: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Ultra Small Low Profile 0603 Balun 50Ω to 100Ω Balanced

Description

The B4859A53 is an ultra-small low profile balanced to unbalanced transformer designed for differential inputs and output locations on next generation wireless chipsets in an easy to use surface mount package covering 802.11a Uni-Band II and Uni-Band III and the Japanese ISM band (4.9GHz). The B4859A53 is ideal for high volume manufacturing and is higher performance than traditional ceramic baluns. The B4859A53 has an unbalanced port impedance of 50Ω and a 100Ω balanced port impedance. This transformation enables single ended signals to be applied to differential ports on modern integrated chipsets. The output ports have equal amplitude (-3 dB) with 180 degree phase differential. The B4859A53 is available on tape and reel for pick and place high volume manufacturing.

Detailed Electrical Specifications: Specifications subject to change without notice.

* Insertion Loss stated at room temperature (Insertion Loss is approximately 0.1 dB higher at $+85^{\circ} \mathrm{C}$)

Outline Drawing

What'll we think of next? *

Available on Tape and Reel for Pick and Place Manufacturing.

USA/Canada
(315) 432-8909

Toll Free:
(800) 411-6596

Europe: $\quad+44$ 2392-232392

Typical Broadband Performance: $500 \mathbf{M H z}$. to 8000 MHz .

USA/Canada:
Toll Free:
(315) 432-8909
(800) 411-6596
+44 2392-232392

Typical Performance: $\mathbf{4 7 0 0} \mathbf{~ M H z}$. to 6000 MHz .

Toll Free:
(800) 411-6596

Europe: $\quad+44$ 2392-232392

Mounting Configuration:

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability having X and Y thermal coefficient of expansion (CTE) of $17 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

An example of the PCB footprint used in the testing of these parts is shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.

Packaging and Ordering Information

Parts are available in reel and are packaged per EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 4000 per reel. See Model Numbers below for further ordering information.

Function	Frequency	Package Dimensions	Unbalanced Impedance	Balanced Impedance + Coupling	Plating Finish	Codes
$\begin{array}{\|l} \hline \mathrm{B}=\text { Balun } \\ \mathrm{BD}=\text { Balun }+\mathrm{DC} \\ \mathrm{~F}=\text { Filter } \\ \mathrm{FB}=\text { Filter } / \text { Balun } \\ \mathrm{C}=3 \mathrm{~dB} \text { Coupler } \\ \mathrm{DC}=\text { Directional } \\ \mathrm{J}=\text { RF Jumper } \\ X=\text { RF cross over } \end{array}$	$0110=100-1000 \mathrm{MHz}$ $0810=800-1000 \mathrm{MHz}$ $0922=950-2150 \mathrm{MHz}$ $0826=800-6200 \mathrm{MHz}$ $1222=1200-2200 \mathrm{MHz}$ $1416=1400-1600 \mathrm{MHz}$ $1722=1700-2200 \mathrm{MHz}$ $2326=2300-2600 \mathrm{MHz}$ $2425=2400-2500 \mathrm{MHz}$ $3150=3100-5000 \mathrm{MHz}$ $3436=3400-3600 \mathrm{MHz}$ $4859=4800-5900 \mathrm{MHz}$ $5153=5100-5300 \mathrm{MHz}$ $5159=5100-5900 \mathrm{MHz}$ $5759=5700-5900 \mathrm{MHz}$	$\begin{aligned} & A=150 \times 150 \mathrm{mils} \\ & C=120 \times 120 \mathrm{mils} \\ & C=1 \mathrm{~mm} \times 4 \mathrm{~mm}) \\ & \mathrm{C}=10 \mathrm{~mm} \times 3 \mathrm{~mm}) \\ & (2.5 \mathrm{~mm} \times 20 \mathrm{~mm}) \\ & \mathrm{J}=80 \times 50 \mathrm{mils} \\ & (2 \mathrm{~mm} \times 1.25 \mathrm{~mm}) \\ & \mathrm{L}=60 \times 30 \mathrm{mils} \\ & (1.5 \mathrm{~mm} \times 0.75 \mathrm{~mm}) \\ & \mathrm{N}=40 \times 40 \mathrm{mils} \\ & (1 \mathrm{~mm} \times 1 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 50=500 \mathrm{hm} \\ & 75=75 \mathrm{Ohm} \end{aligned}$	$\begin{aligned} & 25=25 \Omega \text { Balanced } \\ & 30=30 \Omega \text { Balanced } \\ & 50=50 \Omega \text { Balanced } \\ & 75=75 \Omega \text { Balanced } \\ & 100=100 \Omega \text { Balanced } \\ & 150=150 \Omega \text { Balanced } \\ & 200=200 \Omega \text { Balanced } \\ & 300=300 \Omega \text { Balanced } \\ & 400=400 \Omega \text { Balanced } \\ & 03=3 \mathrm{~dB} \text { Hybrid } \\ & 10=10 \mathrm{~dB} \text { Directional } \\ & 20=20 \mathrm{~dB} \text { Directional } \end{aligned}$	$\begin{aligned} & \mathrm{A}=\text { Gold } \\ & \mathrm{P}=\text { Tin-Lead } \end{aligned}$	

