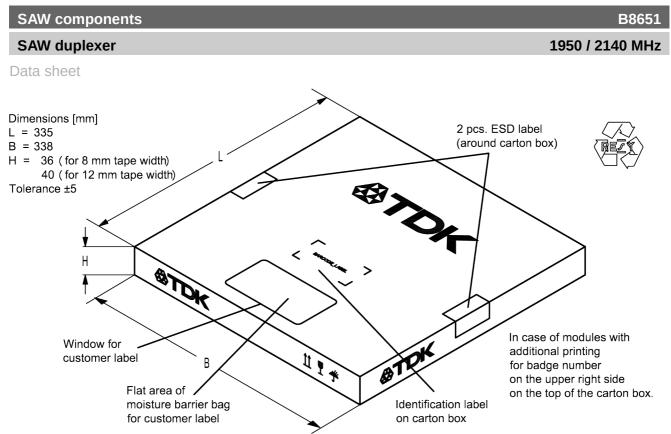


Figure 18: Drawing of folding box for reel with diameter of 330 mm.

12 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:			
The 4 digit type number of the ordering code, is encoded by a special BASE32 code into a 3 digit mark	king.	e.g.,	B3xxxxB <u>1234</u> xxxx,
Example of decoding type number marking on device 16J 1 x 32 ² + 6 x 32 ¹ + 18 (=J) x 32 ⁰ The BASE32 code for product type B8651 is 8EB.	=> =		in decimal code. 1234 1234
Lot number:			
The last 5 digits of the lot number, are encoded based on a special BASE47 code into a 3 o	digit maı	e.g., rking.	12345 ,
Example of decoding lot number marking on device 5UY 5 x 47^2 + 27 (=U) x 47^1 + 31 (=Y) x 47^0	=> =		in decimal code. 12345 12345

⊗TDK

SAW components

SAW duplexer

Data sheet

Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	К
4	4	20	М
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	А	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

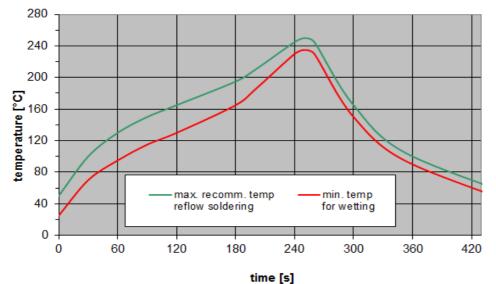
Adop	ted BASE47 o	ode for lot n	umber
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	Х
7	7	31	Y
8	8	32	Z
9	9	33	b
10	A	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	н	41	١
18	J	42	?
19	К	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		

Table 2: Lists for encoding and decoding of marking.

B8651

1950 / 2140 MHz

SAW duplexer


Data sheet

13 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 19: Recommended reflow profile for convection and infrared soldering – lead-free solder.

B8651

1950 / 2140 MHz